1
|
Liu S, Lei X, Cao H, Xu Z, Wu S, Chen H, Xu L, Zhan Z, Xu Q, Wei J, Qin Q. Antiviral role of grouper FoxO1 against RGNNV and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109168. [PMID: 37844852 DOI: 10.1016/j.fsi.2023.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.
Collapse
Affiliation(s)
- Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
2
|
Liang B, He X, Shang D, Tian Y, Liu Z. The link between FOXJ1 expression level in bladder carcinoma and tumor recurrence. Oncol Lett 2018; 15:1483-1486. [PMID: 29434839 PMCID: PMC5774442 DOI: 10.3892/ol.2017.7504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022] Open
Abstract
We studied the expression level of FOXJ1 in bladder epithelial carcinoma and its relation to clinical features and tumor recurrence. From January 2014 to June 2015, 66 patients with bladder epithelial carcinoma were enrolled in this study and their tumor and para-carcinoma tissue samples were collected. FOXJ1 positive expression rate was evaluated using immunohistochemical staining, and FOXJ1 mRNA expression level was measured by RT-PCR. RT-PCR and immunohistochemistry results showed that FOXJ1 expression level in tumor samples was significantly lower than that in para-carcinoma tissue samples. The median survival time in patients with positive expression of FOXJ1 was significantly longer than that of patients with negative expression of FOXJ1. We also showed that FOXJ1 expression level was negatively correlated with neoplasm staging and tumor recurrence rate. We concluded that FOXJ1 was expressed in low quantities in bladder epithelial carcinoma, which was closely correlated with the biological characteristics of the tumor. FOXJ1 expression presents a promising application prospect for further exploration of the specific biological mechanism of FOXJ1 in regulating the occurrence and development of bladder epithelial carcinoma. FOXJ1 may be used as a new marker for early diagnosis and prediction of recurrence.
Collapse
Affiliation(s)
- Bing Liang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinwei He
- Department of Infection, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zongwen Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
3
|
Bina M, Wyss P. Impact of the MLL1 morphemes on codon utilization and preservation in CpG Islands. Biopolymers 2015; 103:480-90. [PMID: 25991579 DOI: 10.1002/bip.22681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907
| | - Phillip Wyss
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
4
|
Abstract
Amino acid repeats (AARs) are abundant in protein sequences. They have particular roles in protein function and evolution. Simple repeat patterns generated by DNA slippage tend to introduce length variations and point mutations in repeat regions. Loss of normal and gain of abnormal function owing to their variable length are potential risks leading to diseases. Repeats with complex patterns mostly refer to the functional domain repeats, such as the well-known leucine-rich repeat and WD repeat, which are frequently involved in protein–protein interaction. They are mainly derived from internal gene duplication events and stabilized by ‘gate-keeper’ residues, which play crucial roles in preventing inter-domain aggregation. AARs are widely distributed in different proteomes across a variety of taxonomic ranges, and especially abundant in eukaryotic proteins. However, their specific evolutionary and functional scenarios are still poorly understood. Identifying AARs in protein sequences is the first step for the further investigation of their biological function and evolutionary mechanism. In principle, this is an NP-hard problem, as most of the repeat fragments are shaped by a series of sophisticated evolutionary events and become latent periodical patterns. It is not possible to define a uniform criterion for detecting and verifying various repeat patterns. Instead, different algorithms based on different strategies have been developed to cope with different repeat patterns. In this review, we attempt to describe the amino acid repeat-detection algorithms currently available and compare their strategies based on an in-depth analysis of the biological significance of protein repeats.
Collapse
|
5
|
Homepeptide repeats: implications for protein structure, function and evolution. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:217-25. [PMID: 23084777 PMCID: PMC5054710 DOI: 10.1016/j.gpb.2012.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/03/2012] [Accepted: 04/19/2012] [Indexed: 11/20/2022]
Abstract
Analysis of protein sequences from Mycobacterium tuberculosis H37Rv (Mtb H37Rv) was performed to identify homopeptide repeat-containing proteins (HRCPs). Functional annotation of the HRCPs showed that they are preferentially involved in cellular metabolism. Furthermore, these homopeptide repeats might play some specific roles in protein–protein interaction. Repeat length differences among Bacteria, Archaea and Eukaryotes were calculated in order to identify the conservation of the repeats in these divergent kingdoms. From the results, it was evident that these repeats have a higher degree of conservation in Bacteria and Archaea than in Eukaryotes. In addition, there seems to be a direct correlation between the repeat length difference and the degree of divergence between the species. Our study supports the hypothesis that the presence of homopeptide repeats influences the rate of evolution of the protein sequences in which they are embedded. Thus, homopeptide repeat may have structural, functional and evolutionary implications on proteins.
