1
|
Petrisková L, Kodedová M, Balážová M, Sychrová H, Valachovič M. Lipid droplets control the negative effect of non-yeast sterols in membranes of Saccharomyces cerevisiae under hypoxic stress. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159523. [PMID: 38866087 DOI: 10.1016/j.bbalip.2024.159523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell - alleviation of the lipotoxicity of unsaturated fatty acids.
Collapse
Affiliation(s)
- Lívia Petrisková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marie Kodedová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mária Balážová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Sychrová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Valachovič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
2
|
Alsayyah C, Singh MK, Morcillo-Parra MA, Cavellini L, Shai N, Schmitt C, Schuldiner M, Zalckvar E, Mallet A, Belgareh-Touzé N, Zimmer C, Cohen MM. Mitofusin-mediated contacts between mitochondria and peroxisomes regulate mitochondrial fusion. PLoS Biol 2024; 22:e3002602. [PMID: 38669296 PMCID: PMC11078399 DOI: 10.1371/journal.pbio.3002602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
| | - Manish K. Singh
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015 Paris, France
| | - Maria Angeles Morcillo-Parra
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
| | - Laetitia Cavellini
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
| | - Nadav Shai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Christine Schmitt
- Ultrastructural BioImaging Core Facility, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adeline Mallet
- Ultrastructural BioImaging Core Facility, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Naïma Belgareh-Touzé
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
| | - Christophe Zimmer
- Institut Pasteur, Université Paris Cité, Imaging and Modeling Unit, F-75015 Paris, France
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Mickaël M. Cohen
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
3
|
Bittner E, Stehlik T, Lam J, Dimitrov L, Heimerl T, Schöck I, Harberding J, Dornes A, Heymons N, Bange G, Schuldiner M, Zalckvar E, Bölker M, Schekman R, Freitag J. Proteins that carry dual targeting signals can act as tethers between peroxisomes and partner organelles. PLoS Biol 2024; 22:e3002508. [PMID: 38377076 PMCID: PMC10906886 DOI: 10.1371/journal.pbio.3002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.
Collapse
Affiliation(s)
- Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jason Lam
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Lazar Dimitrov
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Thomas Heimerl
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Isabelle Schöck
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jannik Harberding
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nikola Heymons
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
4
|
Ekal L, Alqahtani AMS, Schuldiner M, Zalckvar E, Hettema EH, Ayscough KR. Spindle Position Checkpoint Kinase Kin4 Regulates Organelle Transport in Saccharomyces cerevisiae. Biomolecules 2023; 13:1098. [PMID: 37509134 PMCID: PMC10377308 DOI: 10.3390/biom13071098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Membrane-bound organelles play important, frequently essential, roles in cellular metabolism in eukaryotes. Hence, cells have evolved molecular mechanisms to closely monitor organelle dynamics and maintenance. The actin cytoskeleton plays a vital role in organelle transport and positioning across all eukaryotes. Studies in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) revealed that a block in actomyosin-dependent transport affects organelle inheritance to daughter cells. Indeed, class V Myosins, Myo2, and Myo4, and many of their organelle receptors, have been identified as key factors in organelle inheritance. However, the spatiotemporal regulation of yeast organelle transport remains poorly understood. Using peroxisome inheritance as a proxy to study actomyosin-based organelle transport, we performed an automated genome-wide genetic screen in S. cerevisiae. We report that the spindle position checkpoint (SPOC) kinase Kin4 and, to a lesser extent, its paralog Frk1, regulates peroxisome transport, independent of their role in the SPOC. We show that Kin4 requires its kinase activity to function and that both Kin4 and Frk1 protect Inp2, the peroxisomal Myo2 receptor, from degradation in mother cells. In addition, vacuole inheritance is also affected in kin4/frk1-deficient cells, suggesting a common regulatory mechanism for actin-based transport for these two organelles in yeast. More broadly our findings have implications for understanding actomyosin-based transport in cells.
Collapse
Affiliation(s)
- Lakhan Ekal
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Abdulaziz M S Alqahtani
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ewald H Hettema
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
5
|
Sosa Ponce ML, Remedios MH, Moradi-Fard S, Cobb JA, Zaremberg V. SIR telomere silencing depends on nuclear envelope lipids and modulates sensitivity to a lysolipid. J Cell Biol 2023; 222:e202206061. [PMID: 37042812 PMCID: PMC10103788 DOI: 10.1083/jcb.202206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER. Edelfosine induced NE deformation and disrupted telomere clustering but not anchoring. Additionally, the association of Sir4 at telomeres decreased. RNA-seq analysis showed altered expression of Sir-dependent genes located at sub-telomeric (0-10 kb) regions, consistent with Sir4 dispersion. Transcriptomic analysis revealed that two lipid metabolic circuits were activated in response to edelfosine, one mediated by the membrane sensing transcription factors, Spt23/Mga2, and the other by a transcriptional repressor, Opi1. Activation of these transcriptional programs resulted in higher levels of unsaturated fatty acids and the formation of nuclear lipid droplets. Interestingly, cells lacking Sir proteins displayed resistance to unsaturated-fatty acids and edelfosine, and this phenotype was connected to Rap1.
