1
|
Moya ND, Yan SM, McCoy RC, Andersen EC. The long and short of hyperdivergent regions. Trends Genet 2025; 41:303-314. [PMID: 39706705 PMCID: PMC11981857 DOI: 10.1016/j.tig.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Burgarella C, Brémaud MF, Von Hirschheydt G, Viader V, Ardisson M, Santoni S, Ranwez V, de Navascués M, David J, Glémin S. Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives. Evol Lett 2024; 8:866-880. [PMID: 39677571 PMCID: PMC11637685 DOI: 10.1093/evlett/qrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 12/17/2024] Open
Abstract
How and why genetic diversity varies among species is a long-standing question in evolutionary biology. Life history traits have been shown to explain a large part of observed diversity. Among them, mating systems have one of the strongest impacts on genetic diversity, with selfing species usually exhibiting much lower diversity than outcrossing relatives. Theory predicts that a high rate of selfing amplifies selection at linked sites, reducing genetic diversity genome-wide, but frequent bottlenecks and rapid population turn-over could also explain low genetic diversity in selfers. However, how linked selection varies with mating systems and whether it is sufficient to explain the observed difference between selfers and outcrossers has never been tested. Here, we used the Aegilops/Triticum grass species, a group characterized by contrasted mating systems (from obligate outcrossing to high selfing) and marked recombination rate variation across the genome, to quantify the effects of mating system and linked selection on patterns of neutral and selected polymorphism. By analyzing phenotypic and transcriptomic data of 13 species, we show that selfing strongly affects genetic diversity and the efficacy of selection by amplifying the intensity of linked selection genome-wide. In particular, signatures of adaptation were only found in the highly recombining regions in outcrossing species. These results bear implications for the evolution of mating systems and, more generally, for our understanding of the fundamental drivers of genetic diversity.
Collapse
Affiliation(s)
- Concetta Burgarella
- CNRS, Univ. Montpellier, ISEM – UMR 5554, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Marie-Fleur Brémaud
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Veronique Viader
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Morgane Ardisson
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Santoni
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Ranwez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Miguel de Navascués
- UMR CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Dowell JA, Bowsher AW, Jamshad A, Shah R, Burke JM, Donovan LA, Mason CM. Historic breeding practices contribute to germplasm divergence in leaf specialized metabolism and ecophysiology in cultivated sunflower (Helianthus annuus). AMERICAN JOURNAL OF BOTANY 2024; 111:e16420. [PMID: 39483110 DOI: 10.1002/ajb2.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/03/2024]
Abstract
PREMISE The use of hybrid breeding systems to increase crop yields has been the cornerstone of modern agriculture and is exemplified in the breeding and improvement of cultivated sunflower (Helianthus annuus). However, it is poorly understood what effect supporting separate breeding pools in such systems, combined with continued selection for yield, may have on leaf ecophysiology and specialized metabolite variation. METHODS We analyzed 288 lines of cultivated H. annuus to examine the genomic basis of several specialized metabolites and agronomically important traits across major heterotic groups. RESULTS Heterotic group identity supports phenotypic divergences between fertility restoring and cytoplasmic male-sterility maintainer lines in leaf ecophysiology and specialized metabolism. However, the divergence is not associated with physical linkage to nuclear genes that support current hybrid breeding practices in cultivated H. annuus. Additionally, we identified four genomic regions associated with leaf ecophysiology and specialized metabolism that colocalize with previously identified QTLs for quantitative self-compatibility traits and with S-protein homolog (SPH) proteins, a recently discovered family of proteins associated with self-incompatibility and self/nonself recognition in Papaver rhoeas (common poppy) with suggested conserved downstream mechanisms among eudicots. CONCLUSIONS Further work is necessary to confirm the self-incompatibility mechanisms in cultivated H. annuus and their relationship to the integrative and polygenic architecture of leaf ecophysiology and specialized metabolism in cultivated sunflower. However, because self-compatibility is a derived quantitative trait in cultivated H. annuus, trait linkage to divergent phenotypic traits may have partially arisen as a potential unintended consequence of historical breeding practices and selection for yield.
