1
|
Hashemi M, Gholamrezaie H, Ziyaei F, Asadi S, Naeini ZY, Salimian N, Enayat G, Sharifi N, Aliahmadi M, Rezaie YS, Khoushab S, Rahimzadeh P, Miri H, Abedi M, Farahani N, Taheriazam A, Nabavi N, Entezari M. Role of lncRNA PVT1 in the progression of urological cancers: Novel insights into signaling pathways and clinical opportunities. Cell Signal 2025; 131:111736. [PMID: 40081549 DOI: 10.1016/j.cellsig.2025.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Urologic malignancies, encompassing cancers of the kidney, bladder, and prostate, represent approximately 25 % of all cancer cases. Recent advances have enhanced our understanding of PVT1's crucial functions. Long noncoding RNAs influence both the onset and development of cancer, as well as epigenetic alterations. Recent findings have focused on PVT1's mechanism of action across several malignancies, particularly urologic cancers. Understanding the various functions of PVT1 linked to cancer is necessary for the development of cancer detection and treatment when PVT1 is dysregulated. Furthermore, recent advancements in genomic and epigenetic research have elucidated the complex regulatory networks that control PVT1 expression. Comprehending the intricate role of PVT1 Understanding the complex function of PVT1 in urologic cancers has substantial clinical implications. Here, we summarize some of the most recent findings about the carcinogenic effects of PVT1 signaling pathways and the possible treatment strategies for urological malignancies that target these pathways.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Ziyaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Yousefian Naeini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology,Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Salimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnaz Enayat
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sharifi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran,Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Zhu X, Kang J, Ma Y, Wang Q, Li W, Su J, Zhang X. PVT1 inhibits miR-515-5p function and modulate HMGB3 to promote the growth of prostate cancer cells. Andrology 2022; 11:641-650. [PMID: 36053124 DOI: 10.1111/andr.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
AIM This study is performed to analyze the role of long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) in prostate cancer (PCa). METHODS AND MATERIALS PVT1, miR-515-5p, and high mobility group B3 (HMGB3) mRNA expressions were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). After gain-of-function and loss-of-function models were established, the changes in cell proliferation, migration, and invasion were evaluated using cell counting kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell experiments. Validation of the targeting relationships between PVT1 and miR-515-5p, and between miR-515-5p and HMGB3 was conducted using bioinformatics prediction, dual-luciferase reporter assay, and RNA immunoprecipitation (RIP) experiment. Moreover, the effects of PVT1 and miR-515-5p on HMGB3 protein expression were examined using Western blot. RESULTS PVT1 expression and HMGB3 expression were up-regulated in PCa tissues and cell lines while miR-515-5p expression was down-regulated. PVT1 knockdown restrained the proliferation, migration, and invasion of LNCaP and DU145 cells in vitro, and the transfection with miR-515-5p inhibitors reversed these effects. Mechanistically, PVT1 could repress the function of miR-515; HMGB3 was proved to be a target gene of miR-515-5p, and its expression could be indirectly positively modulated by PVT1. CONCLUSION PVT1 accelerates PCa progression by repress miR-515-5p's function to upregulate HMGB3 expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xueying Zhu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430000, China
| | - Jian Kang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430000, China
| | - Yupeng Ma
- Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shanxi Province, 710016, China
| | - Qi Wang
- Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shanxi Province, 710016, China
| | - Weiwu Li
- Department of Urology, Yangpu Hospital Affiliated to Tongji University (Yangpu District Central Hospital), Yangpu, Shanghai, 255300, China
| | - Juan Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430000, China
| | - Xinqi Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430000, China
| |
Collapse
|
3
|
Wu F, Zhu Y, Zhou C, Gui W, Li H, Lin X. Regulation mechanism and pathogenic role of lncRNA plasmacytoma variant translocation 1 (PVT1) in human diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
4
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
5
|
Fernandez PW. Prostate Cancer Genomics Research Disparities in Africa: Advancing Knowledge in Resource Constrained Settings. Cancer Control 2022; 29:10732748221095952. [PMID: 35475404 PMCID: PMC9087236 DOI: 10.1177/10732748221095952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer disproportionately affects men of African descent and it is estimated that Africa will bear the highest disease burden in the next decade. Underlying genomic factors may contribute to prostate cancer disparities; however, it is unclear whether Africa has prioritised genomics research toward addressing these disparities. A Pubmed review was performed of publications spanning a 15-year period, with specific focus on prostate cancer genomics research that included samples from Africa and investigators in Africa. Data are presented on research publications from Africa relative to similar publications from different geographical regions, and more specifically, the extent of disparities and the contributions to prostate cancer knowledge as a result of genomics research that included African samples and African institutions. Limited publication output may reflect the infrastructure and funding challenges in Africa. Widespread cooperation should be fostered by sharing capacity and leveraging existing expertise to address the growing cancer burden facing the continent.