Collapse
|
6
|
Faux N. Single amino acid and trinucleotide repeats: function and evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:26-40. [PMID: 23560303 DOI: 10.1007/978-1-4614-5434-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington's disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other biological processes.
Collapse
Affiliation(s)
- Noel Faux
- Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Zhou Y, Liu J, Han L, Li ZG, Zhang Z. Comprehensive analysis of tandem amino acid repeats from ten angiosperm genomes. BMC Genomics 2011; 12:632. [PMID: 22195734 PMCID: PMC3283746 DOI: 10.1186/1471-2164-12-632] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The presence of tandem amino acid repeats (AARs) is one of the signatures of eukaryotic proteins. AARs were thought to be frequently involved in bio-molecular interactions. Comprehensive studies that primarily focused on metazoan AARs have suggested that AARs are evolving rapidly and are highly variable among species. However, there is still controversy over causal factors of this inter-species variation. In this work, we attempted to investigate this topic mainly by comparing AARs in orthologous proteins from ten angiosperm genomes. RESULTS Angiosperm AAR content is positively correlated with the GC content of the protein coding sequence. However, based on observations from fungal AARs and insect AARs, we argue that the applicability of this kind of correlation is limited by AAR residue composition and species' life history traits. Angiosperm AARs also tend to be fast evolving and structurally disordered, supporting the results of comprehensive analyses of metazoans. The functions of conserved long AARs are summarized. Finally, we propose that the rapid mRNA decay rate, alternative splicing and tissue specificity are regulatory processes that are associated with angiosperm proteins harboring AARs. CONCLUSIONS Our investigation suggests that GC content is a predictor of AAR content in the protein coding sequence under certain conditions. Although angiosperm AARs lack conservation and 3D structure, a fraction of the proteins that contain AARs may be functionally important and are under extensive regulation in plant cells.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi-Gang Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: key players in health and disease. Trends Genet 2011; 27:224-32. [PMID: 21507500 DOI: 10.1016/j.tig.2011.03.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022]
Abstract
Forkhead box (FOX) proteins constitute an evolutionarily conserved family of transcription factors with a central role not only during development, but also in the adult organism. Thus, the misregulation and/or mutation of FOX genes often induce human genetic diseases, promote cancer or deregulate ageing. Indeed, germinal FOX gene mutations cause diseases ranging from infertility to language and/or speech disorders and immunological defects. Moreover, because of their central role in signalling pathways and in the regulation of homeostasis, somatic misregulation and/or mutation of FOX genes are associated with cancer. FOX proteins have undergone diversification in terms of their sequence, regulation and function. In addition to dedicated roles, evidence suggests that Forkhead factors have retained some functional redundancy. Thus, combinations of slightly defective alleles might induce disease phenotypes in humans, acting as quantitative trait loci. Uncovering such variants would be a big step towards understanding the functional interdependencies of different FOX members and their implications in complex pathologies.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- CNRS UMR 7592, Institut Jacques Monod, Equipe Génétique et Génomique du Développement Gonadique, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
9
|
McDonald EC, Xie B, Workman M, Charlton-Perkins M, Terrell DA, Reischl J, Wimmer EA, Gebelein BA, Cook TA. Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events. Dev Biol 2010; 347:122-32. [PMID: 20732315 DOI: 10.1016/j.ydbio.2010.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Orthodenticle (Otd)-related transcription factors are essential for anterior patterning and brain morphogenesis from Cnidaria to Mammals, and genetically underlie several human retinal pathologies. Despite their key developmental functions, relatively little is known regarding the molecular basis of how these factors regulate downstream effectors in a cell- or tissue-specific manner. Many invertebrate and vertebrate species encode two to three Otd proteins, whereas Drosophila encodes a single Otd protein. In the fly retina, Otd controls rhabdomere morphogenesis of all photoreceptors and regulates distinct Rhodopsin-encoding genes in a photoreceptor subtype-specific manner. Here, we performed a structure-function analysis of Otd during Drosophila eye development using in vivo rescue experiments and in vitro transcriptional regulatory assays. Our findings indicate that Otd requires at least three distinct transcriptional regulatory domains to control photoreceptor-specific rhodopsin gene expression and photoreceptor morphogenesis. Our results also uncover a previously unknown role for Otd in preventing co-expression of sensory receptors in blue vs. green-sensitive R8 photoreceptors. Sequence analysis indicates that many of the transcriptional regulatory domains identified here are conserved in multiple Diptera Otd-related proteins. Thus, these studies provide a basis for identifying shared molecular pathways involved in a wide range of developmental processes.