Collapse
Affiliation(s)
- Jordan A Dowell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70802, LA, USA
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Amna Jamshad
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Rahul Shah
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- The Plant Center, University of Georgia, Athens, 30602, GA, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, 32816, FL, USA
- Department of Plant Biology, University of Georgia, Athens, 30602, GA, USA
- Department of Biology, University of British Columbia Okanagan, Kelowna, B.C. 9 V1V1V7, Canada
| |
Collapse
|
5
|
Chotai M, Wei X, Messer PW. Signatures of selective sweeps in continuous-space populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605365. [PMID: 39091822 PMCID: PMC11291165 DOI: 10.1101/2024.07.26.605365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Selective sweeps describe the process by which an adaptive mutation arises and rapidly fixes in the population, thereby removing genetic variation in its genomic vicinity. The expected signatures of selective sweeps are relatively well understood in panmictic population models, yet natural populations often extend across larger geographic ranges where individuals are more likely to mate with those born nearby. To investigate how such spatial population structure can affect sweep dynamics and signatures, we simulated selective sweeps in populations inhabiting a two-dimensional continuous landscape. The maximum dispersal distance of offspring from their parents can be varied in our simulations from an essentially panmictic population to scenarios with increasingly limited dispersal. We find that in low-dispersal populations, adaptive mutations spread more slowly than in panmictic ones, while recombination becomes less effective at breaking up genetic linkage around the sweep locus. Together, these factors result in a trough of reduced genetic diversity around the sweep locus that looks very similar across dispersal rates. We also find that the site frequency spectrum around hard sweeps in low-dispersal populations becomes enriched for intermediate-frequency variants, making these sweeps appear softer than they are. Furthermore, haplotype heterozygosity at the sweep locus tends to be elevated in low-dispersal scenarios as compared to panmixia, contrary to what we observe in neutral scenarios without sweeps. The haplotype patterns generated by these hard sweeps in low-dispersal populations can resemble soft sweeps from standing genetic variation that arose from substantially older alleles. Our results highlight the need for better accounting for spatial population structure when making inferences about selective sweeps.
Collapse
Affiliation(s)
- Meera Chotai
- Department of Computational Biology, Cornell University
| | - Xinzhu Wei
- Department of Computational Biology, Cornell University
| | | |
Collapse
|
6
|
Marsh JI, Johri P. Biases in ARG-Based Inference of Historical Population Size in Populations Experiencing Selection. Mol Biol Evol 2024; 41:msae118. [PMID: 38874402 PMCID: PMC11245712 DOI: 10.1093/molbev/msae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Inferring the demographic history of populations provides fundamental insights into species dynamics and is essential for developing a null model to accurately study selective processes. However, background selection and selective sweeps can produce genomic signatures at linked sites that mimic or mask signals associated with historical population size change. While the theoretical biases introduced by the linked effects of selection have been well established, it is unclear whether ancestral recombination graph (ARG)-based approaches to demographic inference in typical empirical analyses are susceptible to misinference due to these effects. To address this, we developed highly realistic forward simulations of human and Drosophila melanogaster populations, including empirically estimated variability of gene density, mutation rates, recombination rates, purifying, and positive selection, across different historical demographic scenarios, to broadly assess the impact of selection on demographic inference using a genealogy-based approach. Our results indicate that the linked effects of selection minimally impact demographic inference for human populations, although it could cause misinference in populations with similar genome architecture and population parameters experiencing more frequent recurrent sweeps. We found that accurate demographic inference of D. melanogaster populations by ARG-based methods is compromised by the presence of pervasive background selection alone, leading to spurious inferences of recent population expansion, which may be further worsened by recurrent sweeps, depending on the proportion and strength of beneficial mutations. Caution and additional testing with species-specific simulations are needed when inferring population history with non-human populations using ARG-based approaches to avoid misinference due to the linked effects of selection.
