1
|
Lakhssassi N, Zhou Z, Liu S, Colantonio V, AbuGhazaleh A, Meksem K. Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number. FRONTIERS IN PLANT SCIENCE 2017; 8:324. [PMID: 28348573 PMCID: PMC5346563 DOI: 10.3389/fpls.2017.00324] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/23/2017] [Indexed: 05/21/2023]
Abstract
Soybean seed oil typically contains 18-20% oleic acid. Increasing the content of oleic acid is beneficial for health and biodiesel production. Mutations in FAD2-1 genes have been reported to increase seed oleic acid content. A subset of 1,037 mutant families from a mutagenized soybean cultivar (cv.) Forrest population was screened using reverse genetics (TILLING) to identify mutations within FAD2 genes. Although no fad2 mutants were identified using gel-based TILLING, four fad2-1A and one fad2-1B mutants were identified to have high seed oleic acid content using forward genetic screening and subsequent target sequencing. TILLING has been successfully used as a non-transgenic reverse genetic approach to identify mutations in genes controlling important agronomic traits. However, this technique presents limitations in traits such as oil composition due to gene copy number and similarities within the soybean genome. In soybean, FAD2 are present as two copies, FAD2-1 and FAD2-2. Two FAD2-1 members: FAD2-1A and FAD2-1B; and three FAD2-2 members: FAD2-2A, FAD2-2B, and FAD2-2C have been reported. Syntenic, phylogenetic, and in silico analysis revealed two additional members constituting the FAD2 gene family: GmFAD2-2D and GmFAD2-2E, located on chromosomes 09 and 15, respectively. They are presumed to have diverged from other FAD2-2 members localized on chromosomes 19 (GmFAD2-2A and GmFAD2-2B) and 03 (GmFAD2-2C). This work discusses alternative solutions to the limitations of gel-based TILLING in functional genomics due to high copy number and multiple paralogs of the FAD2 gene family in soybean.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois UniversityCarbondale, IL, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois UniversityCarbondale, IL, USA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois UniversityCarbondale, IL, USA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural Systems, Southern Illinois UniversityCarbondale, IL, USA
| | - Amer AbuGhazaleh
- Department of Animal Science, Food and Nutrition, Southern Illinois UniversityCarbondale, IL, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois UniversityCarbondale, IL, USA
- *Correspondence: Khalid Meksem
| |
Collapse
|
2
|
Destefanis M, Nagy I, Rigney B, Bryan GJ, McLean K, Hein I, Griffin D, Milbourne D. A disease resistance locus on potato and tomato chromosome 4 exhibits a conserved multipartite structure displaying different rates of evolution in different lineages. BMC PLANT BIOLOGY 2015; 15:255. [PMID: 26496718 PMCID: PMC4619397 DOI: 10.1186/s12870-015-0645-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In plant genomes, NB-LRR based resistance (R) genes tend to occur in clusters of variable size in a relatively small number of genomic regions. R-gene sequences mostly differentiate by accumulating point mutations and gene conversion events. Potato and tomato chromosome 4 harbours a syntenic R-gene locus (known as the R2 locus in potato) that has mainly been examined in central American/Mexican wild potato species on the basis of its contribution to resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. Evidence to date indicates the occurrence of a fast evolutionary mode characterized by gene conversion events at the locus in these genotypes. RESULTS A physical map of the R2 locus was developed for three Solanum tuberosum genotypes and used to identify the tomato syntenic sequence. Functional annotation of the locus revealed the presence of numerous resistance gene homologs (RGHs) belonging to the R2 gene family (R2GHs) organized into a total of 4 discrete physical clusters, three of which were conserved across S. tuberosum and tomato. Phylogenetic analysis showed clear orthology/paralogy relationships between S. tuberosum R2GHs but not in R2GHs cloned from Solanum wild species. This study confirmed that, in contrast to the wild species R2GHs, which have evolved through extensive sequence exchanges between paralogs, gene conversion was not a major force for differentiation in S. tuberosum R2GHs, and orthology/paralogy relationships have been maintained via a slow accumulation of point mutations in these genotypes. CONCLUSIONS S. tuberosum and Solanum lycopersicum R2GHs evolved mostly through duplication and deletion events, followed by gradual accumulation of mutations. Conversely, widespread gene conversion is the major evolutionary force that has shaped the locus in Mexican wild potato species. We conclude that different selective forces shaped the evolution of the R2 locus in these lineages and that co-evolution with a pathogen steered selection on different evolutionary paths.
Collapse
Affiliation(s)
- Marialaura Destefanis
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
- Pesticides, Plant Health & Seed Testing Laboratories, Department of Agriculture, Food and the Marine, Backweston Campus, Celbridge, Co. Kildare, Ireland.
| | - Istvan Nagy
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Brian Rigney
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.
| | - Karen McLean
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.
| | - Denis Griffin
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
| | - Dan Milbourne
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
| |
Collapse
|
3
|
Imran MK, Sultana SS, Alam SS. Differential Chromosome Banding and RAPD Analysis in Three Varieties of Glycine max (L.) Merr. CYTOLOGIA 2015. [DOI: 10.1508/cytologia.80.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Sherman-Broyles S, Bombarely A, Powell AF, Doyle JL, Egan AN, Coate JE, Doyle JJ. The wild side of a major crop: soybean's perennial cousins from Down Under. AMERICAN JOURNAL OF BOTANY 2014; 101:1651-65. [PMID: 25326613 DOI: 10.3732/ajb.1400121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The accumulation of over 30 years of basic research on the biology, genetic variation, and evolution of the wild perennial relatives of soybean (Glycine max) provides a foundation to improve cultivated soybean. The cultivated soybean and its wild progenitor, G. soja, have a center of origin in eastern Asia and are the only two species in the annual subgenus Soja. Systematic and evolutionary studies of the ca. 30 perennial species of subgenus Glycine, native to Australia, have benefited from the availability of the G. max genomic sequence. The perennial species harbor many traits of interest to soybean breeders, among them resistance to major soybean pathogens such as cyst nematode and leaf rust. New species in the Australian subgenus continue to be described, due to the collection of new material and to insights gleaned through systematic studies of accessions in germplasm collections. Ongoing studies in perennial species focus on genomic regions that contain genes for key traits relevant to soybean breeding. These comparisons also include the homoeologous regions that are the result of polyploidy in the common ancestor of all Glycine species. Subgenus Glycine includes a complex of recently formed allopolyploids that are the focus of studies aimed at elucidating genomic, transcriptomic, physiological, taxonomic, morphological, developmental, and ecological processes related to polyploid evolution. Here we review what has been learned over the past 30 years and outline ongoing work on photosynthesis, nitrogen fixation, and floral biology, much of it drawing on new technologies and resources.
