1
|
Rabier R, Lesobre L, Robert A. Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity. Sci Rep 2021; 11:7813. [PMID: 33837276 PMCID: PMC8035203 DOI: 10.1038/s41598-021-87436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Although captive breeding programs are valuable for conservation, they have been shown to be associated with genetic changes, such as adaptation to captivity or inbreeding. In addition, reproductive performance is strongly age-dependent in most animal species. These mechanisms that potentially impact reproduction have often been studied separately, while their interactions have rarely been addressed. In this study, using a large dataset of nine male and female reproductive parameters measured for 12,295 captive houbara bustards (Chlamydotis undulata undulata) over 24 years, we investigated the relative and interactive effects of age, inbreeding and number of generations in captivity on reproduction. We clearly identified (1) senescence patterns in all parameters studied; (2) negative effects of inbreeding on sperm characteristics, display behavior, egg weight, egg volume and hatching probability; and (3) changes in phenotypic values for seven parameters according to number of generations in captivity. However, the effect sizes associated with age were substantially greater than those associated with inbreeding and number of generations in captivity. Beyond the independent effects of these three factors on reproductive parameters, the results highlighted their interactive effects and thus the importance of integrating them in the design of genetic management plans for conservation breeding programs.
Collapse
Affiliation(s)
- Robin Rabier
- Reneco International Wildlife Consultant LLC, Abu Dhabi, United Arab Emirates.
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, 57 rue Cuvier, CP 135, 75005, Paris, France.
- Emirates Center for Wildlife Propagation, Missour, Morocco.
| | - Loïc Lesobre
- Reneco International Wildlife Consultant LLC, Abu Dhabi, United Arab Emirates
- Emirates Center for Wildlife Propagation, Missour, Morocco
| | - Alexandre Robert
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, 57 rue Cuvier, CP 135, 75005, Paris, France
| |
Collapse
|
2
|
Brengdahl MI, Kimber CM, Elias P, Thompson J, Friberg U. Deleterious mutations show increasing negative effects with age in Drosophila melanogaster. BMC Biol 2020; 18:128. [PMID: 32993647 PMCID: PMC7526172 DOI: 10.1186/s12915-020-00858-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In order for aging to evolve in response to a declining strength of selection with age, a genetic architecture that allows for mutations with age-specific effects on organismal performance is required. Our understanding of how selective effects of individual mutations are distributed across ages is however poor. Established evolutionary theories assume that mutations causing aging have negative late-life effects, coupled to either positive or neutral effects early in life. New theory now suggests evolution of aging may also result from deleterious mutations with increasing negative effects with age, a possibility that has not yet been empirically explored. RESULTS To directly test how the effects of deleterious mutations are distributed across ages, we separately measure age-specific effects on fecundity for each of 20 mutations in Drosophila melanogaster. We find that deleterious mutations in general have a negative effect that increases with age and that the rate of increase depends on how deleterious a mutation is early in life. CONCLUSIONS Our findings suggest that aging does not exclusively depend on genetic variants assumed by the established evolutionary theories of aging. Instead, aging can result from deleterious mutations with negative effects that amplify with age. If increasing negative effect with age is a general property of deleterious mutations, the proportion of mutations with the capacity to contribute towards aging may be considerably larger than previously believed.