Collapse
Affiliation(s)
- Jacob I Marsh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Hartfield M, Glémin S. Polygenic selection to a changing optimum under self-fertilisation. PLoS Genet 2024; 20:e1011312. [PMID: 39018328 DOI: 10.1371/journal.pgen.1011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 05/21/2024] [Indexed: 07/19/2024] Open
Abstract
Many traits are polygenic, affected by multiple genetic variants throughout the genome. Selection acting on these traits involves co-ordinated allele-frequency changes at these underlying variants, and this process has been extensively studied in random-mating populations. Yet many species self-fertilise to some degree, which incurs changes to genetic diversity, recombination and genome segregation. These factors cumulatively influence how polygenic selection is realised in nature. Here, we use analytical modelling and stochastic simulations to investigate to what extent self-fertilisation affects polygenic adaptation to a new environment. Our analytical solutions show that while selfing can increase adaptation to an optimum, it incurs linkage disequilibrium that can slow down the initial spread of favoured mutations due to selection interference, and favours the fixation of alleles with opposing trait effects. Simulations show that while selection interference is present, high levels of selfing (at least 90%) aids adaptation to a new optimum, showing a higher long-term fitness. If mutations are pleiotropic then only a few major-effect variants fix along with many neutral hitchhikers, with a transient increase in linkage disequilibrium. These results show potential advantages to self-fertilisation when adapting to a new environment, and how the mating system affects the genetic composition of polygenic selection.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sylvain Glémin
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Sudbrack V, Mullon C. Fixation times of de novo and standing beneficial variants in subdivided populations. Genetics 2024; 227:iyae043. [PMID: 38527860 DOI: 10.1093/genetics/iyae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The rate at which beneficial alleles fix in a population depends on the probability of and time to fixation of such alleles. Both of these quantities can be significantly impacted by population subdivision and limited gene flow. Here, we investigate how limited dispersal influences the rate of fixation of beneficial de novo mutations, as well as fixation time from standing genetic variation. We investigate this for a population structured according to the island model of dispersal allowing us to use the diffusion approximation, which we complement with simulations. We find that fixation may take on average fewer generations under limited dispersal than under panmixia when selection is moderate. This is especially the case if adaptation occurs from de novo recessive mutations, and dispersal is not too limited (such that approximately FST<0.2). The reason is that mildly limited dispersal leads to only a moderate increase in effective population size (which slows down fixation), but is sufficient to cause a relative excess of homozygosity due to inbreeding, thereby exposing rare recessive alleles to selection (which accelerates fixation). We also explore the effect of metapopulation dynamics through local extinction followed by recolonization, finding that such dynamics always accelerate fixation from standing genetic variation, while de novo mutations show faster fixation interspersed with longer waiting times. Finally, we discuss the implications of our results for the detection of sweeps, suggesting that limited dispersal mitigates the expected differences between the genetic signatures of sweeps involving recessive and dominant alleles.
Collapse
Affiliation(s)
- Vitor Sudbrack
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Vaud, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Vaud, Switzerland
| |
Collapse
|
9
|
van der Valk T, Jensen A, Caillaud D, Guschanski K. Comparative genomic analyses provide new insights into evolutionary history and conservation genomics of gorillas. BMC Ecol Evol 2024; 24:14. [PMID: 38273244 PMCID: PMC10811819 DOI: 10.1186/s12862-023-02195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Genome sequencing is a powerful tool to understand species evolutionary history, uncover genes under selection, which could be informative of local adaptation, and infer measures of genetic diversity, inbreeding and mutational load that could be used to inform conservation efforts. Gorillas, critically endangered primates, have received considerable attention and with the recently sequenced Bwindi mountain gorilla population, genomic data is now available from all gorilla subspecies and both mountain gorilla populations. Here, we reanalysed this rich dataset with a focus on evolutionary history, local adaptation and genomic parameters relevant for conservation. We estimate a recent split between western and eastern gorillas of 150,000-180,000 years ago, with gene flow around 20,000 years ago, primarily between the Cross River and Grauer's gorilla subspecies. This gene flow event likely obscures evolutionary relationships within eastern gorillas: after excluding putatively introgressed genomic regions, we uncover a sister relationship between Virunga mountain gorillas and Grauer's gorillas to the exclusion of Bwindi mountain gorillas. This makes mountain gorillas paraphyletic. Eastern gorillas are less genetically diverse and more inbred than western gorillas, yet we detected lower genetic load in the eastern species. Analyses of indels fit remarkably well with differences in genetic diversity across gorilla taxa as recovered with nucleotide diversity measures. We also identified genes under selection and unique gene variants specific for each gorilla subspecies, encoding, among others, traits involved in immunity, diet, muscular development, hair morphology and behavior. The presence of this functional variation suggests that the subspecies may be locally adapted. In conclusion, using extensive genomic resources we provide a comprehensive overview of gorilla genomic diversity, including a so-far understudied Bwindi mountain gorilla population, identify putative genes involved in local adaptation, and detect population-specific gene flow across gorilla species.