Collapse
Affiliation(s)
| | | | - Adrian F Powell
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Jane L Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| | - Ashley N Egan
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington D.C. 20013-7012 USA
| | - Jeremy E Coate
- Reed College, Department of Biology, 3203 SE Woodstock Blvd., Portland, Oregon 97202 USA
| | - Jeff J Doyle
- Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| |
Collapse
|
5
|
Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, Cheng B. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PLoS One 2014; 9:e102825. [PMID: 25047803 PMCID: PMC4105503 DOI: 10.1371/journal.pone.0102825] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.
Collapse
Affiliation(s)
- Yongxiang Lin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Ying Cheng
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Jing Jin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolei Jin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Haiyang Jiang
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Hanwei Yan
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Beijiu Cheng
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
6
|
He L, Zhao M, Wang Y, Gai J, He C. Phylogeny, structural evolution and functional diversification of the plant PHOSPHATE1 gene family: a focus on Glycine max. BMC Evol Biol 2013; 13:103. [PMID: 23705930 PMCID: PMC3680083 DOI: 10.1186/1471-2148-13-103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND PHOSPHATE1 (PHO1) gene family members have diverse roles in plant growth and development, and they have been studied in Arabidopsis, rice, and Physcomitrella. However, it has yet to be described in other plants. Therefore, we surveyed the evolutionary patterns of genomes within the plant PHO1 gene family, focusing on soybean (Glycine max) due to its economic importance. RESULTS Our data show that PHO1 genes could be classified into two major groups (Class I and Class II). Class I genes were only present and expanded in dicotyledonous plants and Selaginella moellendorffii; Class II genes were found in all land plants. Class I sequence losses in other lineages may be attributed to gene loss after duplication events in land plant evolution. Introns varied from 7 to 14, and ancestral state reconstruction analyses revealed that genes with 13 introns were ancestral, thus suggesting that the intron loss was a chief constituent of PHO1 gene evolution. In the soybean genome, only 12 PHO1-like genes (GmaPHO1) were detected at the mRNA level. These genes display tissue-specific or tissue-preferential expression patterns during soybean plant and fruit development. Class I genes were more broadly expressed than Class II. GmaPHO1 genes had altered expression in response to salt, osmotic, and inorganic phosphate stresses. CONCLUSIONS Our study revealed that PHO1 genes originated from a eukaryotic ancestor and that two major classes formed in land plants. Class I genes are only present in dicots and lycophytes. GmaPHO1genes had diverse expression patterns in soybean, indicating their dramatic functional diversification.
Collapse
Affiliation(s)
- Lingli He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
- University of Chinese Academy of Sciences, Yuquan Road 19, 100049, Beijing, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
| | - Junyi Gai
- Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093 Beijing, China
| |
Collapse
|
7
|
Genetic Variation in Soybean at the Maturity Locus E4 Is Involved in Adaptation to Long Days at High Latitudes. AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3010117] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA. The fate of duplicated genes in a polyploid plant genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:143-53. [PMID: 22974547 DOI: 10.1111/tpj.12026] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/09/2012] [Accepted: 09/10/2012] [Indexed: 05/18/2023]
Abstract
Polyploidy is generally not tolerated in animals, but is widespread in plant genomes and may result in extensive genetic redundancy. The fate of duplicated genes is poorly understood, both functionally and evolutionarily. Soybean (Glycine max L.) has undergone two separate polyploidy events (13 and 59 million years ago) that have resulted in 75% of its genes being present in multiple copies. It therefore constitutes a good model to study the impact of whole-genome duplication on gene expression. Using RNA-seq, we tested the functional fate of a set of approximately 18 000 duplicated genes. Across seven tissues tested, approximately 50% of paralogs were differentially expressed and thus had undergone expression sub-functionalization. Based on gene ontology and expression data, our analysis also revealed that only a small proportion of the duplicated genes have been neo-functionalized or non-functionalized. In addition, duplicated genes were often found in collinear blocks, and several blocks of duplicated genes were co-regulated, suggesting some type of epigenetic or positional regulation. We also found that transcription factors and ribosomal protein genes were differentially expressed in many tissues, suggesting that the main consequence of polyploidy in soybean may be at the regulatory level.
Collapse
Affiliation(s)
- Anne Roulin
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Zoologisches Institut, Universität Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Paul L Auer
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jessica Schlueter
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Greg May
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Scott A Jackson
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Shin JH, Van K, Kim KD, Lee YH, Jun TH, Lee SH. Molecular sequence variations of the lipoxygenase-2 gene in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:613-22. [PMID: 22083354 DOI: 10.1007/s00122-011-1733-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/14/2011] [Indexed: 05/31/2023]
Abstract
Soybean lipoxygenase genes comprise a multi-gene family, with the seed lipoxygenase isozymes LOX1, LOX2, and LOX3 present in soybean seeds. Among these, the LOX2 isozyme is primarily responsible for the "beany" flavor of most soybean seeds. The variety, Jinpumkong 2, having null alleles (lx1, lx2, and lx3) lacks the three seed lipoxygenases; so, sequence variations between the lipoxygenase-2 genes of Pureunkong (Lx2) and Jinpumkong 2 (lx2) cultivars were examined. One indel, four single nucleotide polymorphisms (SNPs), a 175-bp fragment in the 5'-flanking sequence, and a missense mutation within the coding region were found in Jinpumkong 2. The distribution of the sequence variations was investigated among 90 recombinant inbred lines (RILs) derived from a cross of Pureunkong × Jinpumkong 2 and in 480 germplasm accessions with various origins and maturity groups. Evidence for a genetic bottleneck was observed: the 175-bp fragment was rare in Glycine max, but present in the majority of the G. soja accessions. Furthermore, the 175-bp fragment was not detected in the 5' upstream region of the Lx2 gene on chromosome (Chr) 13 in Williams 82; instead, a similar 175-bp fragment was positioned in the homeologous region on Chr 15. The findings indicated that the novel fragment identified was originally present in the Lx2 region prior to the recent genome duplication in soybean, but became rare in the G. max gene pool. The missense mutation of the conserved histidine residue of the lx2 allele was developed into a single nucleotide-amplified polymorphism (SNAP) marker. The missense mutation showed a perfect correlation with the LOX2-lacking phenotype, so the SNAP marker is expected to facilitate breeding of soybean cultivars which lack the LOX2 isozyme.