Collapse
Affiliation(s)
| | | | - Sarah Moradi-Fard
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry and Molecular Biology and Oncology, Cumming School of Medicine, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Calgary, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
7
|
Kostecka LG, Pienta KJ, Amend SR. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med Oncol 2021; 38:133. [PMID: 34581907 PMCID: PMC8478749 DOI: 10.1007/s12032-021-01584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are found throughout all phyla across the tree of life. Originating as pure energy stores in the most basic organisms, LDs have evolved to fill various roles as regulators of lipid metabolism, signaling, and trafficking. LDs have been noted in cancer cells and have shown to increase tumor aggressiveness and chemotherapy resistance. A certain transitory state of cancer cell, the polyaneuploid cancer cell (PACC), appears to have higher LD levels than the cancer cell from which they are derived. PACCs are postulated to be the mediators of metastasis and resistance in many different cancers. Utilizing the evolutionarily conserved roles of LDs to protect from cellular lipotoxicity allows PACCs to survive otherwise lethal stressors. By better understanding how LDs have evolved throughout different phyla we will identify opportunities to target LDs in PACCs to increase therapeutic efficiency in cancer cells.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA. .,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Athenstaedt K. Phosphatidic acid biosynthesis in the model organism yeast Saccharomyces cerevisiae - a survey. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158907. [PMID: 33610760 PMCID: PMC7613133 DOI: 10.1016/j.bbalip.2021.158907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Phosphatidic acid biosynthesis represents the initial part of de novo formation of all glycerophospholipids (membrane lipids) as well as triacylglycerols (storage lipids), and is thus the centerpiece of glycerolipid metabolism. The universal route of phosphatidic acid biosynthesis starts from the precursor glycerol-3-phosphate and comprises two consecutive acylation reactions which are catalyzed by a glycerol-3-phosphate acyltransferase and a 1-acyl glycerol-3-phosphate acyltransferase. In addition, yeast and mammals harbor a set of enzymes which can synthesize phosphatidic acid from the precursor dihydroxyacetone phosphate. In the present review our current knowledge about enzymes contributing to phosphatidic acid biosynthesis in the invaluable model organism yeast, Saccharomyces cerevisiae, is summarized. A special focus is laid upon the regulation and the localization of these enzymes. Furthermore, research needs for a deeper insight into the high complexity of phosphatidic acid biosynthesis and consequently the entire lipid metabolic network is presented.
Collapse
Affiliation(s)
- Karin Athenstaedt
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/2, 8010 Graz, Austria.
| |
Collapse
|
9
|
Vishwakarma P, Meena NK, Prasad R, Lynn AM, Banerjee A. ABC-finder: A containerized web server for the identification and topology prediction of ABC proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183640. [PMID: 33957109 DOI: 10.1016/j.bbamem.2021.183640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
In view of the multiple clinical and physiological implications of ABC transporter proteins, there is a considerable interest among researchers to characterize them functionally. However, such characterizations are based on the premise that ABC proteins are accurately identified in the proteome of an organism, and their topology is correctly predicted. With this objective, we have developed ABC-finder, i.e., a Docker-based package for the identification of ABC proteins in all organisms, and visualization of the topology of ABC proteins using a web browser. ABC-finder is built and deployed in a Linux container, making it scalable for many concurrent users on our servers and enabling users to download and run it locally. Overall, ABC-finder is a convenient, portable, and platform-independent tool for the identification and topology prediction of ABC proteins. ABC-finder is accessible at http://abc-finder.osdd.jnu.ac.in.
Collapse
Affiliation(s)
- Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| | - Andrew M Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| |
Collapse
|
10
|
Kumanski S, Viart BT, Kossida S, Moriel-Carretero M. Lipid Droplets Are a Physiological Nucleoporin Reservoir. Cells 2021; 10:472. [PMID: 33671805 PMCID: PMC7926788 DOI: 10.3390/cells10020472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid Droplets (LD) are dynamic organelles that originate in the Endoplasmic Reticulum and mostly bud off toward the cytoplasm, where they store neutral lipids for energy and protection purposes. LD also have diverse proteins on their surface, many of which are necessary for the their correct homeostasis. However, these organelles also act as reservoirs of proteins that can be made available elsewhere in the cell. In this sense, they act as sinks that titrate key regulators of many cellular processes. Among the specialized factors that reside on cytoplasmic LD are proteins destined for functions in the nucleus, but little is known about them and their impact on nuclear processes. By screening for nuclear proteins in publicly available LD proteomes, we found that they contain a subset of nucleoporins from the Nuclear Pore Complex (NPC). Exploring this, we demonstrate that LD act as a physiological reservoir, for nucleoporins, that impacts the conformation of NPCs and hence their function in nucleo-cytoplasmic transport, chromatin configuration, and genome stability. Furthermore, our in silico modeling predicts a role for LD-released fatty acids in regulating the transit of nucleoporins from LD through the cytoplasm and to nuclear pores.
Collapse
Affiliation(s)
- Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| | - Benjamin T. Viart
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - Sofia Kossida
- International ImMunoGeneTics Information System (IMGT®), Institut de Génétique Humaine (IGH), Université de Montpellier, Centre National de la Recherche Scientifique, 34396 Montpellier CEDEX 05, France; (B.T.V.); (S.K.)
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France;
| |
Collapse
|
11
|
Zhang X, Chen XL. The emerging roles of ubiquitin-like protein Urm1 in eukaryotes. Cell Signal 2021; 81:109946. [PMID: 33548388 DOI: 10.1016/j.cellsig.2021.109946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
The ubiquitin related modifier Urm1 protein was firstly identified in the yeast Saccharomyces cerevisiae, and was later found to play important roles in different eukaryotes. By the assistance of an E1-like activation enzyme Uba4, Urm1 can function as a modifier to target proteins, called urmylation. The thioredoxin peroxidase Ahp1 was the only identified Urm1 target in the early time. Recently, many other Urm1 targets were identified, which is important for us to fully understand functions of urmylation. Urm1 can also function as a sulfur carrier to play a key role in tRNAs thiolation. Mechanisms of the Urm1 in protein and RNA modifications were finely revealed in the past few years. Biological and physiological functions of Urm1 were also found in different organisms. In this review, we will summarize these emerging progresses.