Collapse
Affiliation(s)
- Elizabeth C McDonald
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology and Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mojsin M, Kovacevic-Grujicic N, Krstic A, Popovic J, Milivojevic M, Stevanovic M. Comparative analysis of SOX3 protein orthologs: Expansion of homopolymeric amino acid tracts during vertebrate evolution. Biochem Genet 2010; 48:612-23. [PMID: 20495863 DOI: 10.1007/s10528-010-9343-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
To understand more fully the structure and evolution of the SOX3 protein, we comparatively analyzed its orthologs in vertebrates. Since complex disorders are associated with human SOX3 polyalanine expansions, our investigation focused on both compositional and evolutionary analysis of various homopolymeric amino acid tracts observed in SOX3 orthologs. Our analysis revealed that the observed homopolymeric alanine, glycine, and proline tracts are mammal-specific, except for one polyglycine tract present in birds. Since it is likely that the SOX3 protein acquired additional roles in brain development in Eutheria, we might speculate that development of novel brain functions during the course of evolution was affected, at least in part, by such structural-functional changes in the SOX3 protein.
Collapse
Affiliation(s)
- Marija Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
11
|
Genome-wide search of the genes tagged with the consensus of 33.6 repeat loci in buffalo Bubalus bubalis employing minisatellite-associated sequence amplification. Chromosome Res 2010; 18:441-58. [PMID: 20480223 DOI: 10.1007/s10577-010-9132-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 12/31/2022]
|
12
|
Benayoun BA, Dipietromaria A, Bazin C, Veitia RA. FOXL2: at the crossroads of female sex determination and ovarian function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 665:207-26. [PMID: 20429427 DOI: 10.1007/978-1-4419-1599-3_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene FOXL2 encodes a forkhead transcription factor whose mutations are responsible for the blepharophimosis ptosis epicanthus-inversus syndrome. This genetic disorder is characterized by eyelid and mild craniofacial abnormalities often in association with premature ovarian failure. FOXL2 orthologs are found throughout the animal phylum and its sequence is highly conserved in vertebrates. FOXL2 is one of the earliest ovarian markers and it offers, alongwith its targets, a model to study ovarian development and function. In this chapter, we review recent data concemingits mutations, targets, regulation and functions. Studies of the cellular consequences of FOXL2 mutations seem to indicate that aggregation is a common pathogenic mechanism. However, no reliable genotype/phenotype correlation has been established to predict the exact impact of point mutations in the coding region of FOXL2. FOXL2 has been suggested to be involved in the regulation of cholesterol homeostasis, steroid metabolism, apoptosis, reactive oxygen species detoxification and inflammation processes. Interestingly, all these processes are not equally affected by FOXL2 mutations. The elucidation of the impact of the FOXL2 function in the ovary will allow a better understanding of normal ovarian development and function as well as the pathogenic mechanisms underlying BPES.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélèna Brion, 75205 Paris Cx 13, France
| | | | | | | |
Collapse
|
13
|
Veitia RA. One thousand and one ways of making functionally similar transcriptional enhancers. Bioessays 2008; 30:1052-7. [PMID: 18937349 DOI: 10.1002/bies.20849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of most genes is regulated by the interaction of multiple transcription factors with cis-regulatory sequences. Many studies have focused on how changes in promoters and enhancers alter gene expression and phenotype. Recently, Hare et al., using elegant wet and computational approaches uncovered a series of enhancers driving the expression of the even-skipped gene in scavenger flies (Sepsidae). Despite the strong sequence divergence between the enhancers in sepsids and drosophilids, they lead to remarkably similar patterns of gene expression in transgenic Drosophila embryos. This can be explained by the existence of intra-enhancer compensatory mutations and the presence of overlapping/near binding sites for activators and repressors.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Cochin, Département de Génétique et Développement, Inserm, Université Paris, France.