Collapse
Affiliation(s)
- Jin Hee Shin
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul, 151-921, The Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon SB, Cregan P, Ma J. Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. THE PLANT CELL 2012; 24:21-32. [PMID: 22227891 PMCID: PMC3289580 DOI: 10.1105/tpc.111.092759] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 05/18/2023]
Abstract
The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions-the cold spots for meiotic recombination in soybean-showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes.
Collapse
Affiliation(s)
- Jianchang Du
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Yi Sui
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
- Institute of Oil Crops, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qijian Song
- U.S. Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center-West, Beltsville, Maryland 20705
| | - Steven B. Cannon
- U.S. Department of Agriculture, Agricultural Research Service, Corn Insect and Crop Genetics Research Unit, Ames, Iowa 50011
| | - Perry Cregan
- U.S. Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center-West, Beltsville, Maryland 20705
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
11
|
Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, Sharma TR, Rosen B, Carrasquilla-Garcia N, Farmer AD, Dubey A, Saxena KB, Gao J, Fakrudin B, Singh MN, Singh BP, Wanjari KB, Yuan M, Srivastava RK, Kilian A, Upadhyaya HD, Mallikarjuna N, Town CD, Bruening GE, He G, May GD, McCombie R, Jackson SA, Singh NK, Cook DR. Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2010; 26:393-408. [PMID: 20976284 PMCID: PMC2948155 DOI: 10.1007/s11032-009-9327-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 05/18/2023]
Abstract
Pigeonpea (Cajanus cajan), an important food legume crop in the semi-arid regions of the world and the second most important pulse crop in India, has an average crop productivity of 780 kg/ha. The relatively low crop yields may be attributed to non-availability of improved cultivars, poor crop husbandry and exposure to a number of biotic and abiotic stresses in pigeonpea growing regions. Narrow genetic diversity in cultivated germplasm has further hampered the effective utilization of conventional breeding as well as development and utilization of genomic tools, resulting in pigeonpea being often referred to as an 'orphan crop legume'. To enable genomics-assisted breeding in this crop, the pigeonpea genomics initiative (PGI) was initiated in late 2006 with funding from Indian Council of Agricultural Research under the umbrella of Indo-US agricultural knowledge initiative, which was further expanded with financial support from the US National Science Foundation's Plant Genome Research Program and the Generation Challenge Program. As a result of the PGI, the last 3 years have witnessed significant progress in development of both genetic as well as genomic resources in this crop through effective collaborations and coordination of genomics activities across several institutes and countries. For instance, 25 mapping populations segregating for a number of biotic and abiotic stresses have been developed or are under development. An 11X-genome coverage bacterial artificial chromosome (BAC) library comprising of 69,120 clones have been developed of which 50,000 clones were end sequenced to generate 87,590 BAC-end sequences (BESs). About 10,000 expressed sequence tags (ESTs) from Sanger sequencing and ca. 2 million short ESTs by 454/FLX sequencing have been generated. A variety of molecular markers have been developed from BESs, microsatellite or simple sequence repeat (SSR)-enriched libraries and mining of ESTs and genomic amplicon sequencing. Of about 21,000 SSRs identified, 6,698 SSRs are under analysis along with 670 orthologous genes using a GoldenGate SNP (single nucleotide polymorphism) genotyping platform, with large scale SNP discovery using Solexa, a next generation sequencing technology, is in progress. Similarly a diversity array technology array comprising of ca. 15,000 features has been developed. In addition, >600 unique nucleotide binding site (NBS) domain containing members of the NBS-leucine rich repeat disease resistance homologs were cloned in pigeonpea; 960 BACs containing these sequences were identified by filter hybridization, BES physical maps developed using high information content fingerprinting. To enrich the genomic resources further, sequenced soybean genome is being analyzed to establish the anchor points between pigeonpea and soybean genomes. In addition, Solexa sequencing is being used to explore the feasibility of generating whole genome sequence. In summary, the collaborative efforts of several research groups under the umbrella of PGI are making significant progress in improving molecular tools in pigeonpea and should significantly benefit pigeonpea genetics and breeding. As these efforts come to fruition, and expanded (depending on funding), pigeonpea would move from an 'orphan legume crop' to one where genomics-assisted breeding approaches for a sustainable crop improvement are routine.
Collapse
Affiliation(s)
- R. K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
- Genomics Towards Gene Discovery Subprogramme, Generation Challenge Program (GCP), c/o CIMMYT, Int APDO Postal 6-641, 06600 Mexico DF, Mexico
| | - R. V. Penmetsa
- Department of Plant Pathology, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, CA 95616-8680 USA
| | - S. Dutta
- National Research Centre on Plant Biotechnology, IARI Campus, New Delhi, 110 012 India
| | - P. L. Kulwal
- Dr. Panjabrao Deshmukh Agricultural University (PDAU), Krishinagar, Akola, Maharasthra 444 104 India
| | - R. K. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
| | - S. Datta
- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh 208024 India
| | - T. R. Sharma
- National Research Centre on Plant Biotechnology, IARI Campus, New Delhi, 110 012 India
| | - B. Rosen
- Department of Plant Pathology, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, CA 95616-8680 USA
| | - N. Carrasquilla-Garcia
- Department of Plant Pathology, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, CA 95616-8680 USA
| | - A. D. Farmer
- National Center for Genome Resources (NCGR), 2935 Rodeo Park Drive East, Santa Fe, NM 87505 USA
| | - A. Dubey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
| | - K. B. Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
| | - J. Gao
- Department of Plant Pathology, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, CA 95616-8680 USA
| | - B. Fakrudin
- University of Agricultural Sciences, Dharwad, Karnataka 580005 India
| | - M. N. Singh
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - B. P. Singh
- National Research Centre on Plant Biotechnology, IARI Campus, New Delhi, 110 012 India
| | - K. B. Wanjari
- Dr. Panjabrao Deshmukh Agricultural University (PDAU), Krishinagar, Akola, Maharasthra 444 104 India
| | - M. Yuan
- Tuskegee University, Tuskegee, AL 36088 USA
| | - R. K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
| | - A. Kilian
- Diversity Arrays Technology Pty Ltd, 1 Wilf Crane Crescent, Yarralumla, ACT 2600 Australia
| | - H. D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