Collapse
Affiliation(s)
- Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Mast FD, Rachubinski RA, Aitchison JD. Peroxisome prognostications: Exploring the birth, life, and death of an organelle. J Cell Biol 2020; 219:133827. [PMID: 32211898 PMCID: PMC7054992 DOI: 10.1083/jcb.201912100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes play a central role in human health and have biochemical properties that promote their use in many biotechnology settings. With a primary role in lipid metabolism, peroxisomes share a niche with lipid droplets within the endomembrane-secretory system. Notably, factors in the ER required for the biogenesis of peroxisomes also impact the formation of lipid droplets. The dynamic interface between peroxisomes and lipid droplets, and also between these organelles and the ER and mitochondria, controls their metabolic flux and their dynamics. Here, we review our understanding of peroxisome biogenesis to propose and reframe models for understanding how peroxisomes are formed in cells. To more fully understand the roles of peroxisomes and to take advantage of their many properties that may prove useful in novel therapeutics or biotechnology applications, we recast mechanisms controlling peroxisome biogenesis in a framework that integrates inference from these models with experimental data.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA
| | | | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA.,Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Kong Y, Wang Q, Cao F, Zhang X, Fang Z, Shi P, Wang H, Shen Y, Huang Z. BSC2 enhances cell resistance to AmB by inhibiting oxidative damage in Saccharomyces cerevisiae. Free Radic Res 2020; 54:231-243. [DOI: 10.1080/10715762.2020.1751151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yingying Kong
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Qiao Wang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyu Zhang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhijia Fang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Handong Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Yuhu Shen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I. Squalene lipotoxicity in a lipid droplet‐less yeast mutant is linked to plasma membrane dysfunction. Yeast 2020; 37:45-62. [DOI: 10.1002/yea.3454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zsófia Csáky
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Martina Garaiová
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Marie Kodedová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ivan Hapala
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
15
|
Esposito M, Hermann-Le Denmat S, Delahodde A. Contribution of ERMES subunits to mature peroxisome abundance. PLoS One 2019; 14:e0214287. [PMID: 30908556 PMCID: PMC6433259 DOI: 10.1371/journal.pone.0214287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/11/2019] [Indexed: 11/26/2022] Open
Abstract
Eukaryotic organelles share different components and establish physical contacts to communicate throughout the cell. One of the best-recognized examples of such interplay is the metabolic cooperation and crosstalk between mitochondria and peroxisomes, both organelles being functionally and physically connected and linked to the endoplasmic reticulum (ER). In Saccharomyces cerevisiae, mitochondria are linked to the ER by the ERMES complex that facilitates inter-organelle calcium and phospholipid exchanges. Recently, peroxisome-mitochondria contact sites (PerMit) have been reported and among Permit tethers, one component of the ERMES complex (Mdm34) was shown to interact with the peroxin Pex11, suggesting that the ERMES complex or part of it may be involved in two membrane contact sites (ER-mitochondria and peroxisome- mitochondria). This opens the possibility of exchanges between these three membrane compartments. Here, we investigated in details the role of each ERMES subunit on peroxisome abundance. First, we confirmed previous studies from other groups showing that absence of Mdm10 or Mdm12 leads to an increased number of mature peroxisomes. Secondly, we showed that this is not simply due to respiratory function defect, mitochondrial DNA (mtDNA) loss or mitochondrial network alteration. Finally, we present evidence that the contribution of ERMES subunits Mdm10 and Mdm12 to peroxisome number involves two different mechanisms.
Collapse
Affiliation(s)
- Michela Esposito
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
| | - Sylvie Hermann-Le Denmat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris‐Saclay, Gif‐sur‐Yvette cedex, France
- * E-mail:
| |
Collapse
|
16
|
Lutfullahoğlu-Bal G, Seferoğlu AB, Keskin A, Akdoğan E, Dunn CD. A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells. Sci Rep 2018; 8:16374. [PMID: 30401812 PMCID: PMC6219538 DOI: 10.1038/s41598-018-34646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
Collapse
Affiliation(s)
- Güleycan Lutfullahoğlu-Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
| | - Ayşe Bengisu Seferoğlu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Biological Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, United States of America
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
17
|
Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA, Jonikas M, Weibezahn J, Popova KD, Jan CH, Sinitcyn P, Vembar SS, Hernandez H, Cox J, Burlingame AL, Brodsky JL, Frost A, Borner GH, Weissman JS. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife 2018; 7:37018. [PMID: 29809151 PMCID: PMC5995541 DOI: 10.7554/elife.37018] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/26/2018] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains such as charged residues in ion channels are often functionally important, but could pose a challenge during cotranslational membrane insertion and folding. Our systematic proteomic approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC) binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for charged residues. The EMC can remain associated after completion of translation, which both protects clients from premature degradation and allows recruitment of substrate-specific and general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane proteins containing destabilizing features, thereby mitigating the trade-off between function and stability.
Collapse
Affiliation(s)
- Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Nicole T Schirle Oakdale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Elizabeth A Costa
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Martin Jonikas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jimena Weibezahn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Katerina D Popova
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Calvin H Jan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Pavel Sinitcyn
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Shruthi S Vembar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Hilda Hernandez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Georg Hh Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
18
|
Wang Q, Du X, Ma K, Shi P, Liu W, Sun J, Peng M, Huang Z. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity. Microbiol Res 2018; 207:1-7. [DOI: 10.1016/j.micres.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/28/2022]
|
19
|
Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae. J Biosci Bioeng 2018; 125:211-217. [DOI: 10.1016/j.jbiosc.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
|
20
|
Yuzbasheva EY, Mostova EB, Andreeva NI, Yuzbashev TV, Fedorov AS, Konova IA, Sineoky SP. A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism. Biotechnol Bioeng 2017; 115:433-443. [PMID: 28832949 DOI: 10.1002/bit.26402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
In recent years, bio-based production of free fatty acids from renewable resources has attracted attention for their potential as precursors for the production of biofuels and biochemicals. In this study, the oleaginous yeast Yarrowia lipolytica was engineered to produce free fatty acids by eliminating glycerol metabolism. Free fatty acid production was monitored under lipogenic conditions with glycerol as a limiting factor. Firstly, the strain W29 (Δgpd1), which is deficient in glycerol synthesis, was obtained. However, W29 (Δgpd1) showed decreased biomass accumulation and glucose consumption in lipogenic medium containing a limiting supply of glycerol. Analysis of substrate utilization from a mixture of glucose and glycerol by the parental strain W29 revealed that glycerol was metabolized first and glucose utilization was suppressed. Thus, the Δgpd1Δgut2 double mutant, which is deficient also in glycerol catabolism, was constructed. In this genetic background, growth was repressed by glycerol. Oleate toxicity was observed in the Δgpd1Δgut2Δpex10 triple mutant strain which is deficient additionally in peroxisome biogenesis. Consequently, two consecutive rounds of selection of spontaneous mutants were performed. A mutant released from growth repression by glycerol was able to produce 136.8 mg L-1 of free fatty acids in a test tube, whereas the wild type accumulated only 30.2 mg L-1 . Next, an isolated oleate-resistant strain produced 382.8 mg L-1 of free fatty acids. Finely, acyl-CoA carboxylase gene (ACC1) over-expression resulted to production of 1436.7 mg L-1 of free fatty acids. The addition of dodecane promoted free fatty acid secretion and enhanced the level of free fatty acids up to 2033.8 mg L-1 during test tube cultivation.
