1
|
Zhao SS, Wu SX, Jia GX, Abulizi W, Yang QE. Localization and expression of SLX4 in the testis of sterile male cattle-yak. Reprod Domest Anim 2023; 58:679-687. [PMID: 36880652 DOI: 10.1111/rda.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Cattle-yak, the hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), serves as a unique model to dissect the molecular mechanisms underlying reproductive isolation. While female cattle-yaks are fertile, the males are completely sterile due to spermatogenic arrest at the meiosis stage and massive germ cell apoptosis. Interestingly, meiotic defects are partially rescued in the testes of backcrossed offspring. The genetic basis of meiotic defects in male cattle-yak remains unclear. Structure-specific endonuclease subunit (SLX4) participates in meiotic double-strand break (DSB) formation in mice, and its deletion results in defects in spermatogenesis. In the present study, we examined the expression patterns of SLX4 in the testes of yak, cattle-yak, and backcrossed offspring to investigate its potential roles in hybrid sterility. The results showed that the relative abundances of SLX4 mRNA and protein were significantly reduced in the testis of cattle-yak. The results of immunohistochemistry revealed that SLX4 was predominately expressed in spermatogonia and spermatocytes. Chromosome spreading experiments showed that SLX4 was significantly decreased in the pachytene spermatocytes of cattle-yak compared with yak and backcrossed offspring. These findings suggest that SLX4 expression was dysregulated in the testis of cattle-yak, potentially resulting in the failure of crossover formation and collapses of meiosis in hybrid males.
Collapse
Affiliation(s)
- Shang-Shang Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Wusiman Abulizi
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
2
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
3
|
Zelazowski MJ, Sandoval M, Paniker L, Hamilton HM, Han J, Gribbell MA, Kang R, Cole F. Age-Dependent Alterations in Meiotic Recombination Cause Chromosome Segregation Errors in Spermatocytes. Cell 2017; 171:601-614.e13. [PMID: 28942922 DOI: 10.1016/j.cell.2017.08.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/05/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Faithful chromosome segregation in meiosis requires crossover (CO) recombination, which is regulated to ensure at least one CO per homolog pair. We investigate the failure to ensure COs in juvenile male mice. By monitoring recombination genome-wide using cytological assays and at hotspots using molecular assays, we show that juvenile mouse spermatocytes have fewer COs relative to adults. Analysis of recombination in the absence of MLH3 provides evidence for greater utilization in juveniles of pathways involving structure-selective nucleases and alternative complexes, which can act upon precursors to generate noncrossovers (NCOs) at the expense of COs. We propose that some designated CO sites fail to mature efficiently in juveniles owing to inappropriate activity of these alternative repair pathways, leading to chromosome mis-segregation. We also find lower MutLγ focus density in juvenile human spermatocytes, suggesting that weaker CO maturation efficiency may explain why younger men have a higher risk of fathering children with Down syndrome.
Collapse
Affiliation(s)
- Maciej J Zelazowski
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Maria Sandoval
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Lakshmi Paniker
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Holly M Hamilton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jiaying Han
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mikalah A Gribbell
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Rhea Kang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
4
|
Sekelsky J. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes. Genetics 2017; 205:471-490. [PMID: 28154196 PMCID: PMC5289830 DOI: 10.1534/genetics.116.186759] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations.
Collapse
Affiliation(s)
- Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 2016; 203:159-71. [PMID: 26944917 PMCID: PMC4858771 DOI: 10.1534/genetics.115.186486] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
A century of genetic analysis has revealed that multiple mechanisms control the distribution of meiotic crossover events. In Drosophila melanogaster, two significant positional controls are interference and the strongly polar centromere effect. Here, we assess the factors controlling the distribution of crossovers (COs) and noncrossover gene conversions (NCOs) along all five major chromosome arms in 196 single meiotic divisions to generate a more detailed understanding of these controls on a genome-wide scale. Analyzing the outcomes of single meiotic events allows us to distinguish among different classes of meiotic recombination. In so doing, we identified 291 NCOs spread uniformly among the five major chromosome arms and 541 COs (including 52 double crossovers and one triple crossover). We find that unlike COs, NCOs are insensitive to the centromere effect and do not demonstrate interference. Although the positions of COs appear to be determined predominately by the long-range influences of interference and the centromere effect, each chromosome may display a different pattern of sensitivity to interference, suggesting that interference may not be a uniform global property. In addition, unbiased sequencing of a large number of individuals allows us to describe the formation of de novo copy number variants, the majority of which appear to be mediated by unequal crossing over between transposable elements. This work has multiple implications for our understanding of how meiotic recombination is regulated to ensure proper chromosome segregation and maintain genome stability.