| | - N. Mallikarjuna
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502324 India
| | - C. D. Town
- J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850 USA
| | - G. E. Bruening
- Department of Plant Pathology, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, CA 95616-8680 USA
| | - G. He
- Tuskegee University, Tuskegee, AL 36088 USA
| | - G. D. May
- National Center for Genome Resources (NCGR), 2935 Rodeo Park Drive East, Santa Fe, NM 87505 USA
| | - R. McCombie
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - S. A. Jackson
- Department of Agronomy, Purdue University, West Lafayette, IN 47907-2054 USA
| | - N. K. Singh
- National Research Centre on Plant Biotechnology, IARI Campus, New Delhi, 110 012 India
| | - D. R. Cook
- Department of Plant Pathology, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, CA 95616-8680 USA
| |
Collapse
|
12
|
Egan AN, Doyle J. A comparison of global, gene-specific, and relaxed clock methods in a comparative genomics framework: dating the polyploid history of soybean (Glycine max). Syst Biol 2010; 59:534-47. [PMID: 20705909 DOI: 10.1093/sysbio/syq041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is widely recognized that many genes and lineages do not adhere to a molecular clock, yet molecular clocks are commonly used to date divergences in comparative genomic studies. We test the application of a molecular clock across genes and lineages in a phylogenetic framework utilizing 12 genes linked in a 1-Mb region on chromosome 13 of soybean (Glycine max); homoeologous copies of these genes formed by polyploidy in Glycine; and orthologous copies in G. tomentella, Phaseolus vulgaris, and Medicago truncatula. We compare divergence dates estimated by two methods each in three frameworks: a global molecular clock with a single rate across genes and lineages using full and approximate likelihood methods based on synonymous substitutions, a gene-specific clock assuming rate constancy over lineages but allowing a different rate for each gene, and a relaxed molecular clock where rates may vary across genes and lineages estimated under penalized likelihood and Bayesian inference. We use the cumulative variance across genes as a means of quantifying precision. Our results suggest that divergence dating methods produce results that are correlated, but that older nodes are more variable and more difficult to estimate with precision and accuracy. We also find that models incorporating less rate heterogeneity estimate older dates of divergence than more complex models, as node age increases. A mixed model nested analysis of variance testing the effects of framework, method, and gene found that framework had a significant effect on the divergence date estimates but that most variation among dates is due to variation among genes, suggesting a need to further characterize and understand the evolutionary phenomena underlying rate variation within genomes, among genes, and across lineages.
Collapse
Affiliation(s)
- Ashley N Egan
- Department of Plant Biology, L.H. Bailey Hortorium, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA.
| | | |
Collapse
|
13
|
Chen NWG, Sévignac M, Thareau V, Magdelenat G, David P, Ashfield T, Innes RW, Geffroy V. Specific resistances against Pseudomonas syringae effectors AvrB and AvrRpm1 have evolved differently in common bean (Phaseolus vulgaris), soybean (Glycine max), and Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:941-956. [PMID: 20561214 PMCID: PMC2922445 DOI: 10.1111/j.1469-8137.2010.03337.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*In plants, the evolution of specific resistance is poorly understood. Pseudomonas syringae effectors AvrB and AvrRpm1 are recognized by phylogenetically distinct resistance (R) proteins in Arabidopsis thaliana (Brassicaceae) and soybean (Glycine max, Fabaceae). In soybean, these resistances are encoded by two tightly linked R genes, Rpg1-b and Rpg1-r. To study the evolution of these specific resistances, we investigated AvrB- and AvrRpm1-induced responses in common bean (Phaseolus vulgaris, Fabaceae). *Common bean genotypes of various geographical origins were inoculated with P. syringae strains expressing AvrB or AvrRpm1. A common bean recombinant inbred line (RIL) population was used to map R genes to AvrRpm1. *No common bean genotypes recognized AvrB. By contrast, multiple genotypes responded to AvrRpm1, and two independent R genes conferring AvrRpm1-specific resistance were mapped to the ends of linkage group B11 (Rpsar-1, for resistance to Pseudomonas syringae effector AvrRpm1 number 1) and B8 (Rpsar-2). Rpsar-1 is located in a region syntenic with the soybean Rpg1 cluster. However, mapping of specific Rpg1 homologous genes suggests that AvrRpm1 recognition evolved independently in common bean and soybean. *The conservation of the genomic position of AvrRpm1-specific genes between soybean and common bean suggests a model whereby specific clusters of R genes are predisposed to evolve recognition of the same effector molecules.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Mireille Sévignac
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Vincent Thareau
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Ghislaine Magdelenat
- Genoscope/Commissariat à l’Energie Atomique-Centre National de Séquençage, 2 rue Gaston Crémieux CP5706 91057 Evry cedex, France
| | - Perrine David
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Valérie Geffroy
- Institut de Biologie des Plantes, UMR CNRS 8618, Bat. 630, Université Paris Sud, Orsay, France
- Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Agronomique, 91190 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Lin JY, Stupar RM, Hans C, Hyten DL, Jackson SA. Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. THE PLANT CELL 2010; 22:2545-61. [PMID: 20729383 PMCID: PMC2947175 DOI: 10.1105/tpc.110.074229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/21/2010] [Accepted: 07/30/2010] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) has undergone at least two rounds of polyploidization, resulting in a paleopolyploid genome that is a mosaic of homoeologous regions. To determine the structural and functional impact of these duplications, we sequenced two ~1-Mb homoeologous regions of soybean, Gm8 and Gm15, derived from the most recent ~13 million year duplication event and the orthologous region from common bean (Phaseolus vulgaris), Pv5. We observed inversions leading to major structural variation and a bias between the two chromosome segments as Gm15 experienced more gene movement (gene retention rate of 81% in Gm15 versus 91% in Gm8) and a nearly twofold increase in the deletion of long terminal repeat (LTR) retrotransposons via solo LTR formation. Functional analyses of Gm15 and Gm8 revealed decreases in gene expression and synonymous substitution rates for Gm15, for instance, a 38% increase in transcript levels from Gm8 relative to Gm15. Transcriptional divergence of homoeologs was found based on expression patterns among seven tissues and developmental stages. Our results indicate asymmetric evolution between homoeologous regions of soybean as evidenced by structural changes and expression variances of homoeologous genes.