Collapse
|
6
|
Long Non-coding RNA PVT1 Inhibits miR-30c-5p to Upregulate Rock2 to Modulate Cerebral Ischemia/Reperfusion Injury Through MAPK Signaling Pathway Activation. Mol Neurobiol 2021; 58:6032-6048. [PMID: 34436749 DOI: 10.1007/s12035-021-02539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a key role in a variety of disease processes. Plasmacytoma variant translocation 1 (PVT1), a lncRNA, is known to regulate cell functions and play a key role in the pathogenesis of many malignant tumors. The function and molecular mechanisms of lncRNA-PVT1 in cerebral ischemia remain unknown. Real-time PCR (qRT-PCR) was used to detect lncRNA-PVT1 and microRNA-30c-5p (miR-30c-5p) expression in the brain tissues of mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reperfusion (OGD/R)-treated mouse primary brain neurons. Gain- or loss-of-function approaches were used to manipulate PVT1, miR-30c-5p, and Rho-associated protein kinase 2 (Rock2). The mechanism of PVT1 in ischemic stroke was evaluated both in vivo and in vitro via bioinformatics analysis, CCK-8, flow cytometry, TUNEL staining, luciferase activity assay, RNA FISH, and Western blot. PVT1 was upregulated in the brain tissues of mice treated with MCAO/R and primary cerebral cortex neurons of mice treated with OGD/R. Mechanistically, PVT1 knockdown resulted in a lower infarct volume and ameliorated neurobehavior in MCAO mice. Consistent with in vivo results, PVT1 upregulation significantly decreased the viability and induced apoptosis of neurons cultured in OGD/R. Moreover, we demonstrated that PVT1 acts as a competitive endogenous RNA (ceRNA) that competes with miR-30c-5p, thereby negatively regulating its endogenous target Rock2. Overexpression of miR-30c-5p significantly promoted cell proliferation and inhibited apoptosis. Meanwhile, PVT1 was confirmed to target miR-30c-5p, thus activating Rock2 expression, which finally led to the activation of MAPK signaling. We demonstrated that PVT1, as a ceRNA of miR-30c-5p, could target and regulate the level of Rock2, which aggravates cerebral I/R injury via activation of the MAPK pathway. These findings reveal a new function of PVT1, which helps to broadly understand cerebral ischemic stroke and provide a new treatment strategy for this disease.
Collapse
|
7
|
Asante-Asamani EO, Pal G, Liu L, Ogunwobi OO. Prostac: A New Composite Score With Potential Predictive Value in Prostate Cancer. Front Oncol 2021; 11:644665. [PMID: 33796469 PMCID: PMC8009179 DOI: 10.3389/fonc.2021.644665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed solid organ cancer in men worldwide. Current diagnosis of PCa includes use of initial prostate specific antigen assay which has a high false positive rate, low specificity, and low sensitivity. The side effects of unnecessary prostate biopsies that healthy men are subjected to, often result in unintended health complications. New PCa biomarkers are being discovered to address this unmet need. Here, we report on the creation of a composite score (Prostac) based on three recently discovered PCa biomarkers, Plasmacytoma Variant Translocation 1 (PVT1) exons 4A, 4B, and 9. Statistical analysis of copy numbers derived from a real-time quantitative polymerase chain (qPCR) reaction - based assay, showed these PCa biomarkers to be linearly separable and significantly over expressed in PCa epithelial cells. We train a supervised learning algorithm using support vector machines to generate a classification hyperplane from which a user-friendly composite score is developed. Cross validation of Prostac using data from prostate epithelial cells (RWPE1) and PCa cells (MDA PCa 2b) accurately classified 100% of PCa cells. Creation of the Prostac score lays the groundwork for clinical trial of its use in PCa diagnosis.
Collapse
Affiliation(s)
| | - Gargi Pal
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Leslie Liu
- Value based payment unit, Fidelis Care/Centene, Long Island City, NY, United States
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
8
|
Levine F, Ogunwobi OO. Targeting PVT1 Exon 9 Re-Expresses Claudin 4 Protein and Inhibits Migration by Claudin-Low Triple Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1046. [PMID: 33801373 PMCID: PMC7958609 DOI: 10.3390/cancers13051046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
PVT1 is a long non-coding RNA transcribed from a gene located at the 8q24 chromosomal region that has been implicated in multiple cancers including breast cancer (BC). Amplification of the 8q24 chromosomal region is a common event in BC and is associated with poor clinical outcomes. Claudin-low (CL) triple negative breast cancer (TNBC) is a subtype of BC with a particularly dismal outcome. We assessed PVT1 exon 9 expression in the T47D estrogen receptor positive BC cell line, and in the MDA MB 468 and MDA MB 231 TNBC cell lines, followed by the assessment of the expression of claudins 1, 3, 4 and 7, in MDA MB 468 and MDA MB 231 (TNBC) cells. We found that MDA MB 231 TNBC cells significantly express less claudin 1, 3, 4, and 7 than MDA MB 468 TNBC cells. PVT1 exon 9 is significantly upregulated in MDA MB 231 CL TNBC cells, and significantly downregulated in MDA MB 468 claudin high (CH) TNBC cells, in comparison to T47D estrogen receptor positive BC cells. We then analyzed the functional consequences of siRNA targeting of PVT1 exon 9 expression in the MDA MB 231 CL TNBC cells. Notably, siRNA targeting of PVT1 exon 9 expression in the MDA MB 231 CL TNBC cells led to a significant reduction in migration and the re-expression of claudin 4. Taken together, our data indicate that PVT1 exon 9 regulates claudin 4 expression and migration in CL TNBC cells, and may have clinical implications in CL TNBC.
Collapse
Affiliation(s)
- Fayola Levine
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA;
- The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| |
Collapse
|
9
|
Ogunwobi OO, Segura MF. Editorial: PVT1 in Cancer. Front Oncol 2020; 10:588786. [PMID: 33194746 PMCID: PMC7606904 DOI: 10.3389/fonc.2020.588786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|