1
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
2
|
Anderson SN, Zynda GJ, Song J, Han Z, Vaughn MW, Li Q, Springer NM. Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways. G3 (BETHESDA, MD.) 2018; 8:1921-1932. [PMID: 29618467 PMCID: PMC5982821 DOI: 10.1534/g3.118.200284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
Abstract
DNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transposon expression. Plants utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, implicating context-specific DNA methylation in the regulation of expression for a small number of genes. Many genes regulated by CMTs exhibit natural variation for DNA methylation and transcript abundance in a panel of diverse inbred lines. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RdDM mutants show enriched expression in endosperm tissue, highlighting the potential importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression is reproducibly affected by mild perturbations in context-specific methylation is small, there are distinct patterns for loci impacted by RdDM and CMT mutants.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
3
|
Selva JP, Siena L, Rodrigo JM, Garbus I, Zappacosta D, Romero JR, Ortiz JPA, Pessino SC, Leblanc O, Echenique V. Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Sci Rep 2017. [PMID: 29118334 DOI: 10.1038/fs41598-017-14898-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Recent reports in model plant species have highlighted a role for DNA methylation pathways in the regulation of the somatic-to-reproductive transition in the ovule, suggesting that apomixis (asexual reproduction through seeds) likely relies on RdDM downregulation. Our aim was therefore to explore this hypothesis by characterizing genes involved in DNA methylation in the apomictic grass Eragrostis curvula. We explored floral transcriptomes to identify homologs of three candidate genes, for which mutations in Arabidopsis and maize mimic apomixis (AtAGO9/ZmAGO104, AtCMT3/ZmDMT102/ZmDMT105, and AtDDM1/ZmCHR106), and compared both their spatial and temporal expression patterns during reproduction in sexual and apomictic genotypes. Quantitative expression analyses revealed contrasting expression patterns for the three genes in apomictic vs sexual plants. In situ hybridization corroborated these results for two candidates, EcAGO104 and EcDMT102, and revealed an unexpected ectopic pattern for the AGO gene during germ line differentiation in apomicts. Although our data partially support previous results obtained in sexual plant models, they suggest that rather than an RdDM breakdown in the ovule, altered localization of AtAGO9/ZmAGO104 expression is required for achieving diplospory in E. curvula. The differences in the RdDM machinery acquired during plant evolution might have promoted the emergence of the numerous apomictic paths observed in plants.
Collapse
Affiliation(s)
- J P Selva
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - L Siena
- IICAR-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Argentina
| | - J M Rodrigo
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - I Garbus
- Departamento de Ciencias de la Salud, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - D Zappacosta
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - J R Romero
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
| | - J P A Ortiz
- IICAR-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Argentina
| | - S C Pessino
- IICAR-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Argentina
| | - O Leblanc
- DIADE, IRD, Univ Montpellier, Montpellier, France.
| | - V Echenique
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Sci Rep 2017; 7:15092. [PMID: 29118334 PMCID: PMC5678148 DOI: 10.1038/s41598-017-14898-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
Recent reports in model plant species have highlighted a role for DNA methylation pathways in the regulation of the somatic-to-reproductive transition in the ovule, suggesting that apomixis (asexual reproduction through seeds) likely relies on RdDM downregulation. Our aim was therefore to explore this hypothesis by characterizing genes involved in DNA methylation in the apomictic grass Eragrostis curvula. We explored floral transcriptomes to identify homologs of three candidate genes, for which mutations in Arabidopsis and maize mimic apomixis (AtAGO9/ZmAGO104, AtCMT3/ZmDMT102/ZmDMT105, and AtDDM1/ZmCHR106), and compared both their spatial and temporal expression patterns during reproduction in sexual and apomictic genotypes. Quantitative expression analyses revealed contrasting expression patterns for the three genes in apomictic vs sexual plants. In situ hybridization corroborated these results for two candidates, EcAGO104 and EcDMT102, and revealed an unexpected ectopic pattern for the AGO gene during germ line differentiation in apomicts. Although our data partially support previous results obtained in sexual plant models, they suggest that rather than an RdDM breakdown in the ovule, altered localization of AtAGO9/ZmAGO104 expression is required for achieving diplospory in E. curvula. The differences in the RdDM machinery acquired during plant evolution might have promoted the emergence of the numerous apomictic paths observed in plants.