Collapse
|
6
|
Lake CM, Hawley RS. Becoming a crossover-competent DSB. Semin Cell Dev Biol 2016; 54:117-25. [PMID: 26806636 DOI: 10.1016/j.semcdb.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
Abstract
The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Eliminating both canonical and short-patch mismatch repair in Drosophila melanogaster suggests a new meiotic recombination model. PLoS Genet 2014; 10:e1004583. [PMID: 25188408 PMCID: PMC4154643 DOI: 10.1371/journal.pgen.1004583] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023] Open
Abstract
In most meiotic systems, recombination is essential to form connections between homologs that ensure their accurate segregation from one another. Meiotic recombination is initiated by DNA double-strand breaks that are repaired using the homologous chromosome as a template. Studies of recombination in budding yeast have led to a model in which most early repair intermediates are disassembled to produce noncrossovers. Selected repair events are stabilized so they can proceed to form double-Holliday junction (dHJ) intermediates, which are subsequently resolved into crossovers. This model is supported in yeast by physical isolation of recombination intermediates, but the extent to which it pertains to animals is unknown. We sought to test this model in Drosophila melanogaster by analyzing patterns of heteroduplex DNA (hDNA) in recombination products. Previous attempts to do this have relied on knocking out the canonical mismatch repair (MMR) pathway, but in both yeast and Drosophila the resulting recombination products are complex and difficult to interpret. We show that, in Drosophila, this complexity results from a secondary, short-patch MMR pathway that requires nucleotide excision repair. Knocking out both canonical and short-patch MMR reveals hDNA patterns that reveal that many noncrossovers arise after both ends of the break have engaged with the homolog. Patterns of hDNA in crossovers could be explained by biased resolution of a dHJ; however, considering the noncrossover and crossover results together suggests a model in which a two-end engagement intermediate with unligated HJs can be disassembled by a helicase to a produce noncrossover or nicked by a nuclease to produce a crossover. While some aspects of this model are similar to the model from budding yeast, production of both noncrossovers and crossovers from a single, late intermediate is a fundamental difference that has important implications for crossover control. During meiosis, breaks are introduced into the DNA, then repaired to give either crossovers between homologous chromosomes (these help to ensure correct segregation of these chromosomes from one another), or non-crossover products. Meiotic break repair mechanisms have been best studied in budding yeast, leading to detailed molecular models. Technical limitations have prevented directly testing these models in multi-cellular organisms. One approach that has been tried is to map segments of DNA that are mismatched, since different models predict different arrangements. Mismatches are usually repaired quickly, so analyzing these patterns requires eliminating mismatch repair processes. Although others have knocked out the primary mismatch repair system, we have now, for the first time in an animal, identified the secondary repair pathway and eliminated it and the primary pathway simultaneously. We then analyzed mismatches produced during meiosis. Though the results can be fit to the most popular current model from yeast, if some modifications are made, we also consider a simpler model that incorporates elements of the current model and of earlier models.
Collapse
|
8
|
Variation in meiotic recombination frequencies between allelic transgenes inserted at different sites in the Drosophila melanogaster genome. G3-GENES GENOMES GENETICS 2013; 3:1419-27. [PMID: 23797104 PMCID: PMC3737181 DOI: 10.1534/g3.113.006411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic crossovers are distributed nonrandomly across the genome. Classic studies in Drosophila suggest that the position of a gene along a chromosome arm can affect the outcome of the recombination process, with proximity to the centromere being associated with lower crossing over. To examine this phenomenon molecularly, we developed an assay that measures meiotic crossovers and noncrossover gene conversions between allelic transgenes inserted into different genomic positions. To facilitate collecting a large number of virgin females, we developed a useful genetic system that kills males and undesired classes of females. We found that the recombination frequency at a site in the middle of the X chromosome, where crossovers are normally frequent, was similar to the frequency at the centromere-proximal end of the euchromatin, where crossovers are normally infrequent. In contrast, we recovered no recombinants--crossovers or noncrossovers--at a site on chromosome 4 and at a site toward the distal end of the X chromosome. These results suggest that local sequence or chromatin features have a stronger impact on recombination rates in this transgene assay than position along the chromosome arm.