| |
Collapse
|
14
|
Jakab NI, Jancsó A, Gajda T, Gyurcsik B, Rockenbauer A. Copper(II), nickel(II) and zinc(II) complexes of N-acetyl-His-Pro-His-His-NH2: Equilibria, solution structure and enzyme mimicking. J Inorg Biochem 2008; 102:1438-48. [DOI: 10.1016/j.jinorgbio.2008.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/29/2007] [Accepted: 01/02/2008] [Indexed: 11/28/2022]
|
15
|
Legendre M, Pochet N, Pak T, Verstrepen KJ. Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res 2007; 17:1787-96. [PMID: 17978285 DOI: 10.1101/gr.6554007] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Variable tandem repeats are frequently used for genetic mapping, genotyping, and forensics studies. Moreover, variation in some repeats underlies rapidly evolving traits or certain diseases. However, mutation rates vary greatly from repeat to repeat, and as a consequence, not all tandem repeats are suitable genetic markers or interesting unstable genetic modules. We developed a model, "SERV," that predicts the variability of a broad range of tandem repeats in a wide range of organisms. The nonlinear model uses three basic characteristics of the repeat (number of repeated units, unit length, and purity) to produce a numeric "VARscore" that correlates with repeat variability. SERV was experimentally validated using a large set of different artificial repeats located in the Saccharomyces cerevisiae URA3 gene. Further in silico analysis shows that SERV outperforms existing models and accurately predicts repeat variability in bacteria and eukaryotes, including plants and humans. Using SERV, we demonstrate significant enrichment of variable repeats within human genes involved in transcriptional regulation, chromatin remodeling, morphogenesis, and neurogenesis. Moreover, SERV allows identification of known and candidate genes involved in repeat-based diseases. In addition, we demonstrate the use of SERV for the selection and comparison of suitable variable repeats for genotyping and forensic purposes. Our analysis indicates that tandem repeats used for genotyping should have a VARscore between 1 and 3. SERV is publicly available from http://hulsweb1.cgr.harvard.edu/SERV/.
Collapse
Affiliation(s)
- Matthieu Legendre
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
16
|
Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, Oliveira JL, Santos MAS. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS One 2007; 2:e847. [PMID: 17786218 PMCID: PMC1952141 DOI: 10.1371/journal.pone.0000847] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/31/2007] [Indexed: 11/18/2022] Open
Abstract
Background Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. Methodologies/Principal Findings We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. Conclusions The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.
Collapse
Affiliation(s)
- Gabriela Moura
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Miguel Pinheiro
- Institute of Electronics and Telematics Engineering, University of Aveiro, Aveiro, Portugal
| | - Joel Arrais
- Institute of Electronics and Telematics Engineering, University of Aveiro, Aveiro, Portugal
| | - Ana Cristina Gomes
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Laura Carreto
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Adelaide Freitas
- Department of Mathematics, University of Aveiro, Aveiro, Portugal
| | - José L. Oliveira
- Institute of Electronics and Telematics Engineering, University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Faux NG, Huttley GA, Mahmood K, Webb GI, Garcia de la Banda M, Whisstock JC. RCPdb: An evolutionary classification and codon usage database for repeat-containing proteins. Genome Res 2007; 17:1118-27. [PMID: 17567984 PMCID: PMC1899123 DOI: 10.1101/gr.6255407] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over 3% of human proteins contain single amino acid repeats (repeat-containing proteins, RCPs). Many repeats (homopeptides) localize to important proteins involved in transcription, and the expansion of certain repeats, in particular poly-Q and poly-A tracts, can also lead to the development of neurological diseases. Previous studies have suggested that the homopeptide makeup is a result of the presence of G+C-rich tracts in the encoding genes and that expansion occurs via replication slippage. Here, we have performed a large-scale genomic analysis of the variation of the genes encoding RCPs in 13 species and present these data in an online database (http://repeats.med.monash.edu.au/genetic_analysis/). This resource allows rapid comparison and analysis of RCPs, homopeptides, and their underlying genetic tracts across the eukaryotic species considered. We report three major findings. First, there is a bias for a small subset of codons being reiterated within homopeptides, and there is no G+C or A+T bias relative to the organism's transcriptome. Second, single base pair transversions from the homocodon are unusually common and may represent a mechanism of reducing the rate of homopeptide mutations. Third, homopeptides that are conserved across different species lie within regions that are under stronger purifying selection in contrast to nonconserved homopeptides.