Collapse
Affiliation(s)
- Evgeniya Y Yuzbasheva
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Elizaveta B Mostova
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Natalia I Andreeva
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Tigran V Yuzbashev
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Alexander S Fedorov
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| | - Irina A Konova
- National Research Centre "Kurchatov Institute," NBICS-Centre, Biotechnology and Bioenergy Laboratory, Moscow, Russia
| | - Sergey P Sineoky
- Bioresource Center Russian National Collection of Industrial Microorganisms (BRC VKPM), State Research Institute of Genetics and Selection of Industrial Microorganisms (GosNIIgenetika), Moscow, Russia
| |
Collapse
|
21
|
Yadav PK, Rajvanshi PK, Rajasekharan R. The role of yeast m 6A methyltransferase in peroxisomal fatty acid oxidation. Curr Genet 2017; 64:417-422. [PMID: 29043484 DOI: 10.1007/s00294-017-0769-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/08/2023]
Abstract
The precise and controlled regulation of gene expression at transcriptional and post-transcriptional levels is crucial for the eukaryotic cell survival and functions. In eukaryotes, more than 100 types of post-transcriptional RNA modifications have been identified. The N6-methyladenosine (m6A) modification in mRNA is among the most common post-transcriptional RNA modifications known in eukaryotic organisms, and the m6A RNA modification can regulate gene expression. The role of yeast m6A methyltransferase (Ime4) in meiosis, sporulation, triacylglycerol metabolism, vacuolar morphology, and mitochondrial functions has been reported. Stress triggers triacylglycerol accumulation as lipid droplets. Lipid droplets are physically connected to the different organelles such as endoplasmic reticulum, mitochondria, and peroxisomes. However, the physiological relevance of these physical interactions remains poorly understood. In yeast, peroxisome is the sole site of fatty acid β-oxidation. The metabolic status of the cell readily governs the number and physiological function of peroxisomes. Under low-glucose or stationary-phase conditions, peroxisome biogenesis and proliferation increase in the cells. Therefore, we hypothesized a possible role of Ime4 in the peroxisomal functions. There is no report on the role of Ime4 in peroxisomal biology. Here, we report that IME4 gene deletion causes peroxisomal dysfunction under stationary-phase conditions in Saccharomyces cerevisiae; besides, the ime4Δ cells showed a significant decrease in the expression of the key genes involved in peroxisomal β-oxidation compared to the wild-type cells. Therefore, identification and determination of the target genes of Ime4 that are directly involved in the peroxisomal biogenesis, morphology, and functions will pave the way to better understand the role of m6A methylation in peroxisomal biology.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Council of Scientific and Industrial Research, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-CFTRI, Mysore, India
| | - Praveen Kumar Rajvanshi
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Council of Scientific and Industrial Research, Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-CFTRI, Mysore, India
| | - Ram Rajasekharan
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Council of Scientific and Industrial Research, Mysore, Karnataka, 570020, India. .,Academy of Scientific and Innovative Research, CSIR-CFTRI, Mysore, India.
| |
Collapse
|
22
|
Rajvanshi PK, Arya M, Rajasekharan R. The stress-regulatory transcription factors Msn2 and Msn4 regulate fatty acid oxidation in budding yeast. J Biol Chem 2017; 292:18628-18643. [PMID: 28924051 DOI: 10.1074/jbc.m117.801704] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
The transcription factors Msn2 and Msn4 (multicopy suppressor of SNF1 mutation proteins 2 and 4) bind the stress-response element in gene promoters in the yeast Saccharomyces cerevisiae However, the roles of Msn2/4 in primary metabolic pathways such as fatty acid β-oxidation are unclear. Here, in silico analysis revealed that the promoters of most genes involved in the biogenesis, function, and regulation of the peroxisome contain Msn2/4-binding sites. We also found that transcript levels of MSN2/MSN4 are increased in glucose-depletion conditions and that during growth in nonpreferred carbon sources, Msn2 is constantly localized to the nucleus in wild-type cells. Of note, the double mutant msn2Δmsn4Δ exhibited a severe growth defect when grown with oleic acid as the sole carbon source and had reduced transcript levels of major β-oxidation genes. ChIP indicated that Msn2 has increased occupancy on the promoters of β-oxidation genes in glucose-depleted conditions, and in vivo reporter gene analysis indicated reduced expression of these genes in msn2Δmsn4Δ cells. Moreover, mobility shift assays revealed that Msn4 binds β-oxidation gene promoters. Immunofluorescence microscopy with anti-peroxisome membrane protein antibodies disclosed that the msn2Δmsn4Δ strain had fewer peroxisomes than the wild type, and lipid analysis indicated that the msn2Δmsn4Δ strain had increased triacylglycerol and steryl ester levels. Collectively, our data suggest that Msn2/Msn4 transcription factors activate expression of the genes involved in fatty acid oxidation. Because glucose sensing, signaling, and fatty acid β-oxidation pathways are evolutionarily conserved throughout eukaryotes, the msn2Δmsn4Δ strain could therefore be a good model system for further study of these critical processes.