Collapse
|
9
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Abstract
Repair of meiotic double-strand breaks (DSBs) uses the homolog and recombination to yield crossovers while alternative pathways such as nonhomologous end joining (NHEJ) are suppressed. Our results indicate that NHEJ is blocked at two steps of DSB repair during meiotic prophase: first by the activity of the MCM-like protein MEI-218, which is required for crossover formation, and, second, by Rad51-related proteins SPN-B (XRCC3) and SPN-D (RAD51C), which physically interact and promote homologous recombination (HR). We further show that the MCM-like proteins also promote the activity of the DSB repair checkpoint pathway, indicating an early requirement for these proteins in DSB processing. We propose that when a meiotic DSB is formed in the absence of both MEI-218 and SPN-B or SPN-D, a DSB substrate is generated that can enter the NHEJ repair pathway. Indeed, due to its high error rate, multiple barriers may have evolved to prevent NHEJ activity during meiosis.
Collapse
|
11
|
A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2012; 2:249-60. [PMID: 22384403 PMCID: PMC3284332 DOI: 10.1534/g3.111.001396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
Abstract
Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10(-5) per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila.
Collapse
|
12
|
Martini E, Borde V, Legendre M, Audic S, Regnault B, Soubigou G, Dujon B, Llorente B. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways. PLoS Genet 2011; 7:e1002305. [PMID: 21980306 PMCID: PMC3183076 DOI: 10.1371/journal.pgen.1002305] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022] Open
Abstract
Meiotic DNA double-strand breaks (DSBs) initiate crossover (CO) recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs). Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR) protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs). First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs) during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.
Collapse
Affiliation(s)
- Emmanuelle Martini
- CEA DSV/IRCM, Unité Mixte de Recherche 217 Radiobiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay aux Roses, France
| | - Valérie Borde
- Unité Mixte de Recherche 218, Centre National de la Recherche Scientifique, Paris, France
- Centre de Recherche, Institut Curie, Paris, France
| | - Matthieu Legendre
- Unité Propre de recherche 2589, Structural and Genomic Information Laboratory, Centre National de la Recherche Scientifique, Mediterranean Institute of Microbiology IFR88, Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Stéphane Audic
- Unité Propre de recherche 2589, Structural and Genomic Information Laboratory, Centre National de la Recherche Scientifique, Mediterranean Institute of Microbiology IFR88, Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
- UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe Evolution du Plancton et Paléo-Océans, Station Biologique de Roscoff, Centre National de la Recherche Scientifique and University Pierre and Marie Curie-Paris, Roscoff, France
| | | | | | - Bernard Dujon
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Centre National de la Recherche Scientifique/University Pierre and Marie Curie-Paris, Paris, France
| | - Bertrand Llorente
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Centre National de la Recherche Scientifique/University Pierre and Marie Curie-Paris, Paris, France
- Unité Propre de Recherche 3081, Laboratory of Genome Instability and Carcinogenesis, conventionné par l'Université d'Aix-Marseille 2, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
13
|
Holloway JK, Mohan S, Balmus G, Sun X, Modzelewski A, Borst PL, Freire R, Weiss RS, Cohen PE. Mammalian BTBD12 (SLX4) protects against genomic instability during mammalian spermatogenesis. PLoS Genet 2011; 7:e1002094. [PMID: 21655083 PMCID: PMC3107204 DOI: 10.1371/journal.pgen.1002094] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/06/2011] [Indexed: 12/27/2022] Open
Abstract