Collapse
Affiliation(s)
- Noel G. Faux
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Gavin A. Huttley
- John Curtin School of Medical Research, Australian National University, Canberra, Australian National Territory 0200, Australia
| | - Khalid Mahmood
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Geoffrey I. Webb
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- School of Computer Science and Software Engineering, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Maria Garcia de la Banda
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- School of Computer Science and Software Engineering, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- Corresponding authors.E-mail ; fax 61 3 9905 4699.E-mail ; fax 61 3 9905 4699
| | - James C. Whisstock
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
- Corresponding authors.E-mail ; fax 61 3 9905 4699.E-mail ; fax 61 3 9905 4699
| |
Collapse
|
18
|
Mularoni L, Veitia RA, Albà MM. Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats. Genomics 2006; 89:316-25. [PMID: 17196365 DOI: 10.1016/j.ygeno.2006.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/30/2006] [Accepted: 11/22/2006] [Indexed: 11/16/2022]
Abstract
Single-amino-acid tandem repeats are very common in mammalian proteins but their function and evolution are still poorly understood. Here we investigate how the variability and prevalence of amino acid repeats are related to the evolutionary constraints operating on the proteins. We find a significant positive correlation between repeat size difference and protein nonsynonymous substitution rate in human and mouse orthologous genes. This association is observed for all the common amino acid repeat types and indicates that rapid diversification of repeat structures, involving both trinucleotide slippage and nucleotide substitutions, preferentially occurs in proteins subject to low selective constraints. However, strikingly, we also observe a significant negative correlation between the number of repeats in a protein and the gene nonsynonymous substitution rate, particularly for glutamine, glycine, and alanine repeats. This implies that proteins subject to strong selective constraints tend to contain an unexpectedly high number of repeats, which tend to be well conserved between the two species. This is consistent with a role for selection in the maintenance of a significant number of repeats. Analysis of the codon structure of the sequences encoding the repeats shows that codon purity is associated with high repeat size interspecific variability. Interestingly, polyalanine and polyglutamine repeats associated with disease show very distinctive features regarding the degree of repeat conservation and the protein sequence selective constraints.
Collapse
Affiliation(s)
- Loris Mularoni
- Research Unit on Biomedical Informatics, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | | |
Collapse
|
19
|
Abstract
Highly repetitive sequence within proteins is an abundant feature yet is considered by some to be the protein equivalent of "junk DNA." Homopolymer sequences, the most highly repetitive of this group, are typically encoded by trinucleotide repeats at the DNA level. It is thought that many of these sequences are produced by a replicative slippage mechanism. Recent studies suggest that these highly mutable regions within proteins may allow for rapid morphological evolution emerging from the increased variability afforded by such coding structures. However, in a homopolymer, it is difficult to determine if the repeated amino acid is due to slippage at the DNA level or due to selection at the protein level. Here we develop and test a model to detect cases for which the homopolymer tract has clearly been selected for, with no evidence of slippage at the DNA level. The polyserine tract within the phosphatidylserine receptor protein is used as an excellent example of one such case.
Collapse
Affiliation(s)
- Melanie A Huntley
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
20
|
Roth JJ, Breitenbach M, Wagner GP. Repressor domain and nuclear localization signal of the murine Hoxa-11 protein are located in the homeodomain: no evidence for role of poly alanine stretches in transcriptional repression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:468-75. [PMID: 16032701 DOI: 10.1002/jez.b.21061] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hoxa-11 is a member of the homeodomain class of transcription factors, which play important roles in metazoan development. Hoxa-11 is particularly interesting because it is involved in a major mammalian innovation, uterus development and gestation. We are interested in the molecular changes underlying this evolutionary innovation. Although phenotypes resulting from loss of functions are well investigated (e.g., female sterility), little is known about the domains contributing to Hoxa-11 protein function. We therefore mapped the domains mediating two essential transcription factor functions, nuclear localization and transcriptional activity in the mouse Hoxa-11 protein. Our results show that the mammal-specific alanine repeat does not contribute to repressor activity, as has been hypothesized based on amino acid composition and analogy with other repressor domains. Interestingly, both the repressor domain as well as the nuclear localization signal (NLS) are located within the homeodomain, adding to the growing evidence that the homeodomain is a multifunctional domain which fulfills essential transcription factor functions beyond DNA binding. It is proposed that the high degree of conservation of the homeodomain is due to the multiple functional constraints that result from the various conserved functions accommodated in the homeodomain.
Collapse
Affiliation(s)
- Jutta Johanna Roth
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
21
|
Abstract
The rapid generation of new shapes observed in the living world is the result of genetic variation, especially in "morphological" developmental genes. Many of these genes contain coding tandem repeats. Fondon and Garner have shown that expansions and contractions of these repeats are associated with the great diversity of morphologies observed in the domestic dog, Canis familiaris. In particular, they found that the repeat variations in two genes were significantly associated with changes in limb and skull morphology. These results open the possibility that such a mechanism contributes to the diversity of life.
Collapse
|