Collapse
Affiliation(s)
- Praveen Kumar Rajvanshi
- From the Department of Lipid Science of the Lipidomic Centre and.,the Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Madhuri Arya
- From the Department of Lipid Science of the Lipidomic Centre and.,the Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Ram Rajasekharan
- From the Department of Lipid Science of the Lipidomic Centre and .,the Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| |
Collapse
|
23
|
Yofe I, Soliman K, Chuartzman SG, Morgan B, Weill U, Yifrach E, Dick TP, Cooper SJ, Ejsing CS, Schuldiner M, Zalckvar E, Thoms S. Pex35 is a regulator of peroxisome abundance. J Cell Sci 2017; 130:791-804. [PMID: 28049721 DOI: 10.1242/jcs.187914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Peroxisomes are cellular organelles with vital functions in lipid, amino acid and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by PEX genes; however, the regulation of peroxisome abundance is still poorly understood. Here, we use a high-content microscopy screen in Saccharomyces cerevisiae to identify new regulators of peroxisome size and abundance. Our screen led to the identification of a previously uncharacterized gene, which we term PEX35, which affects peroxisome abundance. PEX35 encodes a peroxisomal membrane protein, a remote homolog to several curvature-generating human proteins. We systematically characterized the genetic and physical interactome as well as the metabolome of mutants in PEX35, and we found that Pex35 functionally interacts with the vesicle-budding-inducer Arf1. Our results highlight the functional interaction between peroxisomes and the secretory pathway.
Collapse
Affiliation(s)
- Ido Yofe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kareem Soliman
- Department of Child and Adolescent Health, University Medical Center, Göttingen 37075, Germany
| | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bruce Morgan
- Department of Cellular Biochemistry, University of Kaiserslautern, Kaiserslautern 67653, Germany.,Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tobias P Dick
- Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense 5230, Denmark
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center, Göttingen 37075, Germany
| |
Collapse
|
24
|
Oelkers P, Pokhrel K. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae. Lipid Insights 2016; 9:31-41. [PMID: 27920551 PMCID: PMC5127605 DOI: 10.4137/lpi.s40597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/25/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse acyl-CoA species and acyltransferase isoenzymes are components of a complex system that synthesizes glycerophospholipids and triacylglycerols. Saccharomyces cerevisiae has four main acyl-CoA species, two main glycerol-3-phosphate 1-O-acyltransferases (Gat1p, Gat2p), and two main 1-acylglycerol-3-phosphate O-acyltransferases (Lpt1p, Slc1p). The in vivo contribution of these isoenzymes to phospholipid heterogeneity was determined using haploids with compound mutations: gat1Δlpt1Δ, gat2Δlpt1Δ, gat1Δslc1Δ, and gat2Δslc1Δ. All mutations mildly reduced [3H]palmitic acid incorporation into phospholipids relative to triacylglycerol. Electrospray ionization tandem mass spectrometry identified few differences from wild type in gat1Δlpt1Δ, dramatic differences in gat2Δslc1Δ, and intermediate changes in gat2Δlpt1Δ and gat1Δslc1Δ. Yeast expressing Gat1p and Lpt1p had phospholipids enriched with acyl chains that were unsaturated, 18 carbons long, and paired for length. These alterations prevented growth at 18.5°C and in 10% ethanol. Therefore, Gat2p and Slc1p dictate phospholipid acyl chain composition in rich media at 30°C. Slc1p selectively pairs acyl chains of different lengths.
Collapse
Affiliation(s)
- Peter Oelkers
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, USA
| |
Collapse
|
25
|
Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes. PLoS One 2016; 11:e0164175. [PMID: 27711131 PMCID: PMC5053447 DOI: 10.1371/journal.pone.0164175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/21/2016] [Indexed: 01/04/2023] Open
Abstract
Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments.
Collapse
|
26
|
Nötzel C, Lingner T, Klingenberg H, Thoms S. Identification of New Fungal Peroxisomal Matrix Proteins and Revision of the PTS1 Consensus. Traffic 2016; 17:1110-24. [PMID: 27392156 DOI: 10.1111/tra.12426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
The peroxisomal targeting signal type 1 (PTS1) is a seemingly simple peptide sequence at the C-terminal end of most peroxisomal matrix proteins. PTS1 can be described as a tripeptide with the consensus motif [S/A/C] [K/R/H] L. However, this description is neither necessary nor sufficient. It does not cover all cases of PTS1 proteins, and some proteins in accordance with this consensus do not target to the peroxisome. In order to find new PTS proteins in yeast and to arrive at a more complete description of the PTS1 consensus motif, we developed a machine learning approach that involves orthologue expansion of the set of known peroxisomal proteins. We performed a genome-wide in silico screen, characterised several PTS1-containing peptides and identified two new peroxisomal matrix proteins, which we named Pxp1 (Yel020c) and Pxp2 (Yjr111c). Based on these in silico and in vivo analyses, we revised the yeast PTS1 consensus which now includes all known PTS1 proteins.
Collapse
Affiliation(s)
- Christopher Nötzel
- Department of Child and Adolescent Health, University Medical Center, University of Göttingen, Göttingen, Germany.,Current address: Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Thomas Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany.,Current address: Microarray and Deep Sequencing Core Facility, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Heiner Klingenberg
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
27
|
Trans 18-carbon monoenoic fatty acid has distinct effects from its isomeric cis fatty acid on lipotoxicity and gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 123:33-38. [PMID: 27484790 DOI: 10.1016/j.jbiosc.2016.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/08/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have suggested that an excess intake of trans-unsaturated fatty acids increases the risk of coronary heart disease. However, the mechanisms of action of trans-unsaturated fatty acids in eukaryotic cells remain unclear. Since the budding yeast Saccharomyces cerevisiae can grow using fatty acids as the sole carbon source, it is a simple and suitable model organism for understanding the effects of trans-unsaturated fatty acids at the molecular and cellular levels. In this study, we compared the physiological effects of Δ9 cis and trans 18-carbon monoenoic fatty acids (oleic acid and elaidic acid) in yeast cells. The results obtained revealed that the two types have distinct effects on the expression of OLE1, which encodes Δ9 desaturase, and lipotoxicity in are1Δare2Δdga1Δlro1Δ and gat1Δ cells. Our results suggest that cis and trans 18-carbon monoenoic fatty acids exert different physiological effects in the regulation of gene expression and processing of excess fatty acids in yeast.
