1
|
Abstract
Aposematism and mimicry are complex phenomena which have been studied extensively; however, much of our knowledge comes from just a few focal groups, especially butterflies. Aposematic species combine a warning signal with a secondary defense that reduces their profitability as prey. Aculeate hymenopterans are an extremely diverse lineage defined by the modification of the ovipositor into a stinger which represents a potent defense against predators. Aculeates are often brightly colored and broadly mimicked by members of other arthropod groups including Diptera, Lepidoptera, Coleoptera, and Araneae. However, aculeates are surprisingly understudied as aposematic and mimetic model organisms. Recent studies have described novel pigments contributing to warning coloration in insects and identified changes in cis-regulatory elements as potential drivers of color pattern evolution. Many biotic and abiotic factors contribute to the evolution and maintenance of conspicuous color patterns. Predator distribution and diversity seem to influence the phenotypic diversity of aposematic velvet ants while studies on bumble bees underscore the importance of intermediate mimetic phenotypes in transition zones between putative mimicry rings. Aculeate hymenopterans are attractive models for studying sex-based intraspecific mimicry as male aculeates lack the defense conferred by the females’ stinger. In some species, evolution of male and female color patterns appears to be decoupled. Future studies on aposematic aculeates and their associated mimics hold great promise for unraveling outstanding questions about the evolution of conspicuous color patterns and the factors which determine the composition and distribution of mimetic communities.
Collapse
|
2
|
Akopyan M, Gompert Z, Klonoski K, Vega A, Kaiser K, Mackelprang R, Rosenblum EB, Robertson JM. Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic red-eyed treefrog. Mol Ecol 2020; 29:4442-4456. [PMID: 32945036 DOI: 10.1111/mec.15639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Hybrid zones act as natural laboratories where divergent genomes interact, providing powerful systems for examining the evolutionary processes underlying biological diversity. In this study, we characterized patterns of genomic and phenotypic variation resulting from hybridization between divergent intraspecific lineages of the Neotropical red-eyed treefrog (Agalychnis callidryas). We found genetic evidence of a newly discovered contact zone and phenotypic novelty in leg colour-a trait suspected to play a role in mediating assortative mating in this species. Analysis of hybrid ancestry revealed an abundance of later-generation Fn individuals, suggesting persistence of hybrids in the contact zone. Hybrids are predominantly of southern ancestry but are phenotypically more similar to northern populations. Genome-wide association mapping revealed QTL with measurable effects on leg-colour variation, but further work is required to dissect the architecture of this trait and establish causal links. Further, genomic cline analyses indicated substantial variation in patterns of introgression across the genome. Directional introgression of loci associated with different aspects of leg colour are inherited from each parental lineage, creating a distinct hybrid colour pattern. We show that hybridization can generate new phenotypes, revealing the evolutionary processes that potentially underlie patterns of phenotypic diversity in this iconic polytypic frog. Our study is consistent with a role of hybridization and sexual selection in lineage diversification, evolutionary processes that have been implicated in accelerating divergence in the most phenotypically diverse species.
Collapse
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Biology, California State University, Northridge, CA, USA
| | | | - Karina Klonoski
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | | - Kristine Kaiser
- Department of Biology, California State University, Northridge, CA, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | |
Collapse
|
3
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
4
|
Interplay between Developmental Flexibility and Determinism in the Evolution of Mimetic Heliconius Wing Patterns. Curr Biol 2019; 29:3996-4009.e4. [DOI: 10.1016/j.cub.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 11/20/2022]
|
5
|
Insights into the Structure of the Spruce Budworm ( Choristoneura fumiferana) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map. G3-GENES GENOMES GENETICS 2018; 8:2539-2549. [PMID: 29950429 PMCID: PMC6071596 DOI: 10.1534/g3.118.200263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genome structure characterization can contribute to a better understanding of processes such as adaptation, speciation, and karyotype evolution, and can provide useful information for refining genome assemblies. We studied the genome of an important North American boreal forest pest, the spruce budworm, Choristoneura fumiferana, through a combination of molecular cytogenetic analyses and construction of a high-density linkage map based on single nucleotide polymorphism (SNP) markers obtained through a genotyping-by-sequencing (GBS) approach. Cytogenetic analyses using fluorescence in situ hybridization methods confirmed the haploid chromosome number of n = 30 in both sexes of C. fumiferana and showed, for the first time, that this species has a WZ/ZZ sex chromosome system. Synteny analysis based on a comparison of the Bombyx mori genome and the C. fumiferana linkage map revealed the presence of a neo-Z chromosome in the latter species, as previously reported for other tortricid moths. In this neo-Z chromosome, we detected an ABC transporter C2 (ABCC2) gene that has been associated with insecticide resistance. Sex-linkage of the ABCC2 gene provides a genomic context favorable to selection and rapid spread of resistance against Bacillus thuringiensis serotype kurstaki (Btk), the main insecticide used in Canada to control spruce budworm populations. Ultimately, the linkage map we developed, which comprises 3586 SNP markers distributed over 30 linkage groups for a total length of 1720.41 cM, will be a valuable tool for refining our draft assembly of the spruce budworm genome.
Collapse
|
6
|
De Nardin J, Buffon V, Revers LF, de Araújo AM. Association between molecular markers and behavioral phenotypes in the immatures of a butterfly. Genet Mol Biol 2018; 41:243-252. [PMID: 29583155 PMCID: PMC5913723 DOI: 10.1590/1678-4685-gmb-2017-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022] Open
Abstract
Newly hatched caterpillars of the butterfly Heliconius erato phyllis routinely cannibalize eggs. In a manifestation of kin recognition they cannibalize sibling eggs less frequently than unrelated eggs. Previous work has estimated the heritability of kin recognition in H. erato phyllis to lie between 14 and 48%. It has furthermore been shown that the inheritance of kin recognition is compatible with a quantitative model with a threshold. Here we present the results of a preliminary study, in which we tested for associations between behavioral kin recognition phenotypes and AFLP and SSR markers. We implemented two experimental approaches: (1) a cannibalism test using sibling eggs only, which allowed for only two behavioral outcomes (cannibal and non-cannibal), and (2) a cannibalism test using two sibling eggs and one unrelated egg, which allowed four outcomes [cannibal who does not recognize siblings, cannibal who recognizes siblings, "super-cannibal" (cannibal of both eggs), and "super non-cannibal" (does not cannibalize eggs at all)]. Single-marker analyses were performed using χ2 tests and logistic regression with null markers as covariates. Results of the χ2 tests identified 72 associations for experimental design 1 and 73 associations for design 2. Logistic regression analysis of the markers found to be significant in the χ2 test resulted in 20 associations for design 1 and 11 associations for design 2. Experiment 2 identified markers that were more frequently present or absent in cannibals who recognize siblings and super non-cannibals; i.e. in both phenotypes capable of kin recognition.