Collapse
|
5
|
Vilperte V, Agapito-Tenfen SZ, Wikmark OG, Nodari RO. Levels of DNA methylation and transcript accumulation in leaves of transgenic maize varieties. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:29. [PMID: 27942424 PMCID: PMC5120055 DOI: 10.1186/s12302-016-0097-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Prior to their release in the environment, transgenic crops are examined for their health and environmental safety. In addition, transgene expression needs to be consistent in order to express the introduced trait (e.g. insecticidal and/or herbicide tolerance). Moreover, data on expression levels for GM events are usually required for approval, but these are rarely disclosed or they are considered insufficient. On the other hand, biosafety regulators do not consider epigenetic regulation (e.g. DNA methylation, ncRNAs and histone modifications), which are broadly known to affect gene expression, within their risk assessment analyses. Here we report the results of a DNA methylation (bisulfite sequencing) and transgene transcript accumulation (RT-qPCR) analysis of four Bt-expressing single transgenic maize hybrids, under different genetic backgrounds, and a stacked transgenic hybrid expressing both insecticidal and herbicide tolerance traits. RESULTS Our results showed differences in cytosine methylation levels in the FMV promoter and cry2Ab2 transgene of the four Bt-expressing hybrid varieties. The comparison between single and stacked hybrids under the same genetic background showed differences in the 35S promoter sequence. The results of transgene transcript accumulation levels showed differences in both cry1A.105 and cry2Ab2 transgenes among the four Bt-expressing hybrid varieties. The comparison between single and stacked hybrids showed difference for the cry2Ab2 transgene only. CONCLUSIONS Overall, our results show differences in DNA methylation patterns in all varieties, as well as in transgene transcript accumulation levels. Although the detection of changes in DNA methylation and transgenic accumulation levels does not present a safety issue per se, it demonstrates the need for additional studies that focus on detecting possible safety implications of such changes.
Collapse
Affiliation(s)
- Vinicius Vilperte
- Department of Crop Science, Federal University of Santa Catarina, Florianópolis, Santa Catarina Brazil
- GenØk - Centre for Biosafety, Tromsø, Norway
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover, Hannover, Germany
| | | | - Odd-Gunnar Wikmark
- GenØk - Centre for Biosafety, Tromsø, Norway
- Unit for Environmental Science and Management, Potchefstroom Campus, North West University, Potchefstroom, South Africa
| | - Rubens Onofre Nodari
- Department of Crop Science, Federal University of Santa Catarina, Florianópolis, Santa Catarina Brazil
| |
Collapse
|
6
|
Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J, Rosenbaum H, Madzima TF, Sloan AE, Huang J, Burgess DL, Richmond TA, McGinnis KM, Meeley RB, Danilevskaya ON, Vaughn MW, Kaeppler SM, Jeddeloh JA, Springer NM. Genetic perturbation of the maize methylome. THE PLANT CELL 2014; 26:4602-16. [PMID: 25527708 PMCID: PMC4311211 DOI: 10.1105/tpc.114.133140] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qing Li
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Steven R Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Peter J Hermanson
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | | | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | | | | | - Thelma F Madzima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Amy E Sloan
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | | | | | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | | | | | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
7
|
Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, McGinnis KM, Dawe RK. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. THE PLANT CELL 2014; 26:4903-17. [PMID: 25465407 PMCID: PMC4311197 DOI: 10.1105/tpc.114.130427] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Thelma F. Madzima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Rechien Bader
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthew R. Kent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - R. Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
- Address correspondence to
| |
Collapse
|
8
|
Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Peñagaricano F, Lindquist E, Pedraza MA, Barry K, de Leon N, Kaeppler SM, Buell CR. Insights into the maize pan-genome and pan-transcriptome. THE PLANT CELL 2014; 26:121-35. [PMID: 24488960 PMCID: PMC3963563 DOI: 10.1105/tpc.113.119982] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 05/18/2023]
Abstract