Collapse
Affiliation(s)
- Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- SciLifeLab, Stockholm, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Damien Caillaud
- Department of Anthropology, University of CA - Davis, Davis, California, USA
| | - Katerina Guschanski
- SciLifeLab, Stockholm, Sweden
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Galić V, Anđelković V, Kravić N, Grčić N, Ledenčan T, Jambrović A, Zdunić Z, Nicolas S, Charcosset A, Šatović Z, Šimić D. Genetic diversity and selection signatures in a gene bank panel of maize inbred lines from Southeast Europe compared with two West European panels. BMC PLANT BIOLOGY 2023; 23:315. [PMID: 37316827 PMCID: PMC10265872 DOI: 10.1186/s12870-023-04336-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Southeast Europe (SEE) is a very important maize-growing region, comparable to the Corn belt region of the United States, with similar dent germplasm (dent by dent hybrids). Historically, this region has undergone several genetic material swaps, following the trends in the US, with one of the most significant swaps related to US aid programs after WWII. The imported accessions used to make double-cross hybrids were also mixed with previously adapted germplasm originating from several more distant OPVs, supporting the transition to single cross-breeding. Many of these materials were deposited at the Maize Gene Bank of the Maize Research Institute Zemun Polje (MRIZP) between the 1960s and 1980s. A part of this Gene Bank (572 inbreds) was genotyped with Affymetrix Axiom Maize Genotyping Array with 616,201 polymorphic variants. Data were merged with two other genotyping datasets with mostly European flint (TUM dataset) and dent (DROPS dataset) germplasm. The final pan-European dataset consisted of 974 inbreds and 460,243 markers. Admixture analysis showed seven ancestral populations representing European flint, B73/B14, Lancaster, B37, Wf9/Oh07, A374, and Iodent pools. Subpanel of inbreds with SEE origin showed a lack of Iodent germplasm, marking its historical context. Several signatures of selection were identified at chromosomes 1, 3, 6, 7, 8, 9, and 10. The regions under selection were mined for protein-coding genes and were used for gene ontology (GO) analysis, showing a highly significant overrepresentation of genes involved in response to stress. Our results suggest the accumulation of favorable allelic diversity, especially in the context of changing climate in the genetic resources of SEE.
Collapse
Affiliation(s)
- Vlatko Galić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia.
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia.