Collapse
Affiliation(s)
- Jer-Young Lin
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Christian Hans
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| | - David L. Hyten
- Soybean Genomics and Improvement Lab, U.S. Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705
| | - Scott A. Jackson
- Molecular and Evolutionary Genetics, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
15
|
Hand ML, Cogan NOI, Sawbridge TI, Spangenberg GC, Forster JW. Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens L.) and microcolinearity with model legume species. BMC PLANT BIOLOGY 2010; 10:94. [PMID: 20492736 PMCID: PMC3095360 DOI: 10.1186/1471-2229-10-94] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/24/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND White clover (Trifolium repens L.) is an outbreeding allotetraploid species and an important forage legume in temperate grassland agriculture. Comparison of sub-genome architecture and study of nucleotide sequence diversity within allopolyploids provides insight into evolutionary divergence mechanisms, and is also necessary for the development of whole-genome sequencing strategies. This study aimed to evaluate the degree of divergence between the O and P' sub-genomes of white clover through sequencing of BAC clones containing paired homoeoloci. The microsyntenic relationships between the genomes of white clover and the model legumes Lotus japonicus and Medicago truncatula as well as Arabidopsis thaliana were also characterised. RESULTS A total of four paired homoeologous BACs were selected and sequenced to generate 173 kb of overlapping sequence between the O and P' sub-genomes. Equivalent gene content was generally observed, apart from small-scale deletions, in contrast to conservation of intergenic sequences, which varied between the four selected regions. Measurement of the number of synonymous substitutions between homoeologous genes led to estimation of a 4.2 million year divergence time between the two sub-genomes. Microsynteny was observed between the genomes of white clover and L. japonicus for all four targeted regions, but corresponding M. truncatula genomic regions were only identified for two BAC pairs. CONCLUSIONS This study describes the first analysis of sub-genome structural conservation across selected genomic regions in white clover. Although the high levels of sequence conservation between the O and P' sub-genomes would complicate efforts for whole genome sequence assembly, the conserved microsynteny with model legume genomes, especially that of L. japonicus, will be highly valuable for the future of white clover genomics and molecular breeding.
Collapse
Affiliation(s)
- Melanie L Hand
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - Noel OI Cogan
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
| | - Timothy I Sawbridge
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - German C Spangenberg
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - John W Forster
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding Cooperative Research Centre, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
16
|
Galeano CH, Fernández AC, Gómez M, Blair MW. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genomics 2009; 10:629. [PMID: 20030833 PMCID: PMC2806352 DOI: 10.1186/1471-2164-10-629] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/23/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. RESULTS A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 x G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 x 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. CONCLUSION The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation between species allowed synteny comparisons to be made to sequenced genomes. This synteny analysis may support positional cloning of target genes in common bean through the use of genomic information from these other legumes.
Collapse
Affiliation(s)
- Carlos H Galeano
- Centro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali, Colombia
| | - Andrea C Fernández
- Centro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali, Colombia
| | - Marcela Gómez
- Centro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali, Colombia
- Current address: Laboratorio Nacional Interinstitucional de Detección y Monitoreo de Organismos Genéticamente Modificados, Instituto Colombiano Agropecuario. Km 14 Recta Tibaitatá-Mosquera, Colombia
| | - Matthew W Blair
- Centro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali, Colombia
| |
Collapse
|
17
|
Kim KD, Shin JH, Van K, Kim DH, Lee SH. Dynamic rearrangements determine genome organization and useful traits in soybean. PLANT PHYSIOLOGY 2009; 151:1066-76. [PMID: 19684227 PMCID: PMC2773080 DOI: 10.1104/pp.109.141739] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/10/2009] [Indexed: 05/08/2023]
Abstract
Soybean (Glycine max) is a paleopolyploid whose genome has gone through at least two rounds of polyploidy and subsequent diploidization events. Several studies have investigated the changes in genome structure produced by the relatively recent polyploidy event, but little is known about the ancient polyploidy due to the high frequency of gene loss after duplication. Our previous study, regarding a region responsible for bacterial leaf pustule, reported two homeologous Rxp regions produced by the recent whole-genome duplication event. In this study, we identified the full set of four homeologous Rxp regions (ranging from 1.96 to 4.60 Mb) derived from both the recent and ancient polyploidy events, and this supports the quadruplicated structure of the soybean genome. Among the predicted genes on chromosome 17 (linkage group D2), 71% of them were conserved in a recently duplicated region, while 21% and 24% of duplicated genes were retained in two homeologous regions formed by the ancient polyploidy. Furthermore, comparative analysis showed a 2:1 relationship between soybean and Medicago truncatula, since M. truncatula did not undergo the recent polyploidy event that soybean did. Unlike soybean, M. truncatula homeologous regions were highly fractionated and their synteny did not exist, revealing different rates of diploidization process between the two species. Our data show that extensive synteny remained in the four homeologous regions in soybean, even though the soybean genome experienced dynamic genome rearrangements following paleopolyploidy events. Moreover, multiple Rxp quantitative trait loci on different soybean chromosomes actually comprise homeologous regions produced by two rounds of polyploidy events.
Collapse
Affiliation(s)
| | | | | | | | - Suk-Ha Lee
- Department of Plant Science (K.D.K., J.H.S., K.V., D.H.K., S.-H.L.), Research Institute for Agriculture and Life Sciences (K.D.K., J.H.S., K.V., D.H.K., S.-H.L.), and Plant Genomics and Breeding Institute (S.-H.L.), Seoul National University, Seoul 151–921, Korea
| |
Collapse
|
18
|
Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA. Molecular and chromosomal evidence for allopolyploidy in soybean. PLANT PHYSIOLOGY 2009; 151:1167-74. [PMID: 19605552 PMCID: PMC2773056 DOI: 10.1104/pp.109.137935] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 07/09/2009] [Indexed: 05/18/2023]
Abstract
Recent studies have documented that the soybean (Glycine max) genome has undergone two rounds of large-scale genome and/or segmental duplication. To shed light on the timing and nature of these duplication events, we characterized and analyzed two subfamilies of high-copy centromeric satellite repeats, CentGm-1 and CentGm-2, using a combination of computational and molecular cytogenetic approaches. These two subfamilies of satellite repeats mark distinct subsets of soybean centromeres and, in at least one case, a pair of homologs, suggesting their origins from an allopolyploid event. The satellite monomers of each subfamily are arranged in large tandem arrays, and intermingled monomers of the two subfamilies were not detected by fluorescence in situ hybridization on extended DNA fibers nor at the sequence level. This indicates that there has been little recombination and homogenization of satellite DNA between these two sets of centromeres. These satellite repeats are also present in Glycine soja, the proposed wild progenitor of soybean, but could not be detected in any other relatives of soybean examined in this study, suggesting the rapid divergence of the centromeric satellite DNA within the Glycine genus. Together, these observations provide direct evidence, at molecular and chromosomal levels, in support of the hypothesis that the soybean genome has experienced a recent allopolyploidization event.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Scott A. Jackson
- Department of Agronomy (N.G., J.G.W., C.H., J.M., S.A.J.) and Interdisciplinary Life Science Program (N.G., S.A.J.), Purdue University, West Lafayette, Indiana 47907; Division of Plant Sciences, Bond Life Science Center, University of Missouri, Columbia, Missouri 65211 (S.F., G.S.); and Department of Plant Biology, Cornell University, Ithaca, New York 14853 (J.D.)
