1
|
Golubova EY. Breeding Biology of the Crested Auklet (Aethia cristatella, Alcidae, Charadriiformes) in the Northern Part of the Sea of Okhotsk. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021090041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Pshenichnikova OS, Sorokin PA, Klenova AV, Zubakin VA. Spatial genetic structure of the crested auklet (Aethia cristatella Pallas, 1769) colony based on the mitochondrial dna control region and microsatellite loci. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Damasceno R, Strangas ML, Carnaval AC, Rodrigues MT, Moritz C. Revisiting the vanishing refuge model of diversification. Front Genet 2014; 5:353. [PMID: 25374581 PMCID: PMC4205810 DOI: 10.3389/fgene.2014.00353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/21/2014] [Indexed: 11/13/2022] Open
Abstract
Much of the debate around speciation and historical biogeography has focused on the role of stabilizing selection on the physiological (abiotic) niche, emphasizing how isolation and vicariance, when associated with niche conservatism, may drive tropical speciation. Yet, recent re-emphasis on the ecological dimensions of speciation points to a more prominent role of divergent selection in driving genetic, phenotypic, and niche divergence. The vanishing refuge model (VRM), first described by Vanzolini and Williams (1981), describes a process of diversification through climate-driven habitat fragmentation and exposure to new environments, integrating both vicariance and divergent selection. This model suggests that dynamic climates and peripheral isolates can lead to genetic and functional (i.e., ecological and phenotypic) diversity, resulting in sister taxa that occupy contrasting habitats with abutting distributions. Here, we provide predictions for populations undergoing divergence according to the VRM that encompass habitat dynamics, phylogeography, and phenotypic differentiation across populations. Such integrative analyses can, in principle, differentiate the operation of the VRM from other speciation models. We applied these principles to a lizard species, Coleodactylus meridionalis, which was used to illustrate the model in the original paper. We incorporate data on inferred historic habitat dynamics, phylogeography and thermal physiology to test for divergence between coastal and inland populations in the Atlantic Forest of Brazil. Environmental and genetic analyses are concordant with divergence through the VRM, yet physiological data are not. We emphasize the importance of multidisciplinary approaches to test this and alternative speciation models while seeking to explain the extraordinarily high genetic and phenotypic diversity of tropical biomes.
Collapse
Affiliation(s)
- Roberta Damasceno
- Museum of Vertebrate Zoology, Integrative Biology Department, University of California Berkeley Berkeley, CA, USA ; Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - Maria L Strangas
- Biology Department, The Graduate Center, City University of New York New York, NY, USA
| | - Ana C Carnaval
- Biology Department, The Graduate Center, City University of New York New York, NY, USA ; Biology Department, City College, City University of New York New York, NY, USA
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - Craig Moritz
- Museum of Vertebrate Zoology, Integrative Biology Department, University of California Berkeley Berkeley, CA, USA ; Research School of Biology, The Australian National University Acton, ACT, Australia
| |
Collapse
|
4
|
CRISTESCU MELANIAE, ADAMOWICZ SARAHJ, VAILLANT JAMESJ, HAFFNER DOUGLASG. Ancient lakes revisited: from the ecology to the genetics of speciation. Mol Ecol 2010; 19:4837-51. [DOI: 10.1111/j.1365-294x.2010.04832.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
ROVITO SEANM. Lineage divergence and speciation in the Web-toed Salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada, California. Mol Ecol 2010; 19:4554-71. [DOI: 10.1111/j.1365-294x.2010.04825.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
LIVEZEY BRADLEYC. Phylogenetics of modern shorebirds (Charadriiformes) based on phenotypic evidence: analysis and discussion. Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2010.00635.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Yeung CKL, Tsai PW, Chesser RT, Lin RC, Yao CT, Tian XH, Li SH. Testing founder effect speciation: divergence population genetics of the spoonbills Platalea regia and Pl. minor (Threskiornithidae, Aves). Mol Biol Evol 2010; 28:473-82. [PMID: 20705906 DOI: 10.1093/molbev/msq210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10(-8)) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.
Collapse
Affiliation(s)
- Carol K L Yeung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the zebra finch (Taeniopygia guttata). Genetics 2008; 181:645-60. [PMID: 19047416 DOI: 10.1534/genetics.108.094250] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The zebra finch has long been an important model system for the study of vocal learning, vocal production, and behavior. With the imminent sequencing of its genome, the zebra finch is now poised to become a model system for population genetics. Using a panel of 30 noncoding loci, we characterized patterns of polymorphism and divergence among wild zebra finch populations. Continental Australian populations displayed little population structure, exceptionally high levels of nucleotide diversity (pi = 0.010), a rapid decay of linkage disequilibrium (LD), and a high population recombination rate (rho approximately 0.05), all of which suggest an open and fluid genomic background that could facilitate adaptive variation. By contrast, substantial divergence between the Australian and Lesser Sunda Island populations (K(ST) = 0.193), reduced genetic diversity (pi = 0.002), and higher levels of LD in the island population suggest a strong but relatively recent founder event, which may have contributed to speciation between these populations as envisioned under founder-effect speciation models. Consistent with this hypothesis, we find that under a simple quantitative genetic model both drift and selection could have contributed to the observed divergence in six quantitative traits. In both Australian and Lesser Sundas populations, diversity in Z-linked loci was significantly lower than in autosomal loci. Our analysis provides a quantitative framework for studying the role of selection and drift in shaping patterns of molecular evolution in the zebra finch genome.