| | - Violeta Anđelković
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Natalija Kravić
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Nikola Grčić
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Tatjana Ledenčan
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
| | - Antun Jambrović
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Stéphane Nicolas
- GQE ‑ Le Moulon, INRAE, Univ. Paris‑Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif‑sur‑Yvette, 91190, France
| | - Alain Charcosset
- GQE ‑ Le Moulon, INRAE, Univ. Paris‑Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif‑sur‑Yvette, 91190, France
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Domagoj Šimić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| |
Collapse
|
11
|
Higgins J, Santos B, Khanh TD, Trung KH, Duong TD, Doai NTP, Hall A, Dyer S, Ham LH, Caccamo M, De Vega J. Genomic regions and candidate genes selected during the breeding of rice in Vietnam. Evol Appl 2022; 15:1141-1161. [PMID: 35899250 PMCID: PMC9309459 DOI: 10.1111/eva.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Vietnam harnesses a rich diversity of rice landraces adapted to a range of conditions, which constitute a largely untapped source of diversity for the continuous improvement of cultivars. We previously identified a strong population structure in Vietnamese rice, which is captured in five Indica and four Japonica subpopulations, including an outlying Indica-5 group. Here, we leveraged that strong differentiation and 672 native rice genomes to identify genomic regions and genes putatively selected during the breeding of rice in Vietnam. We identified significant distorted patterns in allele frequency (XP-CLR) and population differentiation scores (F ST) resulting from differential selective pressures between native subpopulations, and later annotated them with QTLs previously identified by GWAS in the same panel. We particularly focussed on the outlying Indica-5 subpopulation because of its likely novelty and differential evolution, where we annotated 52 selected regions, which represented 8.1% of the rice genome. We annotated the 4576 genes in these regions and selected 65 candidate genes as promising breeding targets, several of which harboured alleles with nonsynonymous substitutions. Our results highlight genomic differences between traditional Vietnamese landraces, which are likely the product of adaption to multiple environmental conditions and regional culinary preferences in a very diverse country. We also verified the applicability of this genome scanning approach to identify potential regions harbouring novel loci and alleles to breed a new generation of sustainable and resilient rice.
Collapse
Affiliation(s)
| | | | - Tran Dang Khanh
- Agriculture Genetics Institute (AGI)HanoiVietnam
- Vietnam National University of AgricultureHanoiVietnam
| | | | | | | | | | | | - Le Huy Ham
- Agriculture Genetics Institute (AGI)HanoiVietnam
| | | | | |
Collapse
|
12
|
Klassmann A, Gautier M. Detecting selection using extended haplotype homozygosity (EHH)-based statistics in unphased or unpolarized data. PLoS One 2022; 17:e0262024. [PMID: 35041674 PMCID: PMC8765611 DOI: 10.1371/journal.pone.0262024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Analysis of population genetic data often includes a search for genomic regions with signs of recent positive selection. One of such approaches involves the concept of extended haplotype homozygosity (EHH) and its associated statistics. These statistics typically require phased haplotypes, and some of them necessitate polarized variants. Here, we unify and extend previously proposed modifications to loosen these requirements. We compare the modified versions with the original ones by measuring the false discovery rate in simulated whole-genome scans and by quantifying the overlap of inferred candidate regions in empirical data. We find that phasing information is indispensable for accurate estimation of within-population statistics (for all but very large samples) and of cross-population statistics for small samples. Ancestry information, in contrast, is of lesser importance for both types of statistic. Our publicly available R package rehh incorporates the modified statistics presented here.
Collapse
Affiliation(s)
| | - Mathieu Gautier
- CBGP, Univ Montpellier, CIRAD, INRAE, IRD, Institut Agro, Montpellier, France
| |
Collapse
|
13
|
Johri P, Charlesworth B, Howell EK, Lynch M, Jensen JD. Revisiting the notion of deleterious sweeps. Genetics 2021; 219:iyab094. [PMID: 34125884 PMCID: PMC9101445 DOI: 10.1093/genetics/iyab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites-both in the presence and absence of interference amongst deleterious mutations-and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma K Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Kaushik S, Jain K. Time to fixation in changing environments. Genetics 2021; 219:6369518. [PMID: 34740251 DOI: 10.1093/genetics/iyab148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023] Open
Abstract
Although many experimental and theoretical studies on natural selection have been carried out in a constant environment, as natural environments typically vary in time, it is important to ask if and how the results of these investigations are affected by a changing environment. Here, we study the properties of the conditional fixation time defined as the time to fixation of a new mutant that is destined to fix in a finite, randomly mating diploid population with intermediate dominance that is evolving in a periodically changing environment. It is known that in a static environment, the conditional mean fixation time of a co-dominant beneficial mutant is equal to that of a deleterious mutant with the same magnitude of selection coefficient. We find that this symmetry is not preserved, even when the environment is changing slowly. More generally, we find that the conditional mean fixation time of an initially beneficial mutant in a slowly changing environment depends weakly on the dominance coefficient and remains close to the corresponding result in the static environment. However, for an initially deleterious mutant under moderate and slowly varying selection, the fixation time differs substantially from that in a constant environment when the mutant is recessive. As fixation times are intimately related to the levels and patterns of genetic diversity, our results suggest that for beneficial sweeps, these quantities are only mildly affected by temporal variation in environment. In contrast, environmental change is likely to impact the patterns due to recessive deleterious sweeps strongly.