| |
Collapse
|
19
|
Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol 2009; 69:164-75. [PMID: 19629571 DOI: 10.1007/s00239-009-9262-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/05/2009] [Accepted: 06/29/2009] [Indexed: 11/28/2022]
Abstract
Gene duplication is a major force for generating evolutionary novelties that lead to adaptations to environments. We previously identified two paralogs encoding phytochrome A (phyA), GmphyA1 and GmphyA2, in soybean, a paleopolyploid species. GmphyA2 is encoded by the E4 locus responsible for photoperiod sensitivity. In photoperiod insensitive lines, GmphyA2 is inactivated by the insertion of a retrotransposon in exon 1. Here, we describe the detailed characterization of the element and its evolutionary significance inferred from the distribution of the allele that harbors the element. Structural characteristics indicated that the element, designated SORE-1, is a novel Ty1/copia-like retrotransposon in soybean, which was phylogenetically related to the Sto-4, BARE-1, and RIRE1 elements. The element was transcriptionally active, and the transcription was partially repressed by an epigenetic mechanism. Sequences homologous with SORE-1 were detected in a genome sequence database of soybean, most of which appeared silent. GmphyA2 that harbors the SORE-1 insertion was detected only in cultivated soybean lines grown in northern regions of Japan, consistent with the notion that photoperiod insensitivity caused by the dysfunction of GmphyA2 is one of genetic changes that allowed soybean cultivation at high latitudes. Taking into account that genetic redundancy is conferred by the two phyA genes, we propose a novel model for the consequences of gene duplication and transposition of retrotransposons: when the gene is duplicated, retrotransposon insertion that causes the loss of a gene function can lead to adaptive evolution while the organism is sustained by the buffering effect brought about by gene duplication.
Collapse
Affiliation(s)
- Akira Kanazawa
- Hokkaido University, Kita, Nishi, Kita-ku, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
20
|
Sharbel TF, Voigt ML, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B. Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:870-82. [PMID: 19220792 DOI: 10.1111/j.1365-313x.2009.03826.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Apomixis, a natural form of asexual seed production in plants, has evolved independently in various taxa, and represents an important potential technology for agriculture. The switch to apomixis is based on de-regulation of developmental pathways originally leading to sexual seed formation. Hybridization and polyploidy, both typical characteristics of asexual plants and animals, are mechanisms that could trigger de-regulation. Here we show that up-regulation of alleles in apomeiotic ovules is mediated by genomic duplication, heterochrony and the residual effects of ancient hybridization in diploid apomicts of the Boechera holboellii complex. Using SuperSAGE, we have identified over 4000 differentially expressed mRNA tags between micro-dissected ovules from two diploid sexual (Boechera stricta and B. holboellii) and two diploid apomictic (Boechera divaricarpa) accessions. Pairwise sequence comparisons between tags enabled identification of allelic variants of the same loci. Up-regulated candidate apomeiosis alleles consistently have more than three related alleles, thus demonstrating transcription from duplicated loci. A further 543 alleles were heterochronically expressed between sexual and apomeiotic ovules at developmental stages 2-II to 2-IV. Intriguingly, 69 B. holboellii specific alleles were preferentially up-regulated in apomeiotic ovules, thus showing a remnant'parent of origin' effect stemming from the Pleistocene origin of the hybrid B. divaricarpa from taxa related to B. holboellii and B. stricta. These data implicate polyploid gene dosage in the expression of asexual seed formation, and support hypotheses of de-regulation of the sexual pathway. The observed 'parent of origin' effect suggests that the genomic memory of hybridization has somehow been maintained after hundreds, if not thousands, of asexual generations.
Collapse
Affiliation(s)
- Timothy F Sharbel
- Apomixis Research Group, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Gatersleben, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shin JH, Van K, Kim DH, Kim KD, Jang YE, Choi BS, Kim MY, Lee SH. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula. BMC PLANT BIOLOGY 2008; 8:133. [PMID: 19105811 PMCID: PMC2644698 DOI: 10.1186/1471-2229-8-133] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/23/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. RESULTS Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62) and Gm-Mt orthologs (Ks = 0.45) supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs) were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. CONCLUSION This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between soybean and Medicago were observed; thus optimized rates of Ks per year should be applied for accurate estimation of coalescence times to each case of comparison: soybean-soybean, soybean-Medicago, or Medicago-Medicago. In conclusion, the soybean Lx gene family expanded by ancient polyploidy prior to taxon divergence, followed by a soybean- specific duplication and tandem duplications, respectively.
Collapse
Affiliation(s)
- Jin Hee Shin
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Kyujung Van
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Dong Hyun Kim
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Kyung Do Kim
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Young Eun Jang
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921, Korea
| | - Moon Young Kim
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Suk-Ha Lee
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomic and Breeding Research Institute, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
22
|
Wawrzynski A, Ashfield T, Chen NWG, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Del Campo SM, Metcalf M, O'Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND, Innes RW. Replication of nonautonomous retroelements in soybean appears to be both recent and common. PLANT PHYSIOLOGY 2008; 148:1760-71. [PMID: 18952860 PMCID: PMC2593652 DOI: 10.1104/pp.108.127910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/22/2008] [Indexed: 05/19/2023]
Abstract
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Collapse
Affiliation(s)
- Adam Wawrzynski
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B, Chen NWG, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Hans CS, Howell S, Ilut D, Jackson S, Lai H, Mammadov J, Del Campo SM, Metcalf M, Nguyen A, O'Bleness M, Pfeil BE, Podicheti R, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Thareau V, Tucker DM, Walling J, Wawrzynski A, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND. Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. PLANT PHYSIOLOGY 2008; 148:1740-59. [PMID: 18842825 PMCID: PMC2593655 DOI: 10.1104/pp.108.127902] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/06/2008] [Indexed: 05/18/2023]
Abstract
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.