Collapse
Affiliation(s)
| | | | - Phoebe Elias
- IFM Biology, Linköping University, Linköping, Sweden
| | | | - Urban Friberg
- IFM Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
4
|
Brengdahl M, Kimber CM, Maguire-Baxter J, Malacrinò A, Friberg U. Genetic Quality Affects the Rate of Male and Female Reproductive Aging Differently in Drosophila melanogaster. Am Nat 2018; 192:761-772. [DOI: 10.1086/700117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Koch RE, Phillips JM, Camus MF, Dowling DK. Maternal age effects on fecundity and offspring egg-to-adult viability are not affected by mitochondrial haplotype. Ecol Evol 2018; 8:10722-10732. [PMID: 30519401 PMCID: PMC6262919 DOI: 10.1002/ece3.4516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023] Open
Abstract
While numerous studies have demonstrated that mitochondrial genetic variation can shape organismal phenotype, the level of contribution the mitochondrial genotype makes to life-history phenotype across the life course remains unknown. Furthermore, a clear technical bias has emerged in studies of mitochondrial effects on reproduction, with many studies conducted on males, but few on females. Here, we apply a classic prediction of the evolutionary theory of aging to the mitochondrial genome, predicting the declining force of natural selection with age will have facilitated the accumulation of mtDNA mutations that confer late-life effects on female reproductive performance. This should lead to increased levels of mitochondrial genetic variation on reproduction at later-life stages. We tested this hypothesis using thirteen strains of Drosophila melanogaster that each possessed a different mitochondrial haplotype in an otherwise standard nuclear genetic background. We measured fecundity and egg-to-adult viability of females over five different age classes ranging from early to late life and quantified the survival of females throughout this time period. We found no significant variation across mitochondrial haplotypes for the reproductive traits, and no mitochondrial effect on the slope of decline in these traits with increasing age. However, we observed that flies that died earlier in the experiment experienced steeper declines in the reproductive traits prior to death, and we also identified maternal and grandparental age effects on the measured traits. These results suggest the mitochondrial variation does not make a key contribution to shaping the reproductive performance of females.
Collapse
Affiliation(s)
- Rebecca E. Koch
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - James M. Phillips
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - M. Florencia Camus
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Department of Genetics, Evolution and EnvironmentUniversity CollegeLondonUK
| | - Damian K. Dowling
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
6
|
Benton CH, Delahay RJ, Smith FAP, Robertson A, McDonald RA, Young AJ, Burke TA, Hodgson D. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J Anim Ecol 2018; 87:1500-1511. [DOI: 10.1111/1365-2656.12878] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Clare H. Benton
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - Richard J. Delahay
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
| | - Freya A. P. Smith
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
| | - Andrew Robertson
- National Wildlife Management Centre; Animal and Plant Health Agency; Stonehouse UK
- Environment and Sustainability Institute; University of Exeter; Penryn UK
| | - Robbie A. McDonald
- Environment and Sustainability Institute; University of Exeter; Penryn UK
| | - Andrew J. Young
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - Terry A. Burke
- Molecular Ecology Laboratory; University of Sheffield; Sheffield UK
| | - Dave Hodgson
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| |
Collapse
|
7
|
Everman ER, Morgan TJ. Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response. Evolution 2018; 72:303-317. [PMID: 29214647 DOI: 10.1111/evo.13408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023]
Abstract
As organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age-related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress-response fitness-related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age-related decline in stress tolerance. Our study demonstrates that the evolution of age-related decline in stress tolerance is driven by a combination of alleles that have age-specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
8
|
Measuring selection for genes that promote long life in a historical human population. Nat Ecol Evol 2017; 1:1773-1781. [DOI: 10.1038/s41559-017-0329-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/30/2017] [Indexed: 11/08/2022]
|
9
|
Hughes KA, Leips J. Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses. Ann N Y Acad Sci 2017; 1389:76-91. [PMID: 27936291 PMCID: PMC5318229 DOI: 10.1111/nyas.13256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Multicellular organisms display an enormous range of life history (LH) strategies and present an evolutionary conundrum; despite strong natural selection, LH traits are characterized by high levels of genetic variation. To understand the evolution of life histories and maintenance of this variation, the specific phenotypic effects of segregating alleles and the genetic networks in which they act need to be elucidated. In particular, the extent to which LH evolution is constrained by the pleiotropy of alleles contributing to LH variation is generally unknown. Here, we review recent empirical results that shed light on this question, with an emphasis on studies employing genomic analyses. While genome-scale analyses are increasingly practical and affordable, they face limitations of genetic resolution and statistical power. We describe new research approaches that we believe can produce new insights and evaluate their promise and applicability to different kinds of organisms. Two approaches seem particularly promising: experiments that manipulate selection in multiple dimensions and measure phenotypic and genomic response and analytical approaches that take into account genome-wide associations between markers and phenotypes, rather than applying a traditional marker-by-marker approach.
Collapse
Affiliation(s)
- Kimberly A. Hughes
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Jeff Leips
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
10
|
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2016; 1389:92-107. [PMID: 28009055 DOI: 10.1111/nyas.13302] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Males and females in many species differ in how they age and how long they live. These differences have motivated much research, concerning both their evolution and the underlying mechanisms that cause them. We review how differences in male and female life histories have evolved to shape patterns of aging and some of the mechanisms and pathways involved. We pay particular attention to three areas where considerable potential for synergy between mechanistic and evolutionary research exists: (1) the role of estrogens, androgens, the growth hormone/insulin-like growth factor 1 pathway, and the mechanistic target of rapamycin signaling pathway in sex-dependent growth and reproduction; (2) sexual conflict over mating rate and fertility, and how mate presence or mating can become an avenue for males and females to directly affect each other's life span; and (3) the link between dietary restriction and aging, and the emerging understanding that only the restriction of certain nutrients is involved and that this is linked to reproduction. We suggest that ideas about life histories, sex-dependent selection, and sexual conflict can inform and be informed by the ever more refined and complex understanding of the mechanisms that cause aging.
Collapse
Affiliation(s)
- Robert C Brooks
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia
| | - Michael G Garratt
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
11
|
Weadick CJ, Sommer RJ. Hybrid crosses and the genetic basis of interspecific divergence in lifespan in Pristionchus nematodes. J Evol Biol 2016; 30:650-657. [PMID: 27893180 DOI: 10.1111/jeb.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
Abstract
Characterizing the genetic basis of among-species variation in lifespan is a major goal of evolutionary gerontology research, but the very feature that defines separate species - the inability to interbreed - makes achieving this goal impractical, if not impossible, for most taxa. Pristionchus nematodes provide an intriguing system for tackling this problem, as female lifespan varies among species that can be crossed to form viable (although infertile) hybrids. By conducting reciprocal crosses among three species - two dioecious (long-lived Pristionchus exspectatus and short-lived Pristionchus arcanus) and one androdioecious (short-lived Pristionchus pacificus) - we found that female lifespan was long for all hybrids, consistent with the hypothesis that the relatively short lifespans seen for P. pacificus hermaphrodites and P. arcanus females are caused by independent, recessive alleles that are masked in hybrid genomes. Cross-direction had a small effect on survivorship for crosses involving P. exspectatus, indicating that nuclear-mitochondrial interactions may also influence Pristionchus longevity. Our findings suggest that long lifespan in P. exspectatus reflects the realization of an ancestral potential for extended longevity in the P. pacificus species complex. This work demonstrates the utility of interspecific hybrids for ageing research and provides a foundation for future work on the genetic architecture of interspecific lifespan variation.
Collapse
Affiliation(s)
- C J Weadick
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - R J Sommer
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
12
|
Shahrestani P, Wilson JB, Mueller LD, Rose MR. Patterns of physiological decline due to age and selection in Drosophila melanogaster. Evolution 2016; 70:2550-2561. [PMID: 27624548 DOI: 10.1111/evo.13065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
In outbred sexually reproducing populations, age-specific mortality rates reach a plateau in late life following the exponential increase in mortality rates that marks aging. Little is known about what happens to physiology when cohorts transition from aging to late life. We measured age-specific values for starvation resistance, desiccation resistance, time-in-motion, and geotaxis in ten Drosophila melanogaster populations: five populations selected for rapid development and five control populations. Adulthood was divided into two stages, the aging phase and the late-life phase according to demographic data. Consistent with previous studies, we found that populations selected for rapid development entered the late-life phase at an earlier age than the controls. Age-specific rates of change for all physiological phenotypes showed differences between the aging phase and the late-life phase. This result suggests that late life is physiologically distinct from aging. The ages of transitions in physiological characteristics from aging to late life statistically match the age at which the demographic transition from aging to late life occurs, in all cases but one. These experimental results support evolutionary theories of late life that depend on patterns of decline and stabilization in the forces of natural selection.
Collapse
Affiliation(s)
- Parvin Shahrestani
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, 92697. .,Department of Biological Science, California State University Fullerton, Fullerton, California, 92831.
| | - Julian B Wilson
- Department of Biological Science, California State University Fullerton, Fullerton, California, 92831
| | - Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, 92697
| | - Michael R Rose
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, 92697
| |
Collapse
|
13
|
Curtsinger JW. Retired flies, hidden plateaus, and the evolution of senescence in Drosophila melanogaster. Evolution 2016; 70:1297-306. [PMID: 27166620 DOI: 10.1111/evo.12946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/24/2016] [Accepted: 05/05/2016] [Indexed: 01/12/2023]
Abstract
Late-life plateaus in age-specific mortality have been an evolutionary and biodemographic puzzle for decades. Although classic theory on the evolution of senescence predicts late-life walls of death, observations in experimental organisms document the opposite trend: a slowing in the rate of increase of mortality at advanced ages. Here, I analyze published life-history data on individual Drosophila melanogaster females and argue for a fundamental change in our understanding of mortality in this important model system. Mortality plateaus are not, as widely assumed, exclusive to late life, and are not explained by population heterogeneity-they are intimately connected to individual fecundity. Female flies begin adult life in the working stage, a period of active oviposition and low but accelerating mortality. Later they transition to the retired stage, a terminal period characterized by limited fecundity and relatively constant mortality. Because ages of transition differ between flies, age-synchronized cohorts contain a mix of working and retired flies. Early- and mid-life plateaus are obscured by the presence of working flies, but can be detected when cohorts are stratified by retirement status. Stage-specificity may be an important component of Drosophila life-history evolution.
Collapse
Affiliation(s)
- James W Curtsinger
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, St. Paul, Minnesota, 55108.
| |
Collapse
|
14
|
Maklakov AA, Rowe L, Friberg U. Why organisms age: Evolution of senescence under positive pleiotropy? Bioessays 2015; 37:802-7. [DOI: 10.1002/bies.201500025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexei A. Maklakov
- Department of Animal Ecology; Evolutionary Biology Centre; Ageing Research Group; Uppsala University; Uppsala Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Urban Friberg
- Department of Evolutionary Biology; Evolutionary Biology Centre; Ageing Research Group; Uppsala University; Uppsala Sweden
- IFM Biology; AVIAN Behavioural Genomics and Physiology Group; Linköping University; Linköping Sweden
| |
Collapse
|
15
|
Stojković B, Đorđević M, Janković J, Savković U, Tucić N. Heterosis in age-specific selected populations of a seed beetle: sex differences in longevity and reproductive behavior. INSECT SCIENCE 2015; 22:295-309. [PMID: 24677595 DOI: 10.1111/1744-7917.12115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/01/2014] [Indexed: 06/03/2023]
Abstract
We tested mutation accumulation hypothesis for the evolution of senescence using short-lived and long-lived populations of the seed-feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early- and late-life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short-lived populations, where the force of natural selection is the strongest early in life, the late-life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late-life fitness is expected in offspring obtained in crosses among populations selected for early-life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short-lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short-lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long-lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long-lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long-lived populations.
Collapse
Affiliation(s)
- Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade; Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
16
|
Kimber CM, Chippindale AK. Mutation, condition, and the maintenance of extended lifespan in Drosophila. Curr Biol 2013; 23:2283-2287. [PMID: 24210612 DOI: 10.1016/j.cub.2013.09.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The evolutionary theory of aging predicts that longevity will decline via drift or age-specific tradeoffs when selection favors early life fitness. Many Drosophila melanogaster populations continually terminated at young adult ages retain surprisingly long postselection lifespans. We compiled three decades of longevity data from the Ives population, demonstrating that postselective longevity was both substantial (30 days) and temporally stable over this period. Recently, alleles with positive pleiotropic effects between adjacent ages, particularly those affecting overall condition, have been integrated into the theory and may explain the extended longevity observed. We experimentally tested this hypothesis by isolating 20 hemiclones from Ives and allowing spontaneous mutations to accumulate (MA) for 35 generations. Fitness and longevity were positively genetically correlated in control females, and both traits declined due to MA. Crucially, MA induced a strong positive genetic correlation between the traits in both sexes, implying that mutations with early-life impacts also reduce late-life survival. Our results suggest that extended postreproductive longevity is actively maintained by selection for early-life fitness via positive pleiotropy and is not a merely a byproduct of exhaustion of genetic variation or weak drift. Thus mutation-selection balance for early fitness may govern variance in longevity in this system: a balance struck remarkably long after selection for continued survival ceases.
Collapse
|
17
|
Tan CKW, Pizzari T, Wigby S. Parental age, gametic age, and inbreeding interact to modulate offspring viability in Drosophila melanogaster. Evolution 2013; 67:3043-51. [PMID: 24094353 DOI: 10.1111/evo.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/08/2013] [Indexed: 12/31/2022]
Abstract
In principle, parental relatedness, parental age, and the age of parental gametes can all influence offspring fitness through inbreeding depression and the parental effects of organismal and postmeiotic gametic senescence. However, little is known about the extent to which these factors interact and contribute to fitness variation. Here, we show that, in Drosophila melanogaster, offspring viability is strongly affected by a three-way interaction between parental relatedness, parental age, and gametic age at successive developmental stages. Overall egg-to-adult viability was lowest for offspring produced with old gametes of related, young parents. This overall effect was largely determined at the pupa-adult stage, although three-way interactions between parental relatedness, parental age and gametic age also explained variation in egg hatchability and larva-pupa survival. Controlling for the influence of parental and gametic age, we show that inbreeding depression is negligible for egg hatchability but significant at the larva-pupa and pupa-adult stages. At the pupa-adult stage, where offspring could be sexed, parental relatedness, parental age, and gametic age interacted differently in male and female offspring, with daughters suffering higher inbreeding depression than sons. Collectively, our results demonstrate that the architecture of offspring fitness is strongly influenced by a complex interaction between parental effects, inbreeding depression and offspring sex.
Collapse
Affiliation(s)
- Cedric K W Tan
- Department of Zoology, Edward Grey Institute, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
18
|
Tu CT, Chen BS. On the increase in network robustness and decrease in network response ability during the aging process: a systems biology approach via microarray data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:468-80. [PMID: 23929870 DOI: 10.1109/tcbb.2013.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-κB, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.
Collapse
Affiliation(s)
- Chien-Ta Tu
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, No 101, Section 2, Kuang-Gu Road, Hsinchu, Taiwan 30013, ROC
| | | |
Collapse
|
19
|
Affiliation(s)
- Joseph L Graves
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, University of North Carolina Greensboro, NC, USA
| |
Collapse
|
20
|
Shahrestani P, Tran X, Mueller LD. Patterns of male fitness conform to predictions of evolutionary models of late life. J Evol Biol 2012; 25:1060-5. [PMID: 22487207 DOI: 10.1111/j.1420-9101.2012.02492.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We studied lifetime male virility, a male fitness component, in five populations of Drosophila melanogaster. Virility was measured as the number of females, of eight total, that a male could fertilize in 24 h. Individual males were measured at weekly intervals until they died. Virility declined in an approximately linear fashion for the first 3 weeks of adult life. It then stayed low but relatively constant for another 3 weeks, exhibiting a clear plateau. These observations are consistent with the evolutionary theories of late life. The results were not consistent with a simple heterogeneity theory of late life. This is the first demonstration of a late-life plateau for a male fitness component. We also found that the virility of males that were within 7 days of death was significantly lower than that of similarly aged males that were not about to die. This rapid deterioration of virility prior to death, or death spiral, is similar to a decline in fecundity that we had previously documented.
Collapse
Affiliation(s)
- P Shahrestani
- Department of Ecology and Evolutionary Biology, University of California-Irvine, CA 92697, USA
| | | | | |
Collapse
|
21
|
Shahrestani P, Quach J, Mueller LD, Rose MR. Paradoxical physiological transitions from aging to late life in Drosophila. Rejuvenation Res 2012; 15:49-58. [PMID: 22233126 DOI: 10.1089/rej.2011.1201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In a variety of organisms, adulthood is divided into aging and late life, where aging is a period of exponentially increasing mortality rates and late life is a period of roughly plateaued mortality rates. In this study we used ∼57,600 Drosophila melanogaster from six replicate populations to examine the physiological transitions from aging to late life in four functional characters that decline during aging: desiccation resistance, starvation resistance, time spent in motion, and negative geotaxis. Time spent in motion and desiccation resistance declined less quickly in late life compared to their patterns of decline during aging. Negative geotaxis declined at a faster rate in late life compared to its rate of decline during aging. These results yield two key findings: (1) Late-life physiology is distinct from the physiology of aging, in that there is not simply a continuation of the physiological trends which characterize aging; and (2) late life physiology is complex, in that physiological characters vary with respect to their stabilization, deceleration, or acceleration in the transition from aging to late life. These findings imply that a correct understanding of adulthood requires identifying and appropriately characterizing physiology during properly delimited late-life periods as well as aging periods.
Collapse
Affiliation(s)
- Parvin Shahrestani
- Department of Ecology and Evolutionary Biology University of California—Irvine 321 Steinhaus Hall Irvine, CA 92697-2525, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Hughes KA. Mutation and the evolution of ageing: from biometrics to system genetics. Philos Trans R Soc Lond B Biol Sci 2010; 365:1273-9. [PMID: 20308103 DOI: 10.1098/rstb.2009.0265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A notable success for evolutionary genetics during the past century was to generate a coherent, quantitative explanation for an apparent evolutionary paradox: the tendency for multicellular organisms to show declining fitness with age (senescence, often referred to simply as 'ageing'). This general theory is now widely accepted and explains most of the features of senescence that are observed in natural and laboratory populations, but specific instantiations of that theory have been more controversial. To date, most of the empirical tests of these models have relied on data generated from biometric experiments. Modern population genetics and genomics provide new, and probably more powerful, ways to test ideas that are still controversial more than half a century after the original theory was developed. System-genetic experiments have the potential to address both evolutionary and mechanistic questions about ageing by identifying causal loci and the genetic networks with which they interact. Both the biometrical approaches and the newer approaches are reviewed here, with an emphasis on the challenges and limitations that each method faces.
Collapse
Affiliation(s)
- Kimberly A Hughes
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
24
|
Maklakov AA, Bonduriansky R, Brooks RC. Sex differences, sexual selection, and ageing: an experimental evolution approach. Evolution 2009; 63:2491-503. [PMID: 19519633 DOI: 10.1111/j.1558-5646.2009.00750.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life-history (LH) theory predicts that selection will optimize the trade-off between reproduction and somatic maintenance. Reproductive ageing and finite life span are direct consequences of such optimization. Sexual selection and conflict profoundly affect the reproductive strategies of the sexes and thus can play an important role in the evolution of life span and ageing. In theory, sexual selection can favor the evolution of either faster or slower ageing, but the evidence is equivocal. We used a novel selection experiment to investigate the potential of sexual selection to influence the adaptive evolution of age-specific LH traits. We selected replicate populations of the seed beetle Callosobruchus maculatus for age at reproduction ("Young" and "Old") either with or without sexual selection. We found that LH selection resulted in the evolution of age-specific reproduction and mortality but these changes were largely unaffected by sexual selection. Sexual selection depressed net reproductive performance and failed to promote adaptation. Nonetheless, the evolution of several traits differed between males and females. These data challenge the importance of current sexual selection in promoting rapid adaptation to environmental change but support the hypothesis that sex differences in LH-a historical signature of sexual selection-are key in shaping trait responses to novel selection.
Collapse
Affiliation(s)
- Alexei A Maklakov
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, Sydney 2052, Australia.
| | | | | |
Collapse
|
25
|
Maklakov AA, Hall MD, Simpson SJ, Dessmann J, Clissold FJ, Zajitschek F, Lailvaux SP, Raubenheimer D, Bonduriansky R, Brooks RC. Sex differences in nutrient-dependent reproductive ageing. Aging Cell 2009; 8:324-30. [PMID: 19627271 DOI: 10.1111/j.1474-9726.2009.00479.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Evolutionary theories of aging predict that fitness-related traits, including reproductive performance, will senesce because the strength of selection declines with age. Sexual selection theory predicts, however, that male reproductive performance (especially sexual advertisement) will increase with age. In both bodies of theory, diet should mediate age-dependent changes in reproductive performance. In this study, we show that the sexes exhibit dramatic, qualitative differences in age-dependent reproductive performance trajectories and patterns of reproductive ageing in the cricket Teleogryllus commodus. In females, fecundity peaked early in adulthood and then declined. In contrast, male sexual advertisement increased across the natural lifespan and only declined well beyond the maximum field lifespan. These sex differences were robust to deviations from sex-specific dietary requirements. Our results demonstrate that sexual selection can be at least as important as sex-dependent mortality in shaping the signal of reproductive ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, Sydney 2052, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
DOWLING DK, MAKLAKOV AA, FRIBERG U, HAILER F. Applying the genetic theories of ageing to the cytoplasm: cytoplasmic genetic covariation for fitness and lifespan. J Evol Biol 2009; 22:818-27. [DOI: 10.1111/j.1420-9101.2009.01692.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Fox CW, Stillwell RC. Environmental effects on sex differences in the genetic load for adult lifespan in a seed-feeding beetle. Heredity (Edinb) 2009; 103:62-72. [DOI: 10.1038/hdy.2009.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
28
|
A major QTL affects temperature sensitive adult lethality and inbreeding depression in life span in Drosophila melanogaster. BMC Evol Biol 2008; 8:297. [PMID: 18957085 PMCID: PMC2625367 DOI: 10.1186/1471-2148-8-297] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 10/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of inbreeding depression has major relevance for many disciplines, including conservation genetics and evolutionary biology. Still, the molecular genetic basis of this phenomenon remains poorly characterised, as knowledge on the mechanistic causes of inbreeding depression and the molecular properties of genes that give rise to or modulate its deleterious effects is lacking. These questions warrant the detailed study of genetic loci giving rise to inbreeding depression. However, the complex and polygenic nature of general inbreeding depression makes this a daunting task. Study of inbreeding effects in specific traits, such as age-specific mortality and life span, provide a good starting point, as a limited set of genes is expected to be involved. RESULTS Here we report on a QTL mapping study on inbreeding related and temperature sensitive lethality in male Drosophila melanogaster. The inbreeding effect was expressed at moderately high temperature, and manifested itself as severe premature mortality in males, but not in females. We used a North Carolina crossing design 3 to estimate average dominance ratio and heritability. We found the genetic basis of the lethal effect to be relatively simple, being due mainly to a single recessive QTL on the left arm of chromosome 2. This locus colocalised with a QTL that conditioned variation in female life span, acting as an overdominant locus for this trait. Male life span was additionally affected by variation at the X-chromosome. CONCLUSION This demonstrates that analysis of large conditional lethal effects is a viable strategy for delineating genes which are sensitive to inbreeding depression.
Collapse
|