Collapse
Affiliation(s)
- Sachin Kaushik
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
15
|
Bisschop G, Lohse K, Setter D. Sweeps in time: leveraging the joint distribution of branch lengths. Genetics 2021; 219:iyab119. [PMID: 34849880 PMCID: PMC8633083 DOI: 10.1093/genetics/iyab119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/10/2021] [Indexed: 11/14/2022] Open
Abstract
Current methods of identifying positively selected regions in the genome are limited in two key ways: the underlying models cannot account for the timing of adaptive events and the comparison between models of selective sweeps and sequence data is generally made via simple summaries of genetic diversity. Here, we develop a tractable method of describing the effect of positive selection on the genealogical histories in the surrounding genome, explicitly modeling both the timing and context of an adaptive event. In addition, our framework allows us to go beyond analyzing polymorphism data via the site frequency spectrum or summaries thereof and instead leverage information contained in patterns of linked variants. Tests on both simulations and a human data example, as well as a comparison to SweepFinder2, show that even with very small sample sizes, our analytic framework has higher power to identify old selective sweeps and to correctly infer both the time and strength of selection. Finally, we derived the marginal distribution of genealogical branch lengths at a locus affected by selection acting at a linked site. This provides a much-needed link between our analytic understanding of the effects of sweeps on sequence variation and recent advances in simulation and heuristic inference procedures that allow researchers to examine the sequence of genealogical histories along the genome.
Collapse
Affiliation(s)
- Gertjan Bisschop
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Derek Setter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
16
|
Zeng K, Charlesworth B, Hobolth A. Studying models of balancing selection using phase-type theory. Genetics 2021; 218:6237896. [PMID: 33871627 DOI: 10.1093/genetics/iyab055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important genes. To further our understanding of its evolutionary significance, we analyze models with BLS acting on a biallelic locus: an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model of recent BLS. Using phase-type theory, a mathematical tool for analyzing continuous time Markov chains with an absorbing state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarized by nucleotide diversity, the expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS affects polymorphism patterns in a relatively small genomic neighborhood, and such selection targets are easier to detect when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction. For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared to selective sweeps, nonequilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which may increase the chance of detecting such selection targets. An R package for analyzing these models, among others (e.g., isolation with migration), is available.
Collapse
Affiliation(s)
- Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Asger Hobolth
- Department of Mathematics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
17
|
Blischak PD, Barker MS, Gutenkunst RN. Inferring the Demographic History of Inbred Species from Genome-Wide SNP Frequency Data. Mol Biol Evol 2021; 37:2124-2136. [PMID: 32068861 DOI: 10.1093/molbev/msaa042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/04/2023] Open
Abstract
Demographic inference using the site frequency spectrum (SFS) is a common way to understand historical events affecting genetic variation. However, most methods for estimating demography from the SFS assume random mating within populations, precluding these types of analyses in inbred populations. To address this issue, we developed a model for the expected SFS that includes inbreeding by parameterizing individual genotypes using beta-binomial distributions. We then take the convolution of these genotype probabilities to calculate the expected frequency of biallelic variants in the population. Using simulations, we evaluated the model's ability to coestimate demography and inbreeding using one- and two-population models across a range of inbreeding levels. We also applied our method to two empirical examples, American pumas (Puma concolor) and domesticated cabbage (Brassica oleracea var. capitata), inferring models both with and without inbreeding to compare parameter estimates and model fit. Our simulations showed that we are able to accurately coestimate demographic parameters and inbreeding even for highly inbred populations (F = 0.9). In contrast, failing to include inbreeding generally resulted in inaccurate parameter estimates in simulated data and led to poor model fit in our empirical analyses. These results show that inbreeding can have a strong effect on demographic inference, a pattern that was especially noticeable for parameters involving changes in population size. Given the importance of these estimates for informing practices in conservation, agriculture, and elsewhere, our method provides an important advancement for accurately estimating the demographic histories of these species.