The mammalian ortholog of yeast Slx4, BTBD12, is an ATM substrate that functions as a scaffold for various DNA repair activities. Mutations of human BTBD12 have been reported in a new sub-type of Fanconi anemia patients. Recent studies have implicated the fly and worm orthologs, MUS312 and HIM-18, in the regulation of meiotic crossovers arising from double-strand break (DSB) initiating events and also in genome stability prior to meiosis. Using a Btbd12 mutant mouse, we analyzed the role of BTBD12 in mammalian gametogenesis. BTBD12 localizes to pre-meiotic spermatogonia and to meiotic spermatocytes in wildtype males. Btbd12 mutant mice have less than 15% normal spermatozoa and are subfertile. Loss of BTBD12 during embryogenesis results in impaired primordial germ cell proliferation and increased apoptosis, which reduces the spermatogonial pool in the early postnatal testis. During prophase I, DSBs initiate normally in Btbd12 mutant animals. However, DSB repair is delayed or impeded, resulting in persistent γH2AX and RAD51, and the choice of repair pathway may be altered, resulting in elevated MLH1/MLH3 focus numbers at pachynema. The result is an increase in apoptosis through prophase I and beyond. Unlike yeast Slx4, therefore, BTBD12 appears to function in meiotic prophase I, possibly during the recombination events that lead to the production of crossovers. In line with its expected regulation by ATM kinase, BTBD12 protein is reduced in the testis of Atm−/− males, and Btbd12 mutant mice exhibit increased genomic instability in the form of elevated blood cell micronucleus formation similar to that seen in Atm−/− males. Taken together, these data indicate that BTBD12 functions throughout gametogenesis to maintain genome stability, possibly by co-ordinating repair processes and/or by linking DNA repair events to the cell cycle via ATM. Mutations in genes essential for genome maintenance during meiosis can result in severe disruptions to spermatogenesis and subsequent low fertility and/or birth defects in mammals. The mammalian homolog of yeast Slx4, BTBD12, plays a critical role in somatic cell repair in mice. Here, we show that this critical function extends to mammalian germ cells, by examining the effects of a Btbd12 gene disruption in mice. Btbd12 mutant mice show severely reduced fertility, as a result of both pre-meiotic spermatogonial proliferation defects and impairment of proper meiotic progression. BTBD12 appears to be required for normal progression of double-strand break repair events that result in the formation of crossovers between maternal and paternal homologous chromosomes, with Btbd12 mutants displaying an increase in unrepaired breaks, impaired homologous chromosome interactions, and a slight increase in the number of crossover intermediates. BTBD12 protein is also down-regulated in the testes of Atm null mice, supporting previous studies showing that BTBD12 is a target of ATM kinase. These data provide new evidence about the role of BTBD12 in mammalian gametogenesis and are critical to furthering the understanding of the molecular processes involved in meiotic DNA repair.
Collapse
Affiliation(s)
- J. Kim Holloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Swapna Mohan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gabriel Balmus
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xianfei Sun
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Andrew Modzelewski
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Peter L. Borst
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Raimundo Freire
- Unidad de Investigacion, Hospital Universitario de Canarias, Tenerife, Spain
| | - Robert S. Weiss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Schwartz EK, Heyer WD. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 2011; 120:109-27. [PMID: 21369956 PMCID: PMC3057012 DOI: 10.1007/s00412-010-0304-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/27/2022]
Abstract
Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81-Mms4/EME1, Slx1-Slx4/BTBD12/MUS312, XPF-ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination.
Collapse
Affiliation(s)
- Erin K. Schwartz
- Department of Microbiology, University of California—Davis, Davis, CA 95616 USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology, University of California—Davis, Davis, CA 95616 USA
- Department of Molecular and Cellular Biology, University of California—Davis, Davis, CA 95616 USA
| |
Collapse
|
15
|
Andersen SL, Sekelsky J. Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes. Bioessays 2010; 32:1058-66. [PMID: 20967781 PMCID: PMC3090628 DOI: 10.1002/bies.201000087] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated during S. cerevisiae meiosis do not arise via a DSBR pathway. Furthermore, it is becoming increasingly clear that DSBR is a minor pathway for recombinational repair of DSBs that occur in mitotically-proliferating cells and that the synthesis-dependent strand annealing (SDSA) model appears to describe mitotic DSB repair more accurately. Fundamental dissimilarities between meiotic and mitotic recombination are not unexpected, since meiotic recombination serves a very different purpose (accurate chromosome segregation, which requires COs) than mitotic recombination (repair of DNA damage, which typically generates NCOs).
Collapse
Affiliation(s)
- Sabrina L. Andersen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel, Chapel Hill, NC 27599
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel, Chapel Hill, NC 27599
| |
Collapse
|
16
|
A two-pathway analysis of meiotic crossing over and gene conversion in Saccharomyces cerevisiae. Genetics 2010; 186:515-36. [PMID: 20679514 DOI: 10.1534/genetics.110.121194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several apparently paradoxical observations regarding meiotic crossing over and gene conversion are readily resolved in a framework that recognizes the existence of two recombination pathways that differ in mismatch repair, structures of intermediates, crossover interference, and the generation of noncrossovers. One manifestation of these differences is that simultaneous gene conversion on both sides of a recombination-initiating DNA double-strand break ("two-sidedness") characterizes only one of the two pathways and is promoted by mismatch repair. Data from previous work are analyzed quantitatively within this framework, and a molecular model for meiotic double-strand break repair based on the concept of sliding D-loops is offered as an efficient scheme for visualizing the salient results from studies of crossing over and gene conversion, the molecular structures of recombination intermediates, and the biochemical competencies of the proteins involved.
Collapse
|
17
|
Katzman S, Kern AD, Pollard KS, Salama SR, Haussler D. GC-biased evolution near human accelerated regions. PLoS Genet 2010; 6:e1000960. [PMID: 20502635 PMCID: PMC2873926 DOI: 10.1371/journal.pgen.1000960] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/20/2010] [Indexed: 12/30/2022] Open
Abstract
Regions of the genome that have been the target of positive selection specifically along the human lineage are of special importance in human biology. We used high throughput sequencing combined with methods to enrich human genomic samples for particular targets to obtain the sequence of 22 chromosomal samples at high depth in 40 kb neighborhoods of 49 previously identified 100–400 bp elements that show evidence for human accelerated evolution. In addition to selection, the pattern of nucleotide substitutions in several of these elements suggested an historical bias favoring the conversion of weak (A or T) alleles into strong (G or C) alleles. Here we found strong evidence in the derived allele frequency spectra of many of these 40 kb regions for ongoing weak-to-strong fixation bias. Comparison of the nucleotide composition at polymorphic loci to the composition at sites of fixed substitutions additionally reveals the signature of historical weak-to-strong fixation bias in a subset of these regions. Most of the regions with evidence for historical bias do not also have signatures of ongoing bias, suggesting that the evolutionary forces generating weak-to-strong bias are not constant over time. To investigate the role of selection in shaping these regions, we analyzed the spatial pattern of polymorphism in our samples. We found no significant evidence for selective sweeps, possibly because the signal of such sweeps has decayed beyond the power of our tests to detect them. Together, these results do not rule out functional roles for the observed changes in these regions—indeed there is good evidence that the first two are functional elements in humans—but they suggest that a fixation process (such as biased gene conversion) that is biased at the nucleotide level, but is otherwise selectively neutral, could be an important evolutionary force at play in them, both historically and at present. The search for functional regions in the human genome, beyond the protein-coding portion, often relies on signals of conservation across species. The Human Accelerated Regions (HARs) are strongly conserved elements, ranging in size from 100–400 bp, that show an unexpected number of human-specific changes. This pattern suggests that HARs may be functional elements that have significantly changed during human evolution. To analyze the evolutionary forces that led these changes, we studied 40 kb neighborhoods of the top 49 HARs. We took advantage of recently developed DNA sequencing technology, coupled with methods to isolate genomic DNA for our target regions only, to determine the genotypes in 22 chromosomal samples. This polymorphism data showed no significant evidence for adaptive selective sweeps in HAR regions. By contrast, we found strong evidence for a nucleotide bias in the fixation of mutations from A or T to G or C basepairs. Our work reveals that this bias in the HAR neighborhoods is not just an historic phenomenon, but is ongoing in the present day human population. This finding adds credence to the possibility that non-selective forces, such as biased gene conversion, could have contributed to the evolution of several of these regions.
Collapse
Affiliation(s)
- Sol Katzman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew D. Kern
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, University of California San Francisco, San Francisco, California, United States of America
| | - Sofie R. Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Amos W. Heterozygosity and mutation rate: evidence for an interaction and its implications: the potential for meiotic gene conversions to influence both mutation rate and distribution. Bioessays 2010; 32:82-90. [PMID: 19967709 DOI: 10.1002/bies.200900108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
If natural selection chose where new mutations occur it might well favour placing them near existing polymorphisms, thereby avoiding disruption of areas that work while adding novelty to regions where variation is tolerated or even beneficial. Such a system could operate if heterozygous sites are recognised and 'repaired' during the initial stages of crossing over. Such repairs involve an extra round of DNA replication, providing an opportunity for further mutations, thereby raising the local mutation rate. If so, the changes in heterozygosity that occur when populations grow or shrink could feed back to modulate both the rate and the distribution of mutations. Here, I review evidence from isozymes, microsatellites and single nucleotide polymorphisms that this potential is realised in real populations. I then consider the likely implications, focusing particularly on how these processes might affect microsatellites, concluding that heterozygosity does impact on the rate and distribution of mutations.
Collapse
Affiliation(s)
- William Amos
- Department of Zoology, University of Cambridge, UK.
| |
Collapse
|
19
|
Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates. PLoS Genet 2009; 5:e1000735. [PMID: 19936019 PMCID: PMC2770170 DOI: 10.1371/journal.pgen.1000735] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR–mediated repair at stalled replication forks. A reduction in crossover recombination frequencies—accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction—support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline. Homologous recombination (HR) is a process that provides for the accurate and efficient repair of DNA double-strand breaks (DSBs) incurred by cells, thereby maintaining genomic integrity. Proper processing of HR intermediates is critical for biological processes ranging from replication fork restart to the accurate partitioning of chromosomes during meiotic cell divisions. This is further emphasized by the fact that impaired processing of HR intermediates in both mitotic and meiotic cells can result in tumorigenesis and congenital defects. Therefore, the identification of components involved in HR is essential to understand the molecular mechanism of HR. Here, we identify HIM-18/SLX-4 in C. elegans, a protein conserved from yeast to humans that interacts with the nucleases SLX-1 and XPF-1 and is required for DSB repair in the germline. Impaired HIM-18 function results in increased DNA damage sensitivity, the accumulation of recombination intermediates, decreased meiotic crossover frequencies, altered late meiotic chromosome remodeling, the formation of fragile connections between homologs, and an increased chromosome nondisjunction. Finally, HIM-18 is localized to both mitotic and meiotic nuclei in wild-type germlines. We propose that HIM-18 function is required during the processing of late HR intermediates resulting from replication fork collapse and meiotic DSBs.
Collapse
|
20
|
Andersen SL, Bergstralh DT, Kohl KP, LaRocque JR, Moore CB, Sekelsky J. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol Cell 2009; 35:128-35. [PMID: 19595722 PMCID: PMC2746756 DOI: 10.1016/j.molcel.2009.06.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 06/16/2009] [Indexed: 11/26/2022]
Abstract
DNA recombination and repair pathways require structure-specific endonucleases to process DNA structures that include forks, flaps, and Holliday junctions. Previously, we determined that the Drosophila MEI-9-ERCC1 endonuclease interacts with the MUS312 protein to produce meiotic crossovers, and that MUS312 has a MEI-9-independent role in interstrand crosslink (ICL) repair. The importance of MUS312 to pathways crucial for maintaining genomic stability in Drosophila prompted us to search for orthologs in other organisms. Based on sequence, expression pattern, conserved protein-protein interactions, and ICL repair function, we determined that the mammalian ortholog of MUS312 is BTBD12. Orthology between these proteins and S. cerevisiae Slx4 helped identify a conserved interaction with a second structure-specific endonuclease, SLX1. Genetic and biochemical evidence described here and in related papers suggest that MUS312 and BTBD12 direct Holliday junction resolution by at least two distinct endonucleases in different recombination and repair contexts.
Collapse
Affiliation(s)
- Sabrina L Andersen
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The four mammalian MutL homologs (MLH1, MLH3, PMS1, and PMS2) participate in a variety of events, including postreplicative DNA repair, prevention of homeologous recombination, and crossover formation during meiosis. In this latter role, MLH1-MLH3 heterodimers predominate and are essential for prophase I progression. Previous studies demonstrated that mice lacking Mlh1 exhibit a 90% reduction in crossing over at the Psmb9 hot spot while noncrossovers, which do not result in exchange of flanking markers but arise from the same double-strand break event, are unaffected. Using a PCR-based strategy that allows for detailed analysis of crossovers and noncrossovers, we show here that Mlh3(-/-) exhibit a 85-94% reduction in the number of crossovers at the Psmb9 hot spot. Most of the remaining crossovers in Mlh3(-/-) meiocytes represent simple exchanges similar to those seen in wild-type mice, with a small fraction (6%) representing complex events that can extend far from the initiation zone. Interestingly, we detect an increase of noncrossovers in Mlh3(-/-) spermatocytes. These results suggest that MLH3 functions predominantly with MLH1 to promote crossovers, while noncrossover events do not require these activities. Furthermore, these results indicate that approximately 10% of crossovers in the mouse are independent of MLH3, suggesting the existence of alternative crossover pathways in mammals.