Collapse
Affiliation(s)
- Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang K, Moon JK, Jeong N, Back K, Kim HM, Jeong SC. Genome structure in soybean revealed by a genomewide genetic map constructed from a single population. Genomics 2008; 92:52-9. [PMID: 18486440 DOI: 10.1016/j.ygeno.2008.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 11/28/2022]
Abstract
A complete genetic linkage map of the soybean, in which sequence-based (SB) genetic markers are evenly distributed genomewide, was constructed from an F(12) population composed of 113 recombinant inbred lines derived from an interspecific cross involving Korean genotypes Hwangkeum and IT182932. Several approaches were employed for the development of 112 novel SB markers targeting both the gaps and the ends of the linkage groups (LGs). The resultant map harbored 20 well-resolved LGs presumed to correspond to the 20 pairs of soybean chromosomes. The map allowed us to identify the important chromosomal structures that were not observed in the integrated genetic maps, to identify the new potentially gene-rich regions, to detect segregation distortion regions within the whole genome, and to extend the ends of the LGs. The results will facilitate the further discovery of agronomically relevant genetic loci in the heretofore neglected chromosomal regions and should also provide some important links between the soybean genetic, physical, and genome sequence maps in the regions.
Collapse
Affiliation(s)
- Kiwoung Yang
- BioEvaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Van K, Kim DH, Cai CM, Kim MY, Shin JH, Graham MA, Shoemaker RC, Choi BS, Yang TJ, Lee SH. Sequence level analysis of recently duplicated regions in soybean [Glycine max (L.) Merr.] genome. DNA Res 2008; 15:93-102. [PMID: 18334514 PMCID: PMC2650623 DOI: 10.1093/dnares/dsn001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 01/16/2008] [Indexed: 11/18/2022] Open
Abstract
A single recessive gene, rxp, on linkage group (LG) D2 controls bacterial leaf-pustule resistance in soybean. We identified two homoeologous contigs (GmA and GmA') composed of five bacterial artificial chromosomes (BACs) during the selection of BAC clones around Rxp region. With the recombinant inbred line population from the cross of Pureunkong and Jinpumkong 2, single-nucleotide polymorphism and simple sequence repeat marker genotyping were able to locate GmA' on LG A1. On the basis of information in the Soybean Breeders Toolbox and our results, parts of LG A1 and LG D2 share duplicated regions. Alignment and annotation revealed that many homoeologous regions contained kinases and proteins related to signal transduction pathway. Interestingly, inserted sequences from GmA and GmA' had homology with transposase and integrase. Estimation of evolutionary events revealed that speciation of soybean from Medicago and the recent divergence of two soybean homoeologous regions occurred at 60 and 12 million years ago, respectively. Distribution of synonymous substitution patterns, K(s), yielded a first secondary peak (mode K(s) = 0.10-0.15) followed by two smaller bulges were displayed between soybean homologous regions. Thus, diploidized paleopolyploidy of soybean genome was again supported by our study.
Collapse
Affiliation(s)
- Kyujung Van
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, South Korea
| | - Dong Hyun Kim
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, South Korea
| | - Chun Mei Cai
- National Institute of Crop Science, Suwon 441-857, South Korea
| | - Moon Young Kim
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Jin Hee Shin
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, South Korea
| | - Michelle A. Graham
- Corn Insect and Crop Genetics Research Unit, USDA-ARS, Iowa State University, Ames, IA 50011, USA
| | - Randy C. Shoemaker
- Corn Insect and Crop Genetics Research Unit, USDA-ARS, Iowa State University, Ames, IA 50011, USA
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, South Korea
| | - Suk-Ha Lee
- Department of Plant Science, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| |
Collapse
|
26
|
Shoemaker RC, Grant D, Olson T, Warren WC, Wing R, Yu Y, Kim H, Cregan P, Joseph B, Futrell-Griggs M, Nelson W, Davito J, Walker J, Wallis J, Kremitski C, Scheer D, Clifton SW, Graves T, Nguyen H, Wu X, Luo M, Dvorak J, Nelson R, Cannon S, Tomkins J, Schmutz J, Stacey G, Jackson S. Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome 2008; 51:294-302. [PMID: 18356965 DOI: 10.1139/g08-010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole-genome sequencing of the soybean (Glycine max (L.) Merr. 'Williams 82') has made it important to integrate its physical and genetic maps. To facilitate this integration of maps, we screened 3290 microsatellites (SSRs) identified from BAC end sequences of clones comprising the 'Williams 82' physical map. SSRs were screened against 3 mapping populations. We found the AAT and ACT motifs produced the greatest frequency of length polymorphisms, ranging from 17.2% to 32.3% and from 11.8% to 33.3%, respectively. Other useful motifs include the dinucleotide repeats AG, AT, and AG, with frequency of length polymorphisms ranging from 11.2% to 18.4% (AT), 12.4% to 20.6% (AG), and 11.3% to 16.4% (GT). Repeat lengths less than 16 bp were generally less useful than repeat lengths of 40-60 bp. Two hundred and sixty-five SSRs were genetically mapped in at least one population. Of the 265 mapped SSRs, 60 came from BAC singletons not yet placed into contigs of the physical map. One hundred and ten originated in BACs located in contigs for which no genetic map location was previously known. Ninety-five SSRs came from BACs within contigs for which one or more other BACs had already been mapped. For these fingerprinted contigs (FPC) a high percentage of the mapped markers showed inconsistent map locations. A strategy is introduced by which physical and genetic map inconsistencies can be resolved using the preliminary 4x assembly of the whole genome sequence of soybean.