Collapse
Affiliation(s)
- Paul D Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
18
|
Monroe JG, McKay JK, Weigel D, Flood PJ. The population genomics of adaptive loss of function. Heredity (Edinb) 2021; 126:383-395. [PMID: 33574599 PMCID: PMC7878030 DOI: 10.1038/s41437-021-00403-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/23/2022] Open
Abstract
Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic variation in a way consistent with the functional concept of an allele from classical population genetics.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
| | - John K McKay
- College of Agriculture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Department of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
19
|
Charlesworth B. How Good Are Predictions of the Effects of Selective Sweeps on Levels of Neutral Diversity? Genetics 2020; 216:1217-1238. [PMID: 33106248 PMCID: PMC7768247 DOI: 10.1534/genetics.120.303734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
Selective sweeps are thought to play a significant role in shaping patterns of variability across genomes; accurate predictions of their effects are, therefore, important for understanding these patterns. A commonly used model of selective sweeps assumes that alleles sampled at the end of a sweep, and that fail to recombine with wild-type haplotypes during the sweep, coalesce instantaneously, leading to a simple expression for sweep effects on diversity. It is shown here that there can be a significant probability that a pair of alleles sampled at the end of a sweep coalesce during the sweep before a recombination event can occur, reducing their expected coalescent time below that given by the simple approximation. Expressions are derived for the expected reductions in pairwise neutral diversities caused by both single and recurrent sweeps in the presence of such within-sweep coalescence, although the effects of multiple recombination events during a sweep are only treated heuristically. The accuracies of the resulting expressions were checked against the results of simulations. For even moderate ratios of the recombination rate to the selection coefficient, the simple approximation can be substantially inaccurate. The selection model used here can be applied to favorable mutations with arbitrary dominance coefficients, to sex-linked loci with sex-specific selection coefficients, and to inbreeding populations. Using the results from this model, the expected differences between the levels of variability on X chromosomes and autosomes with selection at linked sites are discussed, and compared with data on a population of Drosophila melanogaster.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
20
|
Boyrie L, Moreau C, Frugier F, Jacquet C, Bonhomme M. A linkage disequilibrium-based statistical test for Genome-Wide Epistatic Selection Scans in structured populations. Heredity (Edinb) 2020; 126:77-91. [PMID: 32728044 DOI: 10.1038/s41437-020-0349-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
The quest for signatures of selection using single nucleotide polymorphism (SNP) data has proven efficient to uncover genes involved in conserved and/or adaptive molecular functions, but none of the statistical methods were designed to identify interacting alleles as targets of selective processes. Here, we propose a statistical test aimed at detecting epistatic selection, based on a linkage disequilibrium (LD) measure accounting for population structure and heterogeneous relatedness between individuals. SNP-based ([Formula: see text]) and window-based ([Formula: see text]) statistics fit a Student distribution, allowing to test the significance of correlation coefficients. As a proof of concept, we use SNP data from the Medicago truncatula symbiotic legume plant and uncover a previously unknown gene coadaptation between the MtSUNN (Super Numeric Nodule) receptor and the MtCLE02 (CLAVATA3-Like) signaling peptide. We also provide experimental evidence supporting a MtSUNN-dependent negative role of MtCLE02 in symbiotic root nodulation. Using human HGDP-CEPH SNP data, our new statistical test uncovers strong LD between SLC24A5 (skin pigmentation) and EDAR (hairs, teeth, sweat glands development) world-wide, which persists after correction for population structure and relatedness in Central South Asian populations. This result suggests that epistatic selection or coselection could have contributed to the phenotypic make-up in some human populations. Applying this approach to genome-wide SNP data will facilitate the identification of coadapted gene networks in model or non-model organisms.
Collapse
Affiliation(s)
- Léa Boyrie
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet-Tolosan, France
| | - Corentin Moreau
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, 91192, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, 91192, Gif-sur-Yvette, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet-Tolosan, France.
| |
Collapse
|