Collapse
|
28
|
Paulo JA, O'Connell JD, Everley RA, O'Brien J, Gygi MA, Gygi SP. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. J Proteomics 2016; 148:85-93. [PMID: 27432472 DOI: 10.1016/j.jprot.2016.07.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED The budding yeast Saccharomyces cerevisiae is a model system for investigating biological processes. Cellular events are known to be dysregulated due to shifts in carbon sources. However, the comprehensive proteomic alterations thereof have not been fully investigated. Here we examined proteomic alterations in S. cerevisiae due to the adaptation of yeast from glucose to nine different carbon sources - maltose, trehalose, fructose, sucrose, glycerol, acetate, pyruvate, lactic acid, and oleate. Isobaric tag-based mass spectrometry techniques are at the forefront of global proteomic investigations. As such, we used a TMT10-plex strategy to study multiple growth conditions in a single experiment. The SPS-MS3 method on an Orbitrap Fusion Lumos mass spectrometer enabled the quantification of over 5000 yeast proteins across ten carbon sources at a 1% protein-level FDR. On average, the proteomes of yeast cultured in fructose and sucrose deviated the least from those cultured in glucose. As expected, gene ontology classification revealed the major alteration in protein abundances occurred in metabolic pathways and mitochondrial proteins. Our protocol lays the groundwork for further investigation of carbon source-induced protein alterations. Additionally, these data offer a hypothesis-generating resource for future studies aiming to investigate both characterized and uncharacterized genes. BIOLOGICAL SIGNIFICANCE We investigate the proteomic alterations in S. cerevisiae resulting from adaptation of yeast from glucose to nine different carbon sources - maltose, trehalose, fructose, sucrose, glycerol, acetate, pyruvate, lactic acid, and oleate. SPS-MS3 TMT10plex analysis is used for quantitative proteomic analysis. We showcase a technique that allows the quantification of over 5000 yeast proteins, the highest number to date in S. cerevisiae, across 10 growth conditions in a single experiment. As expected, gene ontology classification of proteins with the major alterations in abundances occurred in metabolic pathways and mitochondrial proteins, reflecting the degree of metabolic stress when cellular machinery shifts from growth on glucose to an alternative carbon source. Our protocol lays the groundwork for further investigation of carbon source-induced protein alterations. Improving depth of coverage - measuring abundance changes of over 5000 proteins - increases our understanding of difficult-to-study genes in the model system S. cerevisiae and by homology human cell biology. We submit this highly comprehensive dataset as a hypothesis generating resource for targeted studies on uncharacterized genes.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| | - Jeremy D O'Connell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Robert A Everley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Jonathon O'Brien
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Micah A Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
29
|
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1019-26. [DOI: 10.1016/j.bbamcr.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
30
|
Conserved targeting information in mammalian and fungal peroxisomal tail-anchored proteins. Sci Rep 2015; 5:17420. [PMID: 26627908 PMCID: PMC4667187 DOI: 10.1038/srep17420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
The targeting signals and mechanisms of soluble peroxisomal proteins are well understood, whereas less is known about the signals and targeting routes of peroxisomal membrane proteins (PMP). Pex15 and PEX26, tail-anchored proteins in yeast and mammals, respectively, exert a similar cellular function in the recruitment of AAA peroxins at the peroxisomal membrane. But despite their common role, Pex15 and PEX26 are neither homologs nor they are known to follow similar targeting principles. Here we show that Pex15 targets to peroxisomes in mammalian cells, and PEX26 reaches peroxisomes when expressed in yeast cells. In both proteins C-terminal targeting information is sufficient for correct sorting to the peroxisomal membrane. In yeast, PEX26 follows the pathway that also ensures correct targeting of Pex15: PEX26 enters the endoplasmic reticulum (ER) in a GET-dependent and Pex19-independent manner. Like in yeast, PEX26 enters the ER in mammalian cells, however, independently of GET/TRC40. These data show that conserved targeting information is employed in yeast and higher eukaryotes during the biogenesis of peroxisomal tail-anchored proteins.
Collapse
|
31
|
Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis. Nat Commun 2015; 6:8137. [PMID: 26310111 PMCID: PMC4552083 DOI: 10.1038/ncomms9137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling.
Collapse
|
32
|
Schuldiner M, Zalckvar E. Peroxisystem: Harnessing systems cell biology to study peroxisomes. Biol Cell 2015; 107:89-97. [DOI: 10.1111/boc.201400091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Einat Zalckvar
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
33
|
Camões F, Islinger M, Guimarães SC, Kilaru S, Schuster M, Godinho LF, Steinberg G, Schrader M. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:111-25. [DOI: 10.1016/j.bbamcr.2014.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
|
34
|
Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast. Mol Cell Biochem 2014; 399:27-37. [PMID: 25280400 DOI: 10.1007/s11010-014-2229-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023]
Abstract
Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress.
Collapse
|
35
|
Selvaraju K, Rajakumar S, Nachiappan V. Identification of a phospholipase B encoded by the LPL1 gene in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1383-92. [PMID: 25014274 DOI: 10.1016/j.bbalip.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Phospholipids also play a major role in maintaining the lipid droplet (LD) morphology. In our current study, deletion of LPL1 resulted in altered morphology of LDs and was confirmed by microscopic analysis. LPL1/YOR059c contains lipase specific motif GXSXG and acetate labeling in the LPL1 overexpressed strains depicted a decrease in glycerophospholipids and an increase in free fatty acids. The purified Lpl1p showed phospholipase activity with broader substrate specificity, acting on all glycerophospholipids primarily at sn-2 position and later at sn-1 position. Localization studies precisely revealed that Lpl1 is exclusively localized in the LD at the stationary phase. Site directed mutagenesis experiments clearly demonstrated that the lipase motif is vital for the phospholipase activity. In summary, our results demonstrate that yeast Lpl1 exerts phospholipase activity, plays a vital role in LD morphology, and its absence results in altered LD size. Based on the localization and enzyme activity we renamed YOR059c as LPL1 (LD phospholipase 1).
Collapse
Affiliation(s)
- Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Selvaraj Rajakumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| |
Collapse
|
36
|
Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains. Genetics 2014; 198:369-82. [PMID: 24970865 DOI: 10.1534/genetics.114.167429] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural variation in gene expression is pervasive within and between species, and it likely explains a significant fraction of phenotypic variation between individuals. Phenotypic variation in acute systemic responses can also be leveraged to reveal physiological differences in how individuals perceive and respond to environmental perturbations. We previously found extensive variation in the transcriptomic response to acute ethanol exposure in two wild isolates and a common laboratory strain of Saccharomyces cerevisiae. Many expression differences persisted across several modules of coregulated genes, implicating trans-acting systemic differences in ethanol sensing and/or response. Here, we conducted expression QTL mapping of the ethanol response in two strain crosses to identify the genetic basis for these differences. To understand systemic differences, we focused on "hotspot" loci that affect many transcripts in trans. Candidate causal regulators contained within hotspots implicate upstream regulators as well as downstream effectors of the ethanol response. Overlap in hotspot targets revealed additive genetic effects of trans-acting loci as well as "epi-hotspots," in which epistatic interactions between two loci affected the same suites of downstream targets. One epi-hotspot implicated interactions between Mkt1p and proteins linked to translational regulation, prompting us to show that Mkt1p localizes to P bodies upon ethanol stress in a strain-specific manner. Our results provide a glimpse into the genetic architecture underlying natural variation in a stress response and present new details on how yeast respond to ethanol stress.
Collapse
|
37
|
Mattiazzi Ušaj M, Kaferle P, Toplak A, Trebše P, Petrovič U. Determination of toxicity of neonicotinoids on the genome level using chemogenomics in yeast. CHEMOSPHERE 2014; 104:91-96. [PMID: 24262822 DOI: 10.1016/j.chemosphere.2013.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Neonicotinoid insecticides are an important contribution to plant protection products. At the same time, their environmental impact on non-target organisms is often problematic. It has been shown that the toxicity of formulations of neonicotinoid insecticides can originate from non-neonicotinoid additives. In the present study we used chemogenomics to analyse side effects of purified neonicotinoids, additives and formulations on the genome-wide scale. We show that the additives in formulations have more pronounced effects than the active components, and that these effects could explain previously observed negative effects of neonicotinoid insecticides on spermatogenesis in animals. We also demonstrate that cell wall organization and biogenesis in yeast is negatively affected by neonicotinoid substances.
Collapse
Affiliation(s)
- Mojca Mattiazzi Ušaj
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Petra Kaferle
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Alenka Toplak
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Polonca Trebše
- Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia.
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Cohen Y, Klug YA, Dimitrov L, Erez Z, Chuartzman SG, Elinger D, Yofe I, Soliman K, Gärtner J, Thoms S, Schekman R, Elbaz-Alon Y, Zalckvar E, Schuldiner M. Peroxisomes are juxtaposed to strategic sites on mitochondria. MOLECULAR BIOSYSTEMS 2014; 10:1742-8. [PMID: 24722918 DOI: 10.1039/c4mb00001c] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peroxisomes are ubiquitous and dynamic organelles that house many important pathways of cellular metabolism. In recent years it has been demonstrated that mitochondria are tightly connected with peroxisomes and are defective in several peroxisomal diseases. Indeed, these two organelles share metabolic routes as well as resident proteins and, at least in mammals, are connected via a vesicular transport pathway. However the exact extent of cross-talk between peroxisomes and mitochondria remains unclear. Here we used a combination of high throughput genetic manipulations of yeast libraries alongside high content screens to systematically unravel proteins that affect the transport of peroxisomal proteins and peroxisome biogenesis. Follow up work on the effector proteins that were identified revealed that peroxisomes are not randomly distributed in cells but are rather localized to specific mitochondrial subdomains such as mitochondria-ER junctions and sites of acetyl-CoA synthesis. Our approach highlights the intricate geography of the cell and suggests an additional layer of organization as a possible way to enable efficient metabolism. Our findings pave the way for further studying the machinery aligning mitochondria and peroxisomes, the role of the juxtaposition, as well as its regulation during various metabolic conditions. More broadly, the approaches used here can be easily applied to study any organelle of choice, facilitating the discovery of new aspects in cell biology.
Collapse
Affiliation(s)
- Yifat Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Collapse
Affiliation(s)
- Jennifer J Smith
- 1] Seattle Biomedical Research Institute, 307 Westlake Avenue North, 98109-5240, USA. [2] Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5219, USA
| | | |
Collapse
|
40
|
Cohen Y, Megyeri M, Chen OCW, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM, Futerman AH, Schuldiner M. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One 2013; 8:e85519. [PMID: 24392018 PMCID: PMC3877380 DOI: 10.1371/journal.pone.0085519] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+) homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+) in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+) we could observe concurrent reduction in many Mn(2+)-related process in the ER lumen. Conversely, cytosolic Mn(2+)-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+) transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+)-dependent neurological disorders.
Collapse
Affiliation(s)
- Yifat Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Oscar C. W. Chen
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Condomitti
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Alaa Abdul-Sada
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Nitzan Rimon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- The Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
41
|
Cai Y, Futcher B. Effects of the yeast RNA-binding protein Whi3 on the half-life and abundance of CLN3 mRNA and other targets. PLoS One 2013; 8:e84630. [PMID: 24386402 PMCID: PMC3875557 DOI: 10.1371/journal.pone.0084630] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022] Open
Abstract
Whi3 is an RNA binding protein known to bind the mRNA of the yeast G1 cyclin gene CLN3. It inhibits CLN3 function, but the mechanism of this inhibition is unclear; in previous studies, Whi3 made no observable difference to CLN3 mRNA levels, translation, or protein abundance. Here, we re-approach this issue using microarrays, RNA-Seq, ribosome profiling, and other methods. By multiple methods, we find that the whi3 mutation causes a small but consistent increase in the abundance of hundreds of mRNAs, including the CLN3 mRNA. The effect on various mRNAs is roughly in proportion to the density of GCAU or UGCAU motifs carried by these mRNAs, which may be a binding site for Whi3. mRNA instability of Whi3 targets may in part depend on a 3′ AU rich element (ARE), AUUUUA. In addition, the whi3 mutation causes a small increase in the translational efficiency of CLN3 mRNA. The increase in CLN3 mRNA half-life and abundance together with the increase in translational efficiency is fully sufficient to explain the small-cell phenotype of whi3 mutants. Under stress conditions, Whi3 becomes a component of P-bodies or stress granules, but Whi3 also acts under non-stress condition, when no P-bodies are visible. We suggest that Whi3 may be a very broadly-acting, but mild, modulator of mRNA stability. In CLN3, Whi3 may bind to the 3′ GCAU motifs to attract the Ccr4-Not complex to promote RNA deadenylation and turnover, and Whi3 may bind to the 5′ GCAU motifs to inhibit translation.
Collapse
Affiliation(s)
- Ying Cai
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 2013; 19:1-22. [PMID: 24297686 PMCID: PMC6275743 DOI: 10.2478/s11658-013-0111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.
Collapse
|
43
|
van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2013; 25:290-301. [PMID: 24258026 PMCID: PMC3890349 DOI: 10.1091/mbc.e13-08-0448] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytosolic lipid droplets (LDs) are ubiquitous organelles in prokaryotes and eukaryotes that play a key role in cellular and organismal lipid homeostasis. Triacylglycerols (TAGs) and steryl esters, which are stored in LDs, are typically mobilized in growing cells or upon hormonal stimulation by LD-associated lipases and steryl ester hydrolases. Here we show that in the yeast Saccharomyces cerevisiae, LDs can also be turned over in vacuoles/lysosomes by a process that morphologically resembles microautophagy. A distinct set of proteins involved in LD autophagy is identified, which includes the core autophagic machinery but not Atg11 or Atg20. Thus LD autophagy is distinct from endoplasmic reticulum-autophagy, pexophagy, or mitophagy, despite the close association between these organelles. Atg15 is responsible for TAG breakdown in vacuoles and is required to support growth when de novo fatty acid synthesis is compromised. Furthermore, none of the core autophagy proteins, including Atg1 and Atg8, is required for LD formation in yeast.
Collapse
Affiliation(s)
- Tim van Zutphen
- Molecular Cell Biology, University of Groningen, 9747 AG Groningen, Netherlands Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hung CH, Ho MY, Kanehara K, Nakamura Y. Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii. FEBS Lett 2013; 587:2364-70. [PMID: 23770092 DOI: 10.1016/j.febslet.2013.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 01/25/2023]
Abstract
Algal triacylglycerol biosynthesis is of increasing interest for potential biodiesel production. A model microalga, Chlamydomonas, has multiple isoforms of diacylglycerol acyltransferase type 2 (DGTT) catalyzing the final step of triacylglycerol biosynthesis; however, the functions of the isoforms are poorly understood. Here, we performed heterologous complementation assay of Chlamydomonas DGTT1 to 4 in a yeast mutant defective in triacylglycerol biosynthesis. DGTT1, 2 and 3 but not 4 complemented the phenotype, including triacylglycerol levels. Interestingly, complementation by DGTT2 increased triacylglycerol content by 9-fold.
Collapse
Affiliation(s)
- Chun-Hsien Hung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
45
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
46
|
CmPEX6, a gene involved in peroxisome biogenesis, is essential for parasitism and conidiation by the sclerotial parasite Coniothyrium minitans. Appl Environ Microbiol 2013; 79:3658-66. [PMID: 23563946 DOI: 10.1128/aem.00375-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans.
Collapse
|
47
|
Role of the repressor Oaf3p in the recruitment of transcription factors and chromatin dynamics during the oleate response. Biochem J 2013; 449:507-17. [PMID: 23088601 DOI: 10.1042/bj20121029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular responses to environmental stimuli are mediated by the co-ordinated activity of multiple control mechanisms, which result in the dynamics of cell function. Communication between different levels of regulation is central for this adaptability. The present study focuses on the interplay between transcriptional regulators and chromatin modifiers to co-operatively regulate transcription in response to a fatty acid stimulus. The genes involved in the β-oxidation of fatty acids are highly induced in response to fatty acid exposure by four gene-specific transcriptional regulators, Oaf (oleate-activated transcription factor) 1p, Pip2p (peroxisome induction pathway 2), Oaf3p and Adr1p (alcohol dehydrogenase regulator 1). In the present study, we examine the interplay of these factors with Htz1p (histone variant H2A.Z) in regulating POT1 (peroxisomal oxoacyl thiolase 1) encoding peroxisomal thiolase and PIP2 encoding the autoregulatory oleate-specific transcriptional activator. Temporal resolution of ChIP (chromatin immunoprecipitation) data indicates that Htz1p is required for the timely removal of the transcriptional repressor Oaf3p during oleate induction. Adr1p plays an important role in the assembly of Htz1p-containing nucleosomes on the POT1 and PIP2 promoters. We also investigated the function of the uncharacterized transcriptional inhibitor Oaf3p. Deletion of OAF3 led to faster POT1 mRNA accumulation than in the wild-type. Most impressively, a highly protected nucleosome structure on the POT1 promoter during activation was observed in the OAF3 mutant cells in response to oleate induction.
Collapse
|
48
|
Production of Dicarboxylic Acids and Flagrances by Yarrowia lipolytica. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Lockshon D, Olsen CP, Brett CL, Chertov A, Merz AJ, Lorenz DA, Van Gilst MR, Kennedy BK. Rho signaling participates in membrane fluidity homeostasis. PLoS One 2012; 7:e45049. [PMID: 23071506 PMCID: PMC3465289 DOI: 10.1371/journal.pone.0045049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/14/2012] [Indexed: 01/03/2023] Open
Abstract
Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.
Collapse
Affiliation(s)
- Daniel Lockshon
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| | - Carissa Perez Olsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher L. Brett
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrei Chertov
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Daniel A. Lorenz
- Sonoma State University, Rohnert Park, California, United States of America
| | - Marc R. Van Gilst
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| |
Collapse
|
50
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|