Collapse
Affiliation(s)
- Janaína De Nardin
- Programa de Pós-Graduação em Genética e Biologia, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Buffon
- Laboratório de Genética Molecular Vegetal, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Uva e Vinho, Bento Gonçalves, RS, Brazil
| | - Luís Fernando Revers
- Laboratório de Genética Molecular Vegetal, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Uva e Vinho, Bento Gonçalves, RS, Brazil
| | - Aldo Mellender de Araújo
- Programa de Pós-Graduação em Genética e Biologia, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Abstract
Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing color patterns. Here, we used full genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around color pattern genes is highly modular, with narrow genomic intervals associated with specific differences in color and pattern. This modular architecture explains the diversity of color patterns and provides a flexible mechanism for rapid morphological diversification.
Collapse
|
8
|
Cotoras DD, Brewer MS, Croucher PJP, Oxford GS, Lindberg DR, Gillespie RG. Convergent evolution in the colour polymorphism ofSelkirkiellaspiders (Theridiidae) from the South American temperate rainforest. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Darko D. Cotoras
- Department of Integrative Biology; University of California; 3060 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| | - Michael S. Brewer
- Department of Biology; East Carolina University; 1000 E 5th Street Greenville NC 27858-4353 USA
| | - Peter J. P. Croucher
- Essig Museum of Entomology; University of California; 1170 Valley Life Sciences Building Berkeley CA 94720-3140 USA
- Trovagene Inc.; 11055 Flintkote Avenue San Diego CA 92121 USA
| | - Geoff S. Oxford
- Department of Biology; University of York; Wentworth Way Heslington York YO10 5DD UK
| | - David R. Lindberg
- Department of Integrative Biology; University of California; 3060 Valley Life Sciences Building Berkeley CA 94720-3140 USA
- Museum of Paleontology; University of California; 1101 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| | - Rosemary G. Gillespie
- Department of Environmental Science; University of California; 137 Mulford Hall Berkeley CA 94720-3114 USA
| |
Collapse
|
9
|
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics 2016; 200:1-19. [PMID: 25953905 DOI: 10.1534/genetics.114.172387] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.
Collapse
|
10
|
Łukasiewicz K, Sanak M, Węgrzyn G. Lesions in the wingless gene of the Apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings, coming from the isolated population in Pieniny (Poland). Gene 2016; 576:820-2. [DOI: 10.1016/j.gene.2015.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/07/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022]
|
11
|
A lack of Wolbachia-specific DNA in samples from apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings. J Appl Genet 2015; 57:271-4. [PMID: 26423782 PMCID: PMC4830866 DOI: 10.1007/s13353-015-0318-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/05/2022]
Abstract
Various insects contain maternally inherited endosymbiotic bacteria which can cause reproductive alterations, modulation of some physiological responses (like immunity, heat shock response, and oxidative stress response), and resistance to viral infections. In butterflies, Wolbachia sp. is the most frequent endosymbiont from this group, occurring in about 30 % of species tested to date. In this report, the presence of Wolbachia-specific DNA has been detected in apollo butterfly (Parnassius apollo). In the isolated population of this insect occurring in Pieniny National Park (Poland), malformed individuals with deformed or reduced wings appear with an exceptionally high frequency. Interestingly, while total DNA isolated from most (about 85 %) normal insects contained Wolbachia-specific sequences detected by PCR, such sequences were absent in a large fraction (70 %) of individuals with deformed wings and in all tested individuals with reduced wings. These results indicate for the first time the correlation between malformation of wings and the absence of Wolbachia sp. in insects. Although the lack of the endosymbiotic bacteria cannot be considered as the sole cause of the deformation or reduction of wings, one might suggest that Wolbachia sp. could play a protective role in the ontogenetic development of apollo butterfly.
Collapse
|
12
|
Supple MA, Papa R, Hines HM, McMillan WO, Counterman BA. Divergence with gene flow across a speciation continuum of Heliconius butterflies. BMC Evol Biol 2015; 15:204. [PMID: 26403600 PMCID: PMC4582928 DOI: 10.1186/s12862-015-0486-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022] Open
Abstract
Background A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. Methods We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Results Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. Discussion We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Conclusions Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0486-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Megan A Supple
- Smithsonian Tropical Research Institute, Panamá City, Panamá. .,Biomathematics Program, North Carolina State University, Raleigh, NC, 27695, USA. .,Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| | - Riccardo Papa
- Department of Biology and Center for Applied Tropical Ecology and Conservation, University of Puerto Rico-Rio Piedras, 00931, San Juan, Puerto Rico.
| | - Heather M Hines
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panamá City, Panamá.
| | - Brian A Counterman
- Department of Biological Sciences, Mississippi State University, 295 Lee Boulevard, Mississippi State, MS, 39762, USA.
| |
Collapse
|
13
|
Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio DD, Hanly JJ, Huber B, Jiggins CD, Joron M, Kozak KM, Llaurens V, Martin SH, Montgomery SH, Morris J, Nadeau NJ, Pinharanda AL, Rosser N, Thompson MJ, Vanjari S, Wallbank RWR, Yu Q. The diversification of Heliconius butterflies: what have we learned in 150 years? J Evol Biol 2015; 28:1417-38. [PMID: 26079599 DOI: 10.1111/jeb.12672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 11/27/2022]
Abstract
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.
Collapse
Affiliation(s)
- R M Merrill
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - J W Davey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - D D Dell'Aglio
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - J J Hanly
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - B Huber
- Department of Biology, University of York, York, UK.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - M Joron
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier 5, France
| | - K M Kozak
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - V Llaurens
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, France
| | - S H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - S H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - J Morris
- Department of Biology, University of York, York, UK
| | - N J Nadeau
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - A L Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - N Rosser
- Department of Biology, University of York, York, UK
| | - M J Thompson
- Department of Zoology, University of Cambridge, Cambridge, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - S Vanjari
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - R W R Wallbank
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Q Yu
- Department of Zoology, University of Cambridge, Cambridge, UK.,School of Life Sciences, Chongqing University, Shapingba District, Chongqing, China
| |
Collapse
|
14
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
15
|
Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes. Sci Rep 2013; 3:3184. [PMID: 24212474 PMCID: PMC3822385 DOI: 10.1038/srep03184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Batesian mimicry protects animals from predators through resemblance with distasteful models in shape, color pattern, or behavior. To elucidate the wing coloration mechanisms involved in the mimicry, we investigated chemical composition and gene expression of the pale yellow and red pigments of a swallowtail butterfly, Papilio polytes, whose females mimic the unpalatable butterfly Pachliopta aristolochiae. Using LC/MS, we showed that the pale yellow wing regions in non-mimetic females consist of kynurenine and N-β-alanyldopamine (NBAD). Moreover, qRT-PCR showed that kynurenine/NBAD biosynthetic genes were upregulated in these regions in non-mimetic females. However, these pigments were absent in mimetic females. RNA-sequencing showed that kynurenine/NBAD synthesis and Toll signaling genes were upregulated in the red spots specific to mimetic female wings. These results demonstrated that drastic changes in gene networks in the red and pale yellow regions can switch wing color patterns between non-mimetic and mimetic females of P. polytes.
