1
|
Xu Z, Green B, Benoit N, Sobel JD, Schatz MC, Wheelan S, Cormack BP. Cell wall protein variation, break-induced replication, and subtelomere dynamics in Candida glabrata. Mol Microbiol 2021; 116:260-276. [PMID: 33713372 DOI: 10.1111/mmi.14707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023]
Abstract
Candida glabrata is an opportunistic pathogen of humans, responsible for up to 30% of disseminated candidiasis. Adherence of C. glabrata to host cells is mediated by adhesin-like proteins (ALPs), about half of which are encoded in the subtelomeres. We performed a de novo assembly of two C. glabrata strains, BG2 and BG3993, using long single-molecule real-time (SMRT) reads, and constructed high-quality telomere-to-telomere assemblies of all 13 chromosomes to assess differences between C. glabrata strains. We documented variation between strains, and in agreement with earlier studies, found high (~0.5%-1%) frequencies of SNVs across the genome, including within subtelomeric regions. We documented changes in ALP gene structure and complement: there are large length differences in ALP genes in different strains, resulting from copy number variation in tandem repeats. We compared strains to characterize chromosome rearrangement events including within the poorly characterized subtelomeric regions. We show that rearrangements within the subtelomere regions all affect ALP-encoding genes, and 14/16 involve just the most terminal ALP gene. We present evidence that these rearrangements are mediated by break-induced replication. This study highlights the constrained nature of subtelomeric changes impacting ALP gene complement and subtelomere structure.
Collapse
Affiliation(s)
- Zhuwei Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,AgriMetis, Lutherville, MD, USA
| | - Nicole Benoit
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jack D Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Xu Z, Teixeira MT. The many types of heterogeneity in replicative senescence. Yeast 2019; 36:637-648. [PMID: 31306505 PMCID: PMC6900063 DOI: 10.1002/yea.3433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/10/2022] Open
Abstract
Replicative senescence, which is induced by telomere shortening, underlies the loss of regeneration capacity of organs and is ultimately detrimental to the organism. At the same time, it is required to protect organisms from unlimited cell proliferation that may arise from numerous stimuli or deregulations. One important feature of replicative senescence is its high level of heterogeneity and asynchrony, which promote genome instability and senescence escape. Characterizing this heterogeneity and investigating its sources are thus critical to understanding the robustness of replicative senescence. Here we review the different aspects of senescence driven by telomere attrition that are subject to variation in Saccharomyces cerevisiae, the current understanding of the molecular processes at play, and the consequences of heterogeneity in replicative senescence.
Collapse
Affiliation(s)
- Zhou Xu
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative BiologySorbonne UniversitéParisFrance
| | - Maria Teresa Teixeira
- CNRS, UMR8226, Institut de Biologie Physico‐Chimique, Laboratory of Molecular and Cell Biology of EukaryotesSorbonne Université, PSL Research UniversityParisFrance
| |
Collapse
|
3
|
Pannunzio NR, Lieber MR. AID and Reactive Oxygen Species Can Induce DNA Breaks within Human Chromosomal Translocation Fragile Zones. Mol Cell 2017; 68:901-912.e3. [PMID: 29220655 DOI: 10.1016/j.molcel.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023]
Abstract
DNA double-strand breaks (DSBs) occurring within fragile zones of less than 200 base pairs account for the formation of the most common human chromosomal translocations in lymphoid malignancies, yet the mechanism of how breaks occur remains unknown. Here, we have transferred human fragile zones into S. cerevisiae in the context of a genetic assay to understand the mechanism leading to DSBs at these sites. Our findings indicate that a combination of factors is required to sensitize these regions. Foremost, DNA strand separation by transcription or increased torsional stress can expose these DNA regions to damage from either the expression of human AID or increased oxidative stress. This damage causes DNA lesions that, if not repaired quickly, are prone to nuclease cleavage, resulting in DSBs. Our results provide mechanistic insight into why human neoplastic translocation fragile DNA sequences are more prone to enzymes or agents that cause longer-lived DNA lesions.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm. 5428, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm. 5428, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Mild Telomere Dysfunction as a Force for Altering the Adaptive Potential of Subtelomeric Genes. Genetics 2017; 208:537-548. [PMID: 29242289 DOI: 10.1534/genetics.117.300607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
Subtelomeric regions have several unusual characteristics, including complex repetitive structures, increased rates of evolution, and enrichment for genes involved in niche adaptation. The adaptive telomere failure hypothesis suggests that certain environmental stresses can induce a low level of telomere failure, potentially leading to elevated subtelomeric recombination that could result in adaptive mutational changes within subtelomeric genes. Here, we tested a key prediction of the adaptive telomere failure hypothesis-that telomere dysfunction mild enough to have little or no overall effect on cell fitness could still lead to substantial increases in the mutation rates of subtelomeric genes. Our results show that a mutant of Kluyveromyces lactis with stably short telomeres produced a large increase in the frequency of mutations affecting the native subtelomeric β-galactosidase (LAC4) gene. All lac4 mutants examined from strains with severe telomere dysfunction underwent terminal deletion/duplication events consistent with being due to break-induced replication. In contrast, although cells with mild telomere dysfunction also exhibited similar terminal deletion and duplication events, up to 50% of lac4 mutants from this background unexpectedly contained base changes within the LAC4 coding region. This mutational bias for producing base changes demonstrates that mild telomere dysfunction can be well suited as a force for altering the adaptive potential of subtelomeric genes.
Collapse
|
5
|
Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms. Genetics 2016; 203:1659-68. [PMID: 27334270 PMCID: PMC4981268 DOI: 10.1534/genetics.115.183020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction.
Collapse
|
6
|
Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A. Break-induced replication is highly inaccurate. PLoS Biol 2011; 9:e1000594. [PMID: 21347245 PMCID: PMC3039667 DOI: 10.1371/journal.pbio.1000594] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 01/04/2011] [Indexed: 02/05/2023] Open
Abstract
DNA replication initiated by one-ended homologous recombination at a double-strand break is highly inaccurate, as it greatly stimulates frameshift mutations over the entire path of the replication fork. DNA must be synthesized for purposes of genome duplication and DNA repair. While the former is a highly accurate process, short-patch synthesis associated with repair of DNA damage is often error-prone. Break-induced replication (BIR) is a unique cellular process that mimics normal DNA replication in its processivity, rate, and capacity to duplicate hundreds of kilobases, but is initiated at double-strand breaks (DSBs) rather than at replication origins. Here we employed a series of frameshift reporters to measure mutagenesis associated with BIR in Saccharomyces cerevisiae. We demonstrate that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2,800-fold higher than during normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. We established that polymerase proofreading and mismatch repair correct BIR errors. Also, dNTP levels were elevated during BIR, and this contributed to BIR-related mutagenesis. We propose that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR, with Pol δ generating many of the mutagenic errors. We further postulate that activation of BIR in eukaryotic cells may significantly contribute to accumulation of mutations that fuel cancer and evolution. Accurate transmission of genetic information requires the precise replication of parental DNA. Mutations (which can be beneficial or deleterious) arise from errors that remain uncorrected. DNA replication occurs during S-phase of the cell cycle and is extremely accurate due to highly selective DNA polymerases coupled with effective error-correction mechanisms. In contrast, DNA synthesis associated with short-patch DNA repair is often error-prone. Break-induced replication (BIR) presents an interesting case of large-scale DNA duplication that occurs in the context of DNA repair. In this study we employed a yeast-based system to investigate the level of mutagenesis associated with BIR compared to mutagenesis during normal DNA replication. We report that frameshifts, which are the most deleterious kind of point mutation, are much more frequent during BIR than during normal DNA replication. Surprisingly, we observed that the majority of mutations associated with BIR were created by polymerases responsible for normal DNA replication, which are assumed to be highly precise. Overall, we propose that BIR is a novel source of mutagenesis that may contribute to disease genesis and evolution.
Collapse
Affiliation(s)
- Angela Deem
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Andrea Keszthelyi
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Tiffany Blackgrove
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Alexandra Vayl
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Barbara Coffey
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Ruchi Mathur
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mutagenic and recombinagenic responses to defective DNA polymerase delta are facilitated by the Rev1 protein in pol3-t mutants of Saccharomyces cerevisiae. Genetics 2008; 179:1795-806. [PMID: 18711219 DOI: 10.1534/genetics.108.089821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defective DNA replication can result in substantial increases in the level of genome instability. In the yeast Saccharomyces cerevisiae, the pol3-t allele confers a defect in the catalytic subunit of replicative DNA polymerase delta that results in increased rates of mutagenesis, recombination, and chromosome loss, perhaps by increasing the rate of replicative polymerase failure. The translesion polymerases Pol eta, Pol zeta, and Rev1 are part of a suite of factors in yeast that can act at sites of replicative polymerase failure. While mutants defective in the translesion polymerases alone displayed few defects, loss of Rev1 was found to suppress the increased rates of spontaneous mutation, recombination, and chromosome loss observed in pol3-t mutants. These results suggest that Rev1 may be involved in facilitating mutagenic and recombinagenic responses to the failure of Pol delta. Genome stability, therefore, may reflect a dynamic relationship between primary and auxiliary DNA polymerases.
Collapse
|
8
|
Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 2008; 4:e1000264. [PMID: 19023402 PMCID: PMC2577886 DOI: 10.1371/journal.pgen.1000264] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
The major DNA repair pathways operate on damage in double-strand DNA because they use the intact strand as a template after damage removal. Therefore, lesions in transient single-strand stretches of chromosomal DNA are expected to be especially threatening to genome stability. To test this hypothesis, we designed systems in budding yeast that could generate many kilobases of persistent single-strand DNA next to double-strand breaks or uncapped telomeres. The systems allowed controlled restoration to the double-strand state after applying DNA damage. We found that lesions induced by UV-light and methyl methanesulfonate can be tolerated in long single-strand regions and are hypermutagenic. The hypermutability required PCNA monoubiquitination and was largely attributable to translesion synthesis by the error-prone DNA polymerase zeta. In support of multiple lesions in single-strand DNA being a source of hypermutability, analysis of the UV-induced mutants revealed strong strand-specific bias and unexpectedly high frequency of alleles with widely separated multiple mutations scattered over several kilobases. Hypermutability and multiple mutations associated with lesions in transient stretches of long single-strand DNA may be a source of carcinogenesis and provide selective advantage in adaptive evolution.
Collapse
Affiliation(s)
- Yong Yang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Joan Sterling
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Francesca Storici
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Michael A. Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Dmitry A. Gordenin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
9
|
Meyer DH, Bailis AM. Telomerase deficiency affects the formation of chromosomal translocations by homologous recombination in Saccharomyces cerevisiae. PLoS One 2008; 3:e3318. [PMID: 18830407 PMCID: PMC2553005 DOI: 10.1371/journal.pone.0003318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/11/2008] [Indexed: 01/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein complex required for the replication and protection of telomeric DNA in eukaryotes. Cells lacking telomerase undergo a progressive loss of telomeric DNA that results in loss of viability and a concomitant increase in genome instability. We have used budding yeast to investigate the relationship between telomerase deficiency and the generation of chromosomal translocations, a common characteristic of cancer cells. Telomerase deficiency increased the rate of formation of spontaneous translocations by homologous recombination involving telomere proximal sequences during crisis. However, telomerase deficiency also decreased the frequency of translocation formation following multiple HO-endonuclease catalyzed DNA double-strand breaks at telomere proximal or distal sequences before, during and after crisis. This decrease correlated with a sequestration of the central homologous recombination factor, Rad52, to telomeres determined by chromatin immuno-precipitation. This suggests that telomerase deficiency results in the sequestration of Rad52 to telomeres, limiting the capacity of the cell to repair double-strand breaks throughout the genome. Increased spontaneous translocation formation in telomerase-deficient yeast cells undergoing crisis is consistent with the increased incidence of cancer in elderly humans, as the majority of our cells lack telomerase. Decreased translocation formation by recombinational repair of double-strand breaks in telomerase-deficient yeast suggests that the reemergence of telomerase expression observed in many human tumors may further stimulate genome rearrangement. Thus, telomerase may exert a substantial effect on global genome stability, which may bear significantly on the appearance and progression of cancer in humans.
Collapse
Affiliation(s)
- Damon H. Meyer
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- City of Hope Graduate School of Biological Sciences, Duarte, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Meyer DH, Bailis AM. Mating type influences chromosome loss and replicative senescence in telomerase-deficient budding yeast by Dnl4-dependent telomere fusion. Mol Microbiol 2008; 69:1246-54. [PMID: 18627461 PMCID: PMC2569869 DOI: 10.1111/j.1365-2958.2008.06353.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As we age, the majority of our cells gradually lose the capacity to divide because of replicative senescence that results from the inability to replicate the ends of chromosomes. The timing of senescence is dependent on the length of telomeric DNA, which elicits a checkpoint signal when critically short. Critically short telomeres also become vulnerable to deleterious rearrangements, end-degradation and telomere-telomere fusions. Here we report a novel role of non-homologous end-joining (NHEJ), a pathway of double-strand break repair in influencing both the kinetics of replicative senescence and the rate of chromosome loss in telomerase-deficient Saccharomyces cerevisiae. In telomerase-deficient cells, the absence of NHEJ delays replicative senescence, decreases loss of viability during senescence, and suppresses senescence-associated chromosome loss and telomere-telomere fusion. Differences in mating-type gene expression in haploid and diploid cells affect NHEJ function, resulting in distinct kinetics of replicative senescence. These results suggest that the differences in the kinetics of replicative senescence in haploid and diploid telomerase-deficient yeast are determined by changes in NHEJ-dependent telomere fusion, perhaps through the initiation of the breakage-fusion-bridge cycle.
Collapse
Affiliation(s)
- Damon H. Meyer
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010-0269, U. S. A
- City of Hope Graduate School of Biological Sciences, Duarte, CA 91010-0269, U. S. A
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010-0269, U. S. A
| |
Collapse
|
11
|
Grandin N, Charbonneau M. Protection against chromosome degradation at the telomeres. Biochimie 2008; 90:41-59. [PMID: 17764802 DOI: 10.1016/j.biochi.2007.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS no. 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 46, allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
12
|
Abstract
Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
Collapse
Affiliation(s)
- Rodrigo S Galhardo
- Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|