Genomes at the species level are dynamic, with genes present in every individual (core) and genes in a subset of individuals (dispensable) that collectively constitute the pan-genome. Using transcriptome sequencing of seedling RNA from 503 maize (Zea mays) inbred lines to characterize the maize pan-genome, we identified 8681 representative transcript assemblies (RTAs) with 16.4% expressed in all lines and 82.7% expressed in subsets of the lines. Interestingly, with linkage disequilibrium mapping, 76.7% of the RTAs with at least one single nucleotide polymorphism (SNP) could be mapped to a single genetic position, distributed primarily throughout the nonpericentromeric portion of the genome. Stepwise iterative clustering of RTAs suggests, within the context of the genotypes used in this study, that the maize genome is restricted and further sampling of seedling RNA within this germplasm base will result in minimal discovery. Genome-wide association studies based on SNPs and transcript abundance in the pan-genome revealed loci associated with the timing of the juvenile-to-adult vegetative and vegetative-to-reproductive developmental transitions, two traits important for fitness and adaptation. This study revealed the dynamic nature of the maize pan-genome and demonstrated that a substantial portion of variation may lie outside the single reference genome for a species.
Collapse
Affiliation(s)
- Candice N. Hirsch
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | | | - James M. Johnson
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Rajandeep S. Sekhon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706
| | - German Muttoni
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | | | - Erika Lindquist
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Mary Ann Pedraza
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Kerrie Barry
- Department of Energy, Joint Genome Institute, Walnut Creek, California 94598
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Address correspondence to
| |
Collapse
|
9
|
Schnable PS, Springer NM. Progress toward understanding heterosis in crop plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:71-88. [PMID: 23394499 DOI: 10.1146/annurev-arplant-042110-103827] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although heterosis, or hybrid vigor, is widely exploited in agriculture, a complete description of its molecular underpinnings has remained elusive despite extensive investigation. It appears that there is not a single, simple explanation for heterosis. Instead, it is likely that heterosis arises in crosses between genetically distinct individuals as a result of a diversity of mechanisms. Heterosis generally results from the action of multiple loci, and different loci affect heterosis for different traits and in different hybrids. Hence, multigene models are likely to prove most informative for understanding heterosis. Complementation of allelic variation, as well as complementation of variation in gene content and gene expression patterns, is likely to be an important contributor to heterosis. Epigenetic variation has the potential to interact in hybrid genotypes via novel mechanisms. Several other intriguing hypotheses are also under investigation. In crops, heterosis must be considered within the context of the genomic impacts of prior selection for agronomic traits.
Collapse
Affiliation(s)
- Patrick S Schnable
- Center for Plant Genomics and Department of Agronomy, Iowa State University, Ames, IA 50011-3650, USA.
| | | |
Collapse
|
10
|
Eichten SR, Ellis NA, Makarevitch I, Yeh CT, Gent JI, Guo L, McGinnis KM, Zhang X, Schnable PS, Vaughn MW, Dawe RK, Springer NM. Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 2012; 8:e1003127. [PMID: 23271981 PMCID: PMC3521669 DOI: 10.1371/journal.pgen.1003127] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/15/2012] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800–1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences. Transposable elements comprise a substantial portion of many eukaryotic genomes. These mobile fragments of DNA can directly mutate genes through insertions into coding regions but may also affect the gene regulation through nearby insertions. There is evidence that the majority of transposable elements are epigenetically silenced, and in some cases this silencing may spread to neighboring sequences. This spreading of heterochromatin could create a significant fitness tradeoff between transposon silencing and gene expression. The maize genome has a complex organization with many genes flanked by retrotransposons, providing an opportunity to study the interaction of retrotransposons and genes. To survey the prevalence of heterochromatin spreading associated with different retrotransposon families, we profiled the spread of heterochromatin into nearby low copy sequences for 150 high copy retrotransposon families. While many retrotransposons exhibit little to no spreading of heterochromatin, there are some retrotransposon families that do exhibit spreading. Genes located near retrotransposons that spread heterochromatin have lower expression levels. The families of retrotransposons that spread heterochromatin marks to nearby low-copy sequences may have increased fitness costs for the host genome due to their suppression of genes located near insertions.