Collapse
|
22
|
Ehmsen KT, Heyer WD. Biochemistry of Meiotic Recombination: Formation, Processing, and Resolution of Recombination Intermediates. GENOME DYNAMICS AND STABILITY 2008; 3:91. [PMID: 20098639 PMCID: PMC2809983 DOI: 10.1007/7050_2008_039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meiotic recombination ensures accurate chromosome segregation during the first meiotic division and provides a mechanism to increase genetic heterogeneity among the meiotic products. Unlike homologous recombination in somatic (vegetative) cells, where sister chromatid interactions prevail and crossover formation is avoided, meiotic recombination is targeted to involve homologs, resulting in crossovers to connect the homologs before anaphase of the first meiotic division. The mechanisms responsible for homolog choice and crossover control are poorly understood, but likely involve meiosis-specific recombination proteins, as well as meiosis-specific chromosome organization and architecture. Much progress has been made to identify and biochemically characterize many of the proteins acting during meiotic recombination. This review will focus on the proteins that generate and process heteroduplex DNA, as well as those that process DNA junctions during meiotic recombination, with particular attention to how recombination activities promote crossover resolution between homologs.
Collapse
Affiliation(s)
- Kirk T. Ehmsen
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
- Section of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis, CA 95616-8665, USA
| |
Collapse
|
23
|
McVey M, Andersen SL, Broze Y, Sekelsky J. Multiple functions of Drosophila BLM helicase in maintenance of genome stability. Genetics 2007; 176:1979-92. [PMID: 17507683 PMCID: PMC1950607 DOI: 10.1534/genetics.106.070052] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bloom Syndrome, a rare human disorder characterized by genomic instability and predisposition to cancer, is caused by mutation of BLM, which encodes a RecQ-family DNA helicase. The Drosophila melanogaster ortholog of BLM, DmBlm, is encoded by mus309. Mutations in mus309 cause hypersensitivity to DNA-damaging agents, female sterility, and defects in repairing double-strand breaks (DSBs). To better understand these phenotypes, we isolated novel mus309 alleles. Mutations that delete the N terminus of DmBlm, but not the helicase domain, have DSB repair defects as severe as those caused by null mutations. We found that female sterility is due to a requirement for DmBlm in early embryonic cell cycles; embryos lacking maternally derived DmBlm have anaphase bridges and other mitotic defects. These defects were less severe for the N-terminal deletion alleles, so we used one of these mutations to assay meiotic recombination. Crossovers were decreased to about half the normal rate, and the remaining crossovers were evenly distributed along the chromosome. We also found that spontaneous mitotic crossovers are increased by several orders of magnitude in mus309 mutants. These results demonstrate that DmBlm functions in multiple cellular contexts to promote genome stability.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
24
|
Radford SJ, Sabourin MM, McMahan S, Sekelsky J. Meiotic recombination in Drosophila Msh6 mutants yields discontinuous gene conversion tracts. Genetics 2007; 176:53-62. [PMID: 17339220 PMCID: PMC1893074 DOI: 10.1534/genetics.107.070367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/22/2007] [Indexed: 11/18/2022] Open
Abstract
Crossovers (COs) generated through meiotic recombination are important for the correct segregation of homologous chromosomes during meiosis. Several models describing the molecular mechanism of meiotic recombination have been proposed. These models differ in the arrangement of heteroduplex DNA (hDNA) in recombination intermediates. Heterologies in hDNA are usually repaired prior to the recovery of recombination products, thereby obscuring information about the arrangement of hDNA. To examine hDNA in meiotic recombination in Drosophila melanogaster, we sought to block hDNA repair by conducting recombination assays in a mutant defective in mismatch repair (MMR). We generated mutations in the MMR gene Msh6 and analyzed recombination between highly polymorphic homologous chromosomes. We found that hDNA often goes unrepaired during meiotic recombination in an Msh6 mutant, leading to high levels of postmeiotic segregation; however, hDNA and gene conversion tracts are frequently discontinuous, with multiple transitions between gene conversion, restoration, and unrepaired hDNA. We suggest that these discontinuities reflect the activity of a short-patch repair system that operates when canonical MMR is defective.
Collapse
Affiliation(s)
- Sarah J Radford
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|