Collapse
Affiliation(s)
- Randy C Shoemaker
- USDA-ARS-CICGR Unit, Department of Agronomy, Ames, IA 50011-1010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O'Bleness M, Roe BA, Nelson RT, Scheffler BE, Jackson SA, Shoemaker RC. Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 2007; 8:330. [PMID: 17880721 PMCID: PMC2077340 DOI: 10.1186/1471-2164-8-330] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 09/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean, Glycine max (L.) Merr., is a well documented paleopolyploid. What remains relatively under characterized is the level of sequence identity in retained homeologous regions of the genome. Recently, the Department of Energy Joint Genome Institute and United States Department of Agriculture jointly announced the sequencing of the soybean genome. One of the initial concerns is to what extent sequence identity in homeologous regions would have on whole genome shotgun sequence assembly. RESULTS Seventeen BACs representing approximately 2.03 Mb were sequenced as representative potential homeologous regions from the soybean genome. Genetic mapping of each BAC shows that 11 of the 20 chromosomes are represented. Sequence comparisons between homeologous BACs shows that the soybean genome is a mosaic of retained paleopolyploid regions. Some regions appear to be highly conserved while other regions have diverged significantly. Large-scale "batch" reassembly of all 17 BACs combined showed that even the most homeologous BACs with upwards of 95% sequence identity resolve into their respective homeologous sequences. Potential assembly errors were generated by tandemly duplicated pentatricopeptide repeat containing genes and long simple sequence repeats. Analysis of a whole-genome shotgun assembly of 80,000 randomly chosen JGI-DOE sequence traces reveals some new soybean-specific repeat sequences. CONCLUSION This analysis investigated both the structure of the paleopolyploid soybean genome and the potential effects retained homeology will have on assembling the whole genome shotgun sequence. Based upon these results, homeologous regions similar to those characterized here will not cause major assembly issues.
Collapse
Affiliation(s)
| | - Jer-Young Lin
- Purdue Genetics Program, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Shweta Deshpande
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Jing Yi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Majesta O'Bleness
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Bruce A Roe
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Rex T Nelson
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | | | - Scott A Jackson
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Randy C Shoemaker
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
28
|
Schlueter JA, Lin JY, Schlueter SD, Vasylenko-Sanders IF, Deshpande S, Yi J, O'Bleness M, Roe BA, Nelson RT, Scheffler BE, Jackson SA, Shoemaker RC. Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 2007. [PMID: 17880721 DOI: 10.1186/1471‐2164‐8‐330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean, Glycine max (L.) Merr., is a well documented paleopolyploid. What remains relatively under characterized is the level of sequence identity in retained homeologous regions of the genome. Recently, the Department of Energy Joint Genome Institute and United States Department of Agriculture jointly announced the sequencing of the soybean genome. One of the initial concerns is to what extent sequence identity in homeologous regions would have on whole genome shotgun sequence assembly. RESULTS Seventeen BACs representing approximately 2.03 Mb were sequenced as representative potential homeologous regions from the soybean genome. Genetic mapping of each BAC shows that 11 of the 20 chromosomes are represented. Sequence comparisons between homeologous BACs shows that the soybean genome is a mosaic of retained paleopolyploid regions. Some regions appear to be highly conserved while other regions have diverged significantly. Large-scale "batch" reassembly of all 17 BACs combined showed that even the most homeologous BACs with upwards of 95% sequence identity resolve into their respective homeologous sequences. Potential assembly errors were generated by tandemly duplicated pentatricopeptide repeat containing genes and long simple sequence repeats. Analysis of a whole-genome shotgun assembly of 80,000 randomly chosen JGI-DOE sequence traces reveals some new soybean-specific repeat sequences. CONCLUSION This analysis investigated both the structure of the paleopolyploid soybean genome and the potential effects retained homeology will have on assembling the whole genome shotgun sequence. Based upon these results, homeologous regions similar to those characterized here will not cause major assembly issues.
Collapse
|
29
|
Springer NM, Stupar RM. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. THE PLANT CELL 2007; 19:2391-402. [PMID: 17693532 PMCID: PMC2002603 DOI: 10.1105/tpc.107.052258] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We employed allele-specific expression (ASE) analyses to document biased allelic expression in maize (Zea mays). A set of 316 quantitative ASE assays were used to profile the relative allelic expression in seedling tissue derived from five maize hybrids. The different hybrids included in this study exhibit a range of heterosis levels; however, we did not observe differences in the frequencies of allelic bias. Allelic biases in gene expression were consistently observed for approximately 50% of the genes assayed in hybrid seedlings. The relative proportion of genes that exhibit cis- or trans-acting regulatory variation was very similar among the different genotypes. The cis-acting regulatory variation was more prevalent and resulted in greater expression differences than trans-acting regulatory variation for these genes. The ASE assays were further used to compare the relative expression of the B73 and Mo17 alleles in three tissue types (seedling, immature ear, and embryo) derived from reciprocal hybrids. These comparisons provided evidence for tissue-specific cis-acting variation and for a slight maternal expression bias in approximately 20% of genes in embryo tissue. Collectively, these data provide evidence for prevalent cis-acting regulatory variation that contributes to biased allelic expression between genotypes and between tissues.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minesota, St. Paul, Minnesota 55108, USA.
| | | |
Collapse
|
30
|
Schlueter SD, Wilkerson MD, Dong Q, Brendel V. xGDB: open-source computational infrastructure for the integrated evaluation and analysis of genome features. Genome Biol 2007; 7:R111. [PMID: 17116260 PMCID: PMC1794590 DOI: 10.1186/gb-2006-7-11-r111] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/02/2006] [Accepted: 11/20/2006] [Indexed: 11/28/2022] Open
Abstract
XGDB, a software infrastructure consisting of integrated tools for the storage, display and analysis of genome features (any property that can be associated with a genomic location, for example spliced alignments) in their genomics context is described. The eXtensible Genome Data Broker (xGDB) provides a software infrastructure consisting of integrated tools for the storage, display, and analysis of genome features in their genomic context. Common features include gene structure annotations, spliced alignments, mapping of repetitive sequence, and microarray probes, but the software supports inclusion of any property that can be associated with a genomic location. The xGDB distribution and user support utilities are available online at the xGDB project website, http://xgdb.sourceforge.net/.
Collapse
Affiliation(s)
- Shannon D Schlueter
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011-3260, USA
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Matthew D Wilkerson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011-3260, USA
| | - Qunfeng Dong
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011-3260, USA
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405-3700, USA
| | - Volker Brendel
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011-3260, USA
- Department of Statistics, Iowa State University, Ames, Iowa 50011-3260, USA
| |
Collapse
|
31
|
Affiliation(s)
- Z. Jeffrey Chen
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX 78712, USA
- *Author for correspondence: tel +512 475 9327; fax +1512-471-2149; email
| | - Misook Ha
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, TX 78712, USA
| | - Douglas Soltis
- Department of Botany and Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|