Collapse
|
10
|
MORRIS-POCOCK JA, TAYLOR SA, BIRT TP, DAMUS M, PIATT JF, WARHEIT KI, FRIESEN VL. Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): natural replicate tests of post-Pleistocene evolution. Mol Ecol 2008; 17:4859-73. [DOI: 10.1111/j.1365-294x.2008.03977.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Pereira SL, Baker AJ. DNA evidence for a Paleocene origin of the Alcidae (Aves: Charadriiformes) in the Pacific and multiple dispersals across northern oceans. Mol Phylogenet Evol 2007; 46:430-45. [PMID: 18178108 DOI: 10.1016/j.ympev.2007.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 11/05/2007] [Accepted: 11/27/2007] [Indexed: 11/16/2022]
Abstract
The Alcidae is a group of marine, wing-propelled diving birds known as auks that are distributed along the coasts of the northern oceans. It has been suggested that auks originated in the Pacific coastal shores as early as the Miocene, and dispersed to the Atlantic either through the Arctic coasts of Eurasia and North America (northern dispersal route), or through upwelling zones in the coastal areas of California to Florida (southern dispersal route), before the closure of the Isthmus of Panama in the Pliocene. These hypotheses have not been tested formally because proposed phylogenies failed to recover fully bifurcating, well-supported phylogenetic relationships among and within genera. We therefore constructed a large data set of mitochondrial and nuclear DNA sequences for 21 of the 23 species of extant auks. We also included sequences from two other extant and one extinct species retrieved from GenBank. Our analyses recovered a well-supported phylogenetic hypothesis among and within genera. Aethia is the only genus for which we could not obtain strong support for species relationships, probably due to incomplete lineage sorting. By applying a Bayesian method of molecular dating that allows for rate variation across lineages and genes, we showed that auks became an independent lineage in the Early Paleocene and radiated gradually from the Early Eocene to the Quaternary. Reconstruction of ancestral areas strongly suggests that auks originated in the Pacific during the Paleocene. The southern dispersal route seems to have favored the subsequent colonization of the northern Atlantic Ocean during the Eocene and Oligocene. The northern route across the Arctic Ocean was probably only used more recently after the opening of the Norwegian Sea in the Middle Miocene and the opening of the Bering Strait in the Late Miocene. We postulate that the ancestors of auks lived in a warmer world than that currently occupied by auks, and became gradually adapted to feeding in cool marine currents with high biomass productivity. Hence, warmer tropical waters are now a barrier for the dispersal of auks into the Southern Hemisphere, as it is for penguins in the opposite direction.
Collapse
Affiliation(s)
- Sergio L Pereira
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park Crescent, Toronto, Ont., Canada M5S 2C6.
| | | |
Collapse
|
12
|
Abstract
Despite recent advances in population genetic theory and empirical research, the extent of genetic differentiation among natural populations of animals remains difficult to predict. We reviewed studies of geographic variation in mitochondrial DNA in seabirds to test the importance of various factors in generating population genetic and phylogeographic structure. The extent of population genetic and phylogeographic structure varies extensively among species. Species fragmented by land or ice invariably exhibit population genetic structure and most also have phylogeographic structure. However, many populations (26 of 37) display genetic structure in the absence of land, suggesting that other barriers to gene flow exist. In these populations, the extent of genetic structure is best explained by nonbreeding distribution: almost all species with two or more population-specific nonbreeding areas (or seasons) have phylogeographic structure, and all species that are resident at or near breeding colonies year-round have population genetic structure. Geographic distance between colonies and foraging range appeared to have a weak influence on the extent of population genetic structure, but little evidence was found for an effect of colony dispersion or population bottlenecks. In two species (Galapagos petrel, Pterodroma phaeopygia, and Xantus's murrelet, Synthliboramphus hypoleucus), population genetic structure, and even phylogeographic structure, exist in the absence of any recognizable physical or nonphysical barrier, suggesting that other selective or behavioural processes such as philopatry may limit gene flow. Retained ancestral variation may be masking barriers to dispersal in some species, especially at high latitudes. Allopatric speciation undoubtedly occurs in this group, but reproductive isolation also appears to have evolved through founder-induced speciation, and there is strong evidence that parapatric and sympatric speciation occur. While many questions remain unanswered, results of the present review should aid conservation efforts by enabling managers to predict the extent of population differentiation in species that have not yet been studied using molecular markers, and, thus, enable the identification of management units and evolutionary significant units for conservation.
Collapse
Affiliation(s)
- V L Friesen
- Department of Biology, Queen's University, Kingston, Ontario, Canada.
| | | | | |
Collapse
|