1
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109084. [PMID: 39217823 DOI: 10.1016/j.plaphy.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
Biernaskie JM. Kin selection theory and the design of cooperative crops. Evol Appl 2022; 15:1555-1564. [PMID: 36330299 PMCID: PMC9624078 DOI: 10.1111/eva.13418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
In agriculture and plant breeding, plant traits may be favoured because they benefit neighbouring plants and ultimately increase total crop yield. This idea of promoting cooperation among crop plants has existed almost as long as W.D. Hamilton's inclusive fitness (kin selection) theory, the leading framework for explaining cooperation in biology. However, kin selection thinking has not been adequately applied to the idea of cooperative crops. Here, I give an overview of modern kin selection theory and consider how it explains three key strategies for designing cooperative crops: (1) selection for a less-competitive plant type (a 'communal ideotype'); (2) group-level selection for yield; and (3) exploiting naturally selected cooperation. The first two strategies, using artificial selection, have been successful in the past but suffer from limitations that could hinder future progress. Instead, I propose an alternative strategy and a new 'colonial ideotype' that exploits past natural selection for cooperation among the modules (e.g., branches or stems) of individual plants. More generally, I suggest that Hamiltonian agriculture-a kin selection view of agriculture and plant breeding-transforms our understanding of how to improve crops of the future.
Collapse
|
3
|
Hudzenko VM, Polishchuk TP, Lysenko AA, Fedorenko IV, Fedorenko MV, Khudolii LV, Ishchenko VA, Kozelets HM, Babenko AI, Tanchyk SP, Mandrovska SM. Elucidation of gene action and combining ability for productive tillering in spring barley. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.
Collapse
|
4
|
Wang H, Seiler C, Sreenivasulu N, von Wirén N, Kuhlmann M. INTERMEDIUM-C mediates the shade-induced bud growth arrest in barley. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1963-1977. [PMID: 34894212 PMCID: PMC8982414 DOI: 10.1093/jxb/erab542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Tiller formation is a key agronomic determinant for grain yield in cereal crops. The modulation of this trait is controlled by transcriptional regulators and plant hormones, tightly regulated by external environmental conditions. While endogenous (genetic) and exogenous (environmental factors) triggers for tiller formation have mostly been investigated separately, it has remained elusive how they are integrated into the developmental program of this trait. The transcription factor gene INTERMEDIUM-C (INT-C), which is the barley ortholog of the maize domestication gene TEOSINTE BRANCHED1 (TB1), has a prominent role in regulating tiller bud outgrowth. Here we show that INT-C is expressed in tiller buds, required for bud growth arrest in response to shade. In contrast to wild-type plants, int-c mutant plants are impaired in their shade response and do not stop tiller production after shading. Gene expression levels of INT-C are up-regulated under light-limiting growth conditions, and down-regulated after decapitation. Transcriptome analysis of wild-type and int-c buds under control and shading conditions identified target genes of INT-C that belong to auxin and gibberellin biosynthesis and signaling pathways. Our study identifies INT-C as an integrator of the shade response into tiller formation, which is prerequisite for implementing shading responses in the breeding of cereal crops.
Collapse
Affiliation(s)
- Hongwen Wang
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Christiane Seiler
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), Grain Quality and Nutrition Center, Metro Manila, Philippines
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Markus Kuhlmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| |
Collapse
|
5
|
Che Y, He Y, Song N, Yang Y, Wei L, Yang X, Zhang Y, Zhang J, Han H, Li X, Zhou S, Liu W, Li L. Four-Year and Five-Developing-Stage Dynamic QTL Mapping for Tiller Number in the Hybrid Population of Agropyron Gaertn. FRONTIERS IN PLANT SCIENCE 2022; 13:835437. [PMID: 35283893 PMCID: PMC8907830 DOI: 10.3389/fpls.2022.835437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Tiller number (TN) is an important agronomic trait affecting gramineous crop yield. To understand the static and dynamic information of quantitative trait locus (QTLs) controlling TN of Agropyron Gaertn., both the unconditional and conditional quantitative trait loci (QTL) mapping of TN were conducted using a cross-pollinated (CP) hybrid population with a total of 113 plant lines from the cross between Agropyron cristatum (L.) Gaertn. Z1842 and Allium mongolicum Keng Z2098, based on the phenotypic data of TN at five developmental stages [i.e., recovering stage (RS), jointing stage (JS), heading stage (HS), flowering stage (FS), and maturity stage (MS)] in 4 years (i.e., 2017, 2018, 2020, and 2021) and the genetic map constructed of 1,023 single-nucleotide polymorphism (SNP) markers. Thirty-seven QTLs controlling TN were detected using two analysis methods in 4 years, which were distributed in six linkage groups. Each QTL explained 2.96-31.11% of the phenotypic variation, with a logarithum of odds (LOD) value of 2.51-13.95. Nine of these loci detected both unconditional and conditional QTLs. Twelve unconditional major QTLs and sixteen conditional major QTLs were detected. Three relatively major stable conditional QTLs, namely, cQTN1-3, cQTN1-5, and cQTN4-1, were expressed in 2020 and 2021. Meantime, two pairs of major QTLs cQTN1-5 and qTN1-4 and also cQTN2-4 and qTN2-3 were located at the same interval but in different years. Except for qTN2-2 and qTN3-5/cQTN3-5, other thirty-four QTLs were first detected in this study. This study provides a better interpretation of genetic factors that selectively control tiller at different developmental stages and a reference for molecular marker-assisted selection in the related plant improvement.
Collapse
Affiliation(s)
- Yonghe Che
- Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yutong He
- Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Nan Song
- Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yanping Yang
- Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lai Wei
- Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xinming Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinpeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiming Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuquan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shenghui Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|