Collapse
|
16
|
Aymone ACB, Valente VLS, de Araújo AM. Ultrastructure and morphogenesis of the wing scales in Heliconius erato phyllis (Lepidoptera: Nymphalidae): what silvery/brownish surfaces can tell us about the development of color patterning? ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:349-359. [PMID: 23792046 DOI: 10.1016/j.asd.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Usually the literature on Heliconius show three types of scales, classified based on the correlation between color and ultrastructure: type I - white and yellow, type II - black, and type III - orange and red. The ultrastructure of the scales located at the silvery/brownish surfaces of males/females is for the first time described in this paper. Besides, we describe the ontogeny of pigmentation, the scale morphogenesis and the maturation timing of scales fated to different colors in Heliconius erato phyllis. The silvery/brownish surfaces showed ultrastructurally similar scales to the type I, II and III. The ontogeny of pigmentation follows the sequence red, black, silvery/brownish and yellow. The maturation of yellow-fated scales, however, occurred simultaneously with the red-fated scales, before the pigmentation becomes visible. In spite of the scales at the silvery/brownish surfaces being ultrastructurally similar to the yellow, red and black scales, they mature after them; this suggests that the maturation timing does not show a relationship with the scale ultrastructure, with the deposition timing of the yellow pigment. The analysis of H. erato phyllis scale morphogenesis, as well as the scales ultrastructure and maturation timing, provided new findings into the developmental architecture of color pattern in Heliconius.
Collapse
Affiliation(s)
- A C B Aymone
- Post-Graduate Program of Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15053, 91501-970 Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
17
|
Supple MA, Hines HM, Dasmahapatra KK, Lewis JJ, Nielsen DM, Lavoie C, Ray DA, Salazar C, McMillan WO, Counterman BA. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies. Genome Res 2013; 23:1248-57. [PMID: 23674305 PMCID: PMC3730099 DOI: 10.1101/gr.150615.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identifying the genetic changes driving adaptive variation in natural populations is key to understanding the origins of biodiversity. The mosaic of mimetic wing patterns in Heliconius butterflies makes an excellent system for exploring adaptive variation using next-generation sequencing. In this study, we use a combination of techniques to annotate the genomic interval modulating red color pattern variation, identify a narrow region responsible for adaptive divergence and convergence in Heliconius wing color patterns, and explore the evolutionary history of these adaptive alleles. We use whole genome resequencing from four hybrid zones between divergent color pattern races of Heliconius erato and two hybrid zones of the co-mimic Heliconius melpomene to examine genetic variation across 2.2 Mb of a partial reference sequence. In the intergenic region near optix, the gene previously shown to be responsible for the complex red pattern variation in Heliconius, population genetic analyses identify a shared 65-kb region of divergence that includes several sites perfectly associated with phenotype within each species. This region likely contains multiple cis-regulatory elements that control discrete expression domains of optix. The parallel signatures of genetic differentiation in H. erato and H. melpomene support a shared genetic architecture between the two distantly related co-mimics; however, phylogenetic analysis suggests mimetic patterns in each species evolved independently. Using a combination of next-generation sequencing analyses, we have refined our understanding of the genetic architecture of wing pattern variation in Heliconius and gained important insights into the evolution of novel adaptive phenotypes in natural populations.
Collapse
Affiliation(s)
- Megan A Supple
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Papa R, Kapan DD, Counterman BA, Maldonado K, Lindstrom DP, Reed RD, Nijhout HF, Hrbek T, McMillan WO. Multi-allelic major effect genes interact with minor effect QTLs to control adaptive color pattern variation in Heliconius erato. PLoS One 2013; 8:e57033. [PMID: 23533571 PMCID: PMC3606360 DOI: 10.1371/journal.pone.0057033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies indicate that relatively few genomic regions are repeatedly involved in the evolution of Heliconius butterfly wing patterns. Although this work demonstrates a number of cases where homologous loci underlie both convergent and divergent wing pattern change among different Heliconius species, it is still unclear exactly how many loci underlie pattern variation across the genus. To address this question for Heliconius erato, we created fifteen independent crosses utilizing the four most distinct color pattern races and analyzed color pattern segregation across a total of 1271 F2 and backcross offspring. Additionally, we used the most variable brood, an F2 cross between H. himera and the east Ecuadorian H. erato notabilis, to perform a quantitative genetic analysis of color pattern variation and produce a detailed map of the loci likely involved in the H. erato color pattern radiation. Using AFLP and gene based markers, we show that fewer major genes than previously envisioned control the color pattern variation in H. erato. We describe for the first time the genetic architecture of H. erato wing color pattern by assessing quantitative variation in addition to traditional linkage mapping. In particular, our data suggest three genomic intervals modulate the bulk of the observed variation in color. Furthermore, we also identify several modifier loci of moderate effect size that contribute to the quantitative wing pattern variation. Our results are consistent with the two-step model for the evolution of mimetic wing patterns in Heliconius and support a growing body of empirical data demonstrating the importance of major effect loci in adaptive change.
Collapse
Affiliation(s)
- Riccardo Papa
- Department of Biology and Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity (Edinb) 2012; 110:283-95. [PMID: 23211790 DOI: 10.1038/hdy.2012.84] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.
Collapse
|
20
|
Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, Protas M, Rosenblum EB, Schneider CJ, Hoekstra HE. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res 2012; 25:411-33. [PMID: 22578174 DOI: 10.1111/j.1755-148x.2012.01014.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals display incredibly diverse color patterns yet little is known about the underlying genetic basis of these phenotypes. However, emerging results are reshaping our view of how the process of phenotypic evolution occurs. Here, we outline recent research from three particularly active areas of investigation: melanin pigmentation in Drosophila, wing patterning in butterflies, and pigment variation in lizards. For each system, we highlight (i) the function and evolution of color variation, (ii) various approaches that have been used to explore the genetic basis of pigment variation, and (iii) conclusions regarding the genetic basis of convergent evolution which have emerged from comparative analyses. Results from these studies indicate that natural variation in pigmentation is a particularly powerful tool to examine the molecular basis of evolution, especially with regard to convergent or parallel evolution. Comparison of these systems also reveals that the molecular basis of convergent evolution is heterogeneous, sometimes involving conserved mechanisms and sometimes not. In the near future, additional work in other emerging systems will substantially expand the scope of available comparisons.
Collapse
|
21
|
Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, Jiggins CD, Kronforst MR, Long AD, McMillan WO, Reed RD. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci U S A 2012; 109:12632-7. [PMID: 22802635 PMCID: PMC3411988 DOI: 10.1073/pnas.1204800109] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although animals display a rich variety of shapes and patterns, the genetic changes that explain how complex forms arise are still unclear. Here we take advantage of the extensive diversity of Heliconius butterflies to identify a gene that causes adaptive variation of black wing patterns within and between species. Linkage mapping in two species groups, gene-expression analysis in seven species, and pharmacological treatments all indicate that cis-regulatory evolution of the WntA ligand underpins discrete changes in color pattern features across the Heliconius genus. These results illustrate how the direct modulation of morphogen sources can generate a wide array of unique morphologies, thus providing a link between natural genetic variation, pattern formation, and adaptation.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hines HM, Papa R, Ruiz M, Papanicolaou A, Wang C, Nijhout HF, McMillan WO, Reed RD. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation. BMC Genomics 2012; 13:288. [PMID: 22747837 PMCID: PMC3443447 DOI: 10.1186/1471-2164-13-288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022] Open
Abstract
Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jones RT, Salazar PA, ffrench-Constant RH, Jiggins CD, Joron M. Evolution of a mimicry supergene from a multilocus architecture. Proc Biol Sci 2012; 279:316-25. [PMID: 21676976 PMCID: PMC3223682 DOI: 10.1098/rspb.2011.0882] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/26/2011] [Indexed: 11/12/2022] Open
Abstract
The origin and evolution of supergenes have long fascinated evolutionary biologists. In the polymorphic butterfly Heliconius numata, a supergene controls the switch between multiple different forms, and results in near-perfect mimicry of model species. Here, we use a morphometric analysis to quantify the variation in wing pattern observed in two broods of H. numata with different alleles at the supergene locus, 'P'. Further, we genotype the broods to associate the variation we capture with genetic differences. This allows us to begin mapping the quantitative trait loci that have minor effects on wing pattern. In addition to finding loci on novel chromosomes, our data, to our knowledge, suggest for the first time that ancestral colour-pattern loci, known to have major effects in closely related species, may contribute to the wing patterns displayed by H. numata, despite the large transfer of effects to the supergene.
Collapse
Affiliation(s)
- Robert T Jones
- School of Biosciences, University of Exeter, Penryn TR10 9EZ, UK.
| | | | | | | | | |
Collapse
|
24
|
Chamberlain NL, Hill RI, Baxter SW, Jiggins CD, Kronforst MR. Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species. Heredity (Edinb) 2011; 107:200-4. [PMID: 21304546 PMCID: PMC3119732 DOI: 10.1038/hdy.2011.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/16/2010] [Accepted: 12/20/2010] [Indexed: 11/09/2022] Open
Abstract
The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.
Collapse
Affiliation(s)
- N L Chamberlain
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - R I Hill
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - S W Baxter
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - M R Kronforst
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
25
|
Brower AVZ. Hybrid speciation in Heliconius butterflies? A review and critique of the evidence. Genetica 2011; 139:589-609. [PMID: 21113790 PMCID: PMC3089819 DOI: 10.1007/s10709-010-9530-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022]
Abstract
The evidence supporting the recent hypothesis of a homoploid hybrid origin for the butterfly species Heliconius heurippa is evaluated. Data from selective breeding experiments, mate-choice studies, and a wide variety of DNA markers are reviewed, and an alternative hypothesis for the origin of the species and its close relatives is proposed. A scenario of occasional red wing-pattern mutations in peripheral populations of Heliconius cydno with subsequent adaptive convergence towards sympatric mimicry rings involving H. melpomene and H. erato is offered as an alternative to the HHS hypothesis. Recent twists of this tale are addressed in a postscript.
Collapse
Affiliation(s)
- Andrew V Z Brower
- Evolution and Ecology Group, Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
26
|
Walters JR, Harrison RG. Combined EST and proteomic analysis identifies rapidly evolving seminal fluid proteins in Heliconius butterflies. Mol Biol Evol 2010; 27:2000-13. [PMID: 20375075 DOI: 10.1093/molbev/msq092] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seminal fluid proteins (SFPs) directly influence a wide range of reproductive processes, including fertilization, sperm storage, egg production, and immune response. Like many other reproductive proteins, the molecular evolution of SFPs is generally characterized by rapid and frequently adaptive evolution. However, the evolutionary processes underlying this often-documented pattern have not yet been confidently determined. A robust understanding of the processes governing SFP evolution will ultimately require identifying SFPs and characterizing their evolution in many different taxa, often where only limited genomic resources are available. Here, we report the first comprehensive molecular genetic and evolutionary analysis of SFPs conducted in Lepidoptera (moths and butterflies). We have identified 51 novel SFPs from two species of Heliconius butterflies (Heliconius erato and Heliconius melpomene) by combining "indirect" bioinformatic and expression analyses of expressed sequence tags from male accessory gland and wing tissues with "direct" proteomic analyses of spermatophores. Proteomic analyses identified fewer SFPs than the indirect criteria but gave consistent results. Of 51 SFPs, 40 were identified in both species but fewer than half could be functionally annotated via similarity searches (Blast, IPRscan, etc.). The majority of annotated Heliconius SFPs were predicted to be chymotrypsins. Comparisons of Heliconius SFPs with those from fruit fly, mosquito, honeybee, and cricket suggest that gene turnover is high among these proteins and that SFPs are rarely conserved across insect orders. Pairwise estimates of evolutionary rates between SFPs and nonreproductive proteins show that, on average, Heliconius SFPs are evolving rapidly. At least one of these SFPs is evolving adaptively (dN/dS > 1), implicating a role for positive selection in this rapid evolution. This work establishes a strong precedent for future research on the causes and consequences of reproductive protein evolution in the Lepidoptera. Butterflies and moths have an extremely rich history of organismal research, which will provide an informative ecological context for further molecular evolutionary investigations.
Collapse
Affiliation(s)
- James R Walters
- Department of Ecology and Evolutionary Biology, Cornell University, USA.
| | | |
Collapse
|
27
|
Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R, Ferguson L, Joron M, Ffrench-Constant RH, Smith CP, Nielsen DM, Chen R, Jiggins CD, Reed RD, Halder G, Mallet J, McMillan WO. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet 2010; 6:e1000796. [PMID: 20140239 PMCID: PMC2816678 DOI: 10.1371/journal.pgen.1000796] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
Collapse
Affiliation(s)
- Brian A Counterman
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kijimoto T, Costello J, Tang Z, Moczek AP, Andrews J. EST and microarray analysis of horn development in Onthophagus beetles. BMC Genomics 2009; 10:504. [PMID: 19878565 PMCID: PMC2777201 DOI: 10.1186/1471-2164-10-504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 10/30/2009] [Indexed: 11/12/2022] Open
Abstract
Background The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. Results We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. Conclusion We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.
Collapse
Affiliation(s)
- Teiya Kijimoto
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | | | |
Collapse
|
29
|
Winter CB, Porter AH. AFLP Linkage Map of Hybridizing Swallowtail Butterflies, Papilio glaucus and Papilio canadensis. J Hered 2009; 101:83-90. [PMID: 19656818 DOI: 10.1093/jhered/esp067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Clayton B Winter
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
30
|
Beldade P, Van't Hof AE, Jerónimo MA, Long AD. Microsatellite markers associated with genes expressed in developing wings of Bicyclus anynana butterflies. Mol Ecol Resour 2009; 9:1487-92. [PMID: 21564941 DOI: 10.1111/j.1755-0998.2009.02691.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deriving useful microsatellite markers in lepidopterans has been challenging when relying on scans of genomic DNA libraries, presumably due to repetitiveness in their genomes. We assayed 96 of 320 microsatellites identified in silico from a collection of Bicyclus anynana ESTs, in 11 independent individuals from a laboratory population. From the 68 successful assays, we identified 40 polymorphic markers including 22 with BLAST-based annotation. Nine of 12 selected polymorphic markers tested in a panel of 24 wild-caught individuals converted to successful assays and were all polymorphic. We discuss how microsatellite discovery in ESTs is an efficient strategy with important attendant advantages.
Collapse
Affiliation(s)
- Patrícia Beldade
- Institute of Biology Leiden University, PO Box 9516, 2300 RA, Leiden, The Netherlands Instituto Gulbenkian de Ciência, Apartado 14, P-2781-901 Oeiras, Portugal School of Biological Sciences, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK Department of Ecology and Evolutionary Biology, University of California at Irvine, 5210 McGaugh Hall, Irvine, 92697-2525 CA, USA
| | | | | | | |
Collapse
|
31
|
Beldade P, Saenko SV, Pul N, Long AD. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet 2009; 5:e1000366. [PMID: 19197358 PMCID: PMC2629579 DOI: 10.1371/journal.pgen.1000366] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/05/2009] [Indexed: 11/28/2022] Open
Abstract
Lepidopterans (butterflies and moths) are a rich and diverse order of insects, which, despite their economic impact and unusual biological properties, are relatively underrepresented in terms of genomic resources. The genome of the silkworm Bombyx mori has been fully sequenced, but comparative lepidopteran genomics has been hampered by the scarcity of information for other species. This is especially striking for butterflies, even though they have diverse and derived phenotypes (such as color vision and wing color patterns) and are considered prime models for the evolutionary and developmental analysis of ecologically relevant, complex traits. We focus on Bicyclus anynana butterflies, a laboratory system for studying the diversification of novelties and serially repeated traits. With a panel of 12 small families and a biphasic mapping approach, we first assigned 508 expressed genes to segregation groups and then ordered 297 of them within individual linkage groups. We also coarsely mapped seven color pattern loci. This is the richest gene-based map available for any butterfly species and allowed for a broad-coverage analysis of synteny with the lepidopteran reference genome. Based on 462 pairs of mapped orthologous markers in Bi. anynana and Bo. mori, we observed strong conservation of gene assignment to chromosomes, but also evidence for numerous large- and small-scale chromosomal rearrangements. With gene collections growing for a variety of target organisms, the ability to place those genes in their proper genomic context is paramount. Methods to map expressed genes and to compare maps with relevant model systems are crucial to extend genomic-level analysis outside classical model species. Maps with gene-based markers are useful for comparative genomics and to resolve mapped genomic regions to a tractable number of candidate genes, especially if there is synteny with related model species. This is discussed in relation to the identification of the loci contributing to color pattern evolution in butterflies.
Collapse
Affiliation(s)
- Patrícia Beldade
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Abstract
There is an amazing amount of diversity in coloration patterns in nature. The ease of observing this diversity and the recent application of genetic and molecular techniques to model and nonmodel animals are allowing us to investigate the genetic basis and evolution of coloration in an ever-increasing variety of animals. It is now possible to ask questions about how many genes are responsible for any given pattern, what types of genetic changes have occurred to generate the diversity, and if the same underlying genetic changes occur repeatedly when coloration phenotypes arise through convergent evolution or parallel evolution.
Collapse
Affiliation(s)
- Meredith E Protas
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | | |
Collapse
|
33
|
Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly Bicyclus anynana, covering all 28 karyotyped chromosomes. PLoS One 2008; 3:e3882. [PMID: 19060955 PMCID: PMC2588656 DOI: 10.1371/journal.pone.0003882] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/13/2008] [Indexed: 11/19/2022] Open
Abstract
Background The chromosome characteristics of the butterfly Bicyclus anynana, have received little attention, despite the scientific importance of this species. This study presents the characterization of chromosomes in this species by means of cytogenetic analysis and linkage mapping. Methodology/Principal Findings Physical genomic features in the butterfly B. anynana were examined by karyotype analysis and construction of a linkage map. Lepidoptera possess a female heterogametic W-Z sex chromosome system. The WZ-bivalent in pachytene oocytes of B. anynana consists of an abnormally small, heterochromatic W-chromosome with the Z-chromosome wrapped around it. Accordingly, the W-body in interphase nuclei is much smaller than usual in Lepidoptera. This suggests an intermediate stage in the process of secondary loss of the W-chromosome to a ZZ/Z sex determination system. Two nucleoli are present in the pachytene stage associated with an autosome and the WZ-bivalent respectively. Chromosome counts confirmed a haploid number of n = 28. Linkage mapping had to take account of absence of crossing-over in females, and of our use of a full-sib crossing design. We developed a new method to determine and exclude the non-recombinant uninformative female inherited component in offspring. The linkage map was constructed using a novel approach that uses exclusively JOINMAP-software for Lepidoptera linkage mapping. This approach simplifies the mapping procedure, avoids over-estimation of mapping distance and increases the reliability of relative marker positions. A total of 347 AFLP markers, 9 microsatellites and one single-copy nuclear gene covered all 28 chromosomes, with a mapping distance of 1354 cM. Conserved synteny of Tpi on the Z-chromosome in Lepidoptera was confirmed for B. anynana. The results are discussed in relation to other mapping studies in Lepidoptera. Conclusions/Significance This study adds to the knowledge of chromosome structure and evolution of an intensively studied organism. On a broader scale it provides an insight in Lepidoptera sex chromosome evolution and it proposes a simpler and more reliable method of linkage mapping than used for Lepidoptera to date.
Collapse
|
34
|
Walters JR, Harrison RG. EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics 2008; 9:592. [PMID: 19063743 PMCID: PMC2621208 DOI: 10.1186/1471-2164-9-592] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 12/08/2008] [Indexed: 11/16/2022] Open
Abstract
Background Heliconius butterflies possess a remarkable diversity of phenotypes, physiologies, and behaviors that has long distinguished this genus as a focal taxon in ecological and evolutionary research. Recently Heliconius has also emerged as a model system for using genomic methods to investigate the causes and consequences of biological diversity. One notable aspect of Heliconius diversity is a dichotomy in mating systems which provides an unusual opportunity to investigate the relationship between sexual selection and the evolution of reproductive proteins. As a first step in pursuing this research, we report the generation and analysis of expressed sequence tags (ESTs) from the male accessory gland of H. erato and H. melpomene, species representative of the two mating systems present in the genus Heliconius. Results We successfully sequenced 933 ESTs clustering into 371 unigenes from H. erato and 1033 ESTs clustering into 340 unigenes from H. melpomene. Results from the two species were very similar. Approximately a third of the unigenes showed no significant BLAST similarity (E-value <10-5) to sequences in GenBank's non-redundant databases, indicating that a large proportion of novel genes are expressed in Heliconius male accessory glands. In both species only a third of accessory gland unigenes were also found among genes expressed in wing tissue. About 25% of unigenes from both species encoded secreted proteins. This includes three groups of highly abundant unigenes encoding repetitive proteins considered to be candidate seminal fluid proteins; proteins encoded by one of these groups were detected in H. erato spermatophores. Conclusion This collection of ESTs will serve as the foundation for the future identification and evolutionary analysis of male reproductive proteins in Heliconius butterflies. These data also represent a significant advance in the rapidly growing collection of genomic resources available in Heliconius butterflies. As such, they substantially enhance this taxon as a model system for investigating questions of ecological, phenotypic, and genomic diversity.
Collapse
Affiliation(s)
- James R Walters
- Department of Ecology and Evolution, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
35
|
Papa R, Martin A, Reed RD. Genomic hotspots of adaptation in butterfly wing pattern evolution. Curr Opin Genet Dev 2008; 18:559-64. [DOI: 10.1016/j.gde.2008.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 01/24/2023]
|
36
|
ARIAS CARLOSF, MUÑOZ ASTRIDG, JIGGINS CHRISD, MAVÁREZ JESÚS, BERMINGHAM ELDREDGE, LINARES MAURICIO. A hybrid zone provides evidence for incipient ecological speciation inHeliconiusbutterflies. Mol Ecol 2008; 17:4699-712. [DOI: 10.1111/j.1365-294x.2008.03934.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Baxter SW, Papa R, Chamberlain N, Humphray SJ, Joron M, Morrison C, ffrench-Constant RH, McMillan WO, Jiggins CD. Convergent evolution in the genetic basis of Müllerian mimicry in heliconius butterflies. Genetics 2008; 180:1567-77. [PMID: 18791259 PMCID: PMC2581958 DOI: 10.1534/genetics.107.082982] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 08/31/2008] [Indexed: 11/18/2022] Open
Abstract
The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the "tiger" patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.
Collapse
Affiliation(s)
- Simon W Baxter
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clark R, Brown SM, Collins SC, Jiggins CD, Heckel DG, Vogler AP. Colour pattern specification in the Mocker swallowtail Papilio dardanus: the transcription factor invected is a candidate for the mimicry locus H. Proc Biol Sci 2008; 275:1181-8. [PMID: 18285283 DOI: 10.1098/rspb.2007.1762] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The swallowtail butterfly, Papilio dardanus, is an iconic example of a polymorphic Batesian mimic. The expression of various female-limited colour forms is thought to be controlled by a single autosomal locus, termed H, whose function in determining the wing pattern remains elusive. As a step towards the physical mapping of H, we established a set of 272 polymorphic amplified fragment length polymorphism (AFLP) markers (EcoRI-MseI). Segregation patterns in a 'female-informative' brood (exploiting the absence of crossing over in female Lepidoptera) mapped these AFLPs to 30 linkage groups (putative chromosomes). The difference between the hippocoon and cenea female forms segregating in this family resides on a single one of these linkage groups, defined by 14 AFLPs. In a 'male-informative' cross (markers segregating within a linkage group), a pair of AFLPs co-segregated closely with the two female forms, except in four recombinants out of 19 female offspring. Linkage with these AFLP markers using four further female-informative families demonstrated that the genetic factor determining other morphs (poultoni, lamborni and trimeni) also maps to this same linkage group. The candidate gene invected, obtained in a screen for co-segregation of developmental genes with the colour forms, resides in a 13.9 cM interval flanked by the two AFLP markers. In the male-informative family invected co-segregated perfectly with the hippocoon/cenea factor, despite the four crossovers with the AFLPs. These findings make invected, and possibly its closely linked paralogue engrailed, strong candidates for H. This is supported by their known role in eyespot specification in nymphalid butterfly wings.
Collapse
Affiliation(s)
- Rebecca Clark
- Department of Entomology, Natural History Museum, London, UK
| | | | | | | | | | | |
Collapse
|
39
|
Papa R, Morrison CM, Walters JR, Counterman BA, Chen R, Halder G, Ferguson L, Chamberlain N, ffrench-Constant R, Kapan DD, Jiggins CD, Reed RD, McMillan WO. Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. BMC Genomics 2008; 9:345. [PMID: 18647405 PMCID: PMC2515155 DOI: 10.1186/1471-2164-9-345] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. RESULTS Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. CONCLUSION Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.
Collapse
Affiliation(s)
- Riccardo Papa
- Department of Biology, University of Puerto Rico – Rio Piedras, San Juan, Puerto Rico, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
- Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy
| | - Clayton M Morrison
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
| | - James R Walters
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, USA
| | | | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA
| | - Georg Halder
- Program in Developmental Biology, Baylor College of Medicine, Houston, USA
- Department of Biochemistry and Molecular Biology, University of Texas – M.D. Anderson Cancer Center, Houston, USA
| | - Laura Ferguson
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Durrell D Kapan
- Center for Conservation Research and Training, University of Hawai'i at Manoa, Honolulu, USA
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, USA
| | - William O McMillan
- Department of Biology, University of Puerto Rico – Rio Piedras, San Juan, Puerto Rico, USA
- Department of Genetics, North Carolina State University, Raleigh, USA
| |
Collapse
|
40
|
Reed RD, McMillan WO, Nagy LM. Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns. Proc Biol Sci 2008; 275:37-45. [PMID: 17956848 DOI: 10.1098/rspb.2007.1115] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geographical variation in the mimetic wing patterns of the butterfly Heliconius erato is a textbook example of adaptive polymorphism; however, little is known about how this variation is controlled developmentally. Using microarrays and qPCR, we identified and compared expression of candidate genes potentially involved with a red/yellow forewing band polymorphism in H. erato. We found that transcripts encoding the pigment synthesis enzymes cinnabar and vermilion showed pattern- and polymorphism-related expression patterns, respectively. cinnabar expression was associated with the forewing band regardless of pigment colour, providing the first gene expression pattern known to be correlated with a major Heliconius colour pattern. In contrast, vermilion expression changed spatially over time in red-banded butterflies, but was not expressed at detectable levels in yellow-banded butterflies, suggesting that regulation of this gene may be involved with the red/yellow polymorphism. Furthermore, we found that the yellow pigment, 3-hydroxykynurenine, is incorporated into wing scales from the haemolymph rather than being synthesized in situ. We propose that some aspects of Heliconius colour patterns are determined by spatio-temporal overlap of pigment gene transcription prepatterns and speculate that evolutionary changes in vermilion regulation may in part underlie an adaptive colour pattern polymorphism.
Collapse
Affiliation(s)
- Robert D Reed
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
41
|
Steiner CC, Weber JN, Hoekstra HE. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol 2007; 5:e219. [PMID: 17696646 PMCID: PMC1945039 DOI: 10.1371/journal.pbio.0050219] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 06/13/2007] [Indexed: 01/24/2023] Open
Abstract
Little is known about the genetic basis of ecologically important morphological variation such as the diverse color patterns of mammals. Here we identify genetic changes contributing to an adaptive difference in color pattern between two subspecies of oldfield mice (Peromyscus polionotus). One mainland subspecies has a cryptic dark brown dorsal coat, while a younger beach-dwelling subspecies has a lighter coat produced by natural selection for camouflage on pale coastal sand dunes. Using genome-wide linkage mapping, we identified three chromosomal regions (two of major and one of minor effect) associated with differences in pigmentation traits. Two candidate genes, the melanocortin-1 receptor (Mc1r) and its antagonist, the Agouti signaling protein (Agouti), map to independent regions that together are responsible for most of the difference in pigmentation between subspecies. A derived mutation in the coding region of Mc1r, rather than change in its expression level, contributes to light pigmentation. Conversely, beach mice have a derived increase in Agouti mRNA expression but no changes in protein sequence. These two genes also interact epistatically: the phenotypic effects of Mc1r are visible only in genetic backgrounds containing the derived Agouti allele. These results demonstrate that cryptic coloration can be based largely on a few interacting genes of major effect. The tremendous amount of variation in color patterns among organisms helps individuals survive and reproduce in the wild, yet we know surprisingly little about the genes that produce these adaptive patterns. Here we used a genomic analysis to uncover the molecular basis of a pale color pattern that camouflages beach mice inhabiting the sandy dunes of Florida's coast from predators. We identified two pigmentation genes, the melanocortin-1 receptor (Mc1r) and its ligand, the agouti signaling protein (Agouti), which together produce a light color pattern. We show that this light pigmentation results partly from a single amino acid mutation in Mc1r, which reduces the activity of the receptor but does not affect the gene's expression level, and partly from the derived Agouti allele, which shows no change in protein sequence but does exhibit an increase in mRNA expression. We also show that these two genes do not act additively to produce pale color; rather, the derived Agouti allele must be present to see any effect of Mc1r on pigmentation. Thus, the light color pattern of beach mice largely results from the physical interaction between a structural change in a receptor (reducing Mc1r activity) and a regulatory change in the receptor's antagonist (increasing Agouti expression). Species of oldfield mice have coat colors adapted for their environment. By using genome-wide linkage mapping, the authors show that three chromosomal regions are associated with differences in pigmentation traits.
Collapse
Affiliation(s)
- Cynthia C Steiner
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jesse N Weber
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hopi E Hoekstra
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Pringle EG, Baxter SW, Webster CL, Papanicolaou A, Lee SF, Jiggins CD. Synteny and chromosome evolution in the lepidoptera: evidence from mapping in Heliconius melpomene. Genetics 2007; 177:417-26. [PMID: 17603110 PMCID: PMC2013725 DOI: 10.1534/genetics.107.073122] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Accepted: 06/27/2007] [Indexed: 11/18/2022] Open
Abstract
The extent of conservation of synteny and gene order in the Lepidoptera has been investigated previously only by comparing a small subset of linkage groups between the moth Bombyx mori and the butterfly Heliconius melpomene. Here we report the mapping of 64 additional conserved genes in H. melpomene, which contributed 47 markers to a comparative framework of 72 orthologous loci spanning all 21 H. melpomene chromosomes and 27 of the 28 B. mori chromosomes. Comparison of the maps revealed conserved synteny across all chromosomes for the 72 loci, as well as evidence for six cases of chromosome fusion in the Heliconius lineage that contributed to the derived 21-chromosome karyotype. Comparisons of gene order on these fused chromosomes revealed two instances of colinearity between H. melpomene and B. mori, but also one instance of likely chromosomal rearrangement. B. mori is the first lepidopteran species to have its genome sequenced, and the finding that there is conserved synteny and gene order among Lepidoptera indicates that the genomic tools developed in B. mori will be broadly useful in other species.
Collapse
Affiliation(s)
- Elizabeth G Pringle
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Parchem RJ, Perry MW, Patel NH. Patterns on the insect wing. Curr Opin Genet Dev 2007; 17:300-8. [PMID: 17627807 DOI: 10.1016/j.gde.2007.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/05/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
The evolution of wings and the adaptive advantage they provide have allowed insects to become one of the most evolutionarily successful groups on earth. The incredible diversity of their shape, size, and color patterns is a direct reflection of the important role wings have played in the radiation of insects. In this review, we highlight recent studies on both butterflies and Drosophila that have begun to uncover the types of genetic variations and developmental mechanisms that control diversity in wing color patterns. In butterflies, these analyses are now possible because of the recent development of a suite of genomic and functional tools, such as detailed linkage maps and transgenesis. In one such study, extensive linkage mapping in Heliconius butterflies has shown that surprisingly few, and potentially homologous, loci are responsible for several major pattern variations on the wings of these butterflies. Parallel work on a clade of Drosophila has uncovered how cis-regulatory changes of the same gene correlate with the repeated gain and loss of pigmented wing spots. Collectively, our understanding of formation and evolution of color pattern in insect wings is rapidly advancing because of these recent breakthroughs in several different fields.
Collapse
Affiliation(s)
- Ronald J Parchem
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3140, USA.
| | | | | |
Collapse
|
44
|
Mallet J, Beltrán M, Neukirchen W, Linares M. Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol Biol 2007; 7:28. [PMID: 17319954 PMCID: PMC1821009 DOI: 10.1186/1471-2148-7-28] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 02/23/2007] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To understand speciation and the maintenance of taxa as separate entities, we need information about natural hybridization and gene flow among species. RESULTS Interspecific hybrids occur regularly in Heliconius and Eueides (Lepidoptera: Nymphalidae) in the wild: 26-29% of the species of Heliconiina are involved, depending on species concept employed. Hybridization is, however, rare on a per-individual basis. For one well-studied case of species hybridizing in parapatric contact (Heliconius erato and H. himera), phenotypically detectable hybrids form around 10% of the population, but for species in sympatry hybrids usually form less than 0.05% of individuals. There is a roughly exponential decline with genetic distance in the numbers of natural hybrids in collections, both between and within species, suggesting a simple "exponential failure law" of compatibility as found in some prokaryotes. CONCLUSION Hybridization between species of Heliconius appears to be a natural phenomenon; there is no evidence that it has been enhanced by recent human habitat disturbance. In some well-studied cases, backcrossing occurs in the field and fertile backcrosses have been verified in insectaries, which indicates that introgression is likely, and recent molecular work shows that alleles at some but not all loci are exchanged between pairs of sympatric, hybridizing species. Molecular clock dating suggests that gene exchange may continue for more than 3 million years after speciation. In addition, one species, H. heurippa, appears to have formed as a result of hybrid speciation. Introgression may often contribute to adaptive evolution as well as sometimes to speciation itself, via hybrid speciation. Geographic races and species that coexist in sympatry therefore form part of a continuum in terms of hybridization rates or probability of gene flow. This finding concurs with the view that processes leading to speciation are continuous, rather than sudden, and that they are the same as those operating within species, rather than requiring special punctuated effects or complete allopatry. Although not qualitatively distinct from geographic races, nor "real" in terms of phylogenetic species concepts or the biological species concept, hybridizing species of Heliconius are stably distinct in sympatry, and remain useful groups for predicting morphological, ecological, behavioural and genetic characteristics.
Collapse
Affiliation(s)
- James Mallet
- Galton Laboratory, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK
- Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Smithsonian Tropical Research Institute, Balboa, Apartado 2072, Panamá
| | - Margarita Beltrán
- Galton Laboratory, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK
- Smithsonian Tropical Research Institute, Balboa, Apartado 2072, Panamá
| | | | - Mauricio Linares
- Departamento de Ciencias Biológicas, Instituto de Genética, Universidad de los Andes, Carrera 1E No 18A10, Bogotá, Colombia
| |
Collapse
|
45
|
Abstract
Technological and conceptual advances of the last decade have led to an explosion of genomic data and the emergence of new research avenues. Evolutionary and ecological functional genomics, with its focus on the genes that affect ecological success and adaptation in natural populations, benefits immensely from a phylogenetically widespread sampling of biological patterns and processes. Among those organisms outside established model systems, butterflies offer exceptional opportunities for multidisciplinary research on the processes generating and maintaining variation in ecologically relevant traits. Here we highlight research on wing color pattern variation in two groups of Nymphalid butterflies, the African species Bicyclus anynana (subfamily Satyrinae) and species of the South American genus Heliconius (subfamily Heliconiinae), which are emerging as important systems for studying the nature and origins of functional diversity. Growing genomic resources including genomic and cDNA libraries, dense genetic maps, high-density gene arrays, and genetic transformation techniques are extending current gene mapping and expression profiling analysis and enabling the next generation of research questions linking genes, development, form, and fitness. Efforts to develop such resources in Bicyclus and Heliconius underscore the general challenges facing the larger research community and highlight the need for a community-wide effort to extend ongoing functional genomic research on butterflies.
Collapse
Affiliation(s)
- P Beldade
- Section of Evolutionary Biology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | |
Collapse
|
46
|
Abstract
Axel Meyer discusses how evolution frequently converges on similar mimetic patterns in different species.
Collapse
|
47
|
Ramos DM, Monteiro A. Transgenic approaches to study wing color pattern development in Lepidoptera. MOLECULAR BIOSYSTEMS 2007; 3:530-5. [PMID: 17639127 DOI: 10.1039/b701965n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extremely diverse lepidopteran wing patterns make useful models to study the evolution of development and the molecular changes that enable it. Until now, the implication of candidate genes in the differentiation of color patterns has relied primarily on correlational evidence, i.e., gene expression patterns in a developing wing mapping closely to the adult color pattern. The use of transgenic techniques in the Lepidoptera, including the manipulation of gene expression, will finally allow researchers to test hypotheses of gene function at various levels of the patterning hierarchy, from signaling ligands and transcription factors to pigment enzymes. Here we present an overview of transgenic techniques employed in lepidopteran systems and highlight areas where current and future research will provide exciting opportunities to deepen our understanding of the mechanisms of morphological evolution.
Collapse
Affiliation(s)
- Diane M Ramos
- Dept Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
48
|
Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter S, Abanto M, Bermingham E, Humphray SJ, Rogers J, Beasley H, Barlow K, ffrench-Constant RH, Mallet J, McMillan WO, Jiggins CD. A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol 2006; 4:e303. [PMID: 17002517 PMCID: PMC1570757 DOI: 10.1371/journal.pbio.0040303] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022] Open
Abstract
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.
Collapse
Affiliation(s)
- Mathieu Joron
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Joron M, Jiggins CD, Papanicolaou A, McMillan WO. Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity (Edinb) 2006; 97:157-67. [PMID: 16835591 DOI: 10.1038/sj.hdy.6800873] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Evolutionary Developmental Biology aims for a mechanistic understanding of phenotypic diversity, and present knowledge is largely based on gene expression and interaction patterns from a small number of well-known model organisms. However, our understanding of biological diversification depends on our ability to pinpoint the causes of natural variation at a micro-evolutionary level, and therefore requires the isolation of genetic and developmental variation in a controlled genetic background. The colour patterns of Heliconius butterflies (Nymphalidae: Heliconiinae) provide a rich suite of naturally occurring variants with striking phenotypic diversity and multiple taxonomic levels of variation. Diversification in the genus is well known for its dramatic colour-pattern divergence between races or closely related species, and for Müllerian mimicry convergence between distantly related species, providing a unique system to study the development basis of colour-pattern evolution. A long history of genetic studies has showed that pattern variation is based on allelic combinations at a surprisingly small number of loci, and recent developmental evidence suggests that pattern development in Heliconius is different from the eyespot determination of other butterflies. Fine-scale genetic mapping studies have shown that a shared toolkit of genes is used to produce both convergent and divergent phenotypes. These exciting results and the development of new genomic resources make Heliconius a very promising evo-devo model for the study of adaptive change.
Collapse
Affiliation(s)
- M Joron
- Section of Evolutionary Biology, Institute of Biology, Leiden University, PO Box 9516, Leiden 2300 RA, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Kronforst MR, Kapan DD, Gilbert LE. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics 2006; 174:535-9. [PMID: 16783007 PMCID: PMC1569775 DOI: 10.1534/genetics.106.059527] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is unknown whether homologous loci underlie the independent and parallel wing pattern radiations of Heliconius butterflies. By comparing the locations of color patterning genes on linkage maps we show that three loci that act similarly in the two radiations are in similar positions on homologous chromosomes.
Collapse
Affiliation(s)
- Marcus R Kronforst
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA.
| | | | | |
Collapse
|