Collapse
Affiliation(s)
- Steven R. Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Nathanael A. Ellis
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Irina Makarevitch
- Biology Department, Hamline University, Saint Paul, Minnesota, United States of America
| | - Cheng-Ting Yeh
- Center for Plant Genomics and Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan I. Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Lin Guo
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Patrick S. Schnable
- Center for Plant Genomics and Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas, United States of America
| | - R. Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kaeppler S. Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/682824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heterosis is the increase in vigor that is observed in progenies of matings of diverse individuals from different species, isolated populations, or selected strains within species or populations. Heterosis has been of immense economic value in agriculture and has important implications regarding the fitness and fecundity of individuals in natural populations. Genetic models based on complementation of deleterious alleles, especially in the context of linkage and epistasis, are consistent with many observed manifestations of heterosis. The search for the genes and alleles that underlie heterosis, as well as for broader allele-independent, genomewide mechanisms, has encompassed many species and systems. Common themes across these studies indicate that sequence diversity is necessary but not sufficient to produce heterotic phenotypes, and that the molecular pathways that produce heterosis involve chromatin modification, transcriptional control, translation and protein processing, and interactions between and within developmental and biochemical pathways. Taken together, there are many and diverse molecular mechanisms that translate DNA into phenotype, and it is the combination of all these mechanisms across many genes that produce heterosis in complex traits.
Collapse
Affiliation(s)
- Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
12
|
Hansey CN, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Buell CR. Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS One 2012; 7:e33071. [PMID: 22438891 PMCID: PMC3306378 DOI: 10.1371/journal.pone.0033071] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/08/2012] [Indexed: 11/18/2022] Open
Abstract
Maize is rich in genetic and phenotypic diversity. Understanding the sequence, structural, and expression variation that contributes to phenotypic diversity would facilitate more efficient varietal improvement. RNA based sequencing (RNA-seq) is a powerful approach for transcriptional analysis, assessing sequence variation, and identifying novel transcript sequences, particularly in large, complex, repetitive genomes such as maize. In this study, we sequenced RNA from whole seedlings of 21 maize inbred lines representing diverse North American and exotic germplasm. Single nucleotide polymorphism (SNP) detection identified 351,710 polymorphic loci distributed throughout the genome covering 22,830 annotated genes. Tight clustering of two distinct heterotic groups and exotic lines was evident using these SNPs as genetic markers. Transcript abundance analysis revealed minimal variation in the total number of genes expressed across these 21 lines (57.1% to 66.0%). However, the transcribed gene set among the 21 lines varied, with 48.7% expressed in all of the lines, 27.9% expressed in one to 20 lines, and 23.4% expressed in none of the lines. De novo assembly of RNA-seq reads that did not map to the reference B73 genome sequence revealed 1,321 high confidence novel transcripts, of which, 564 loci were present in all 21 lines, including B73, and 757 loci were restricted to a subset of the lines. RT-PCR validation demonstrated 87.5% concordance with the computational prediction of these expressed novel transcripts. Intriguingly, 145 of the novel de novo assembled loci were present in lines from only one of the two heterotic groups consistent with the hypothesis that, in addition to sequence polymorphisms and transcript abundance, transcript presence/absence variation is present and, thereby, may be a mechanism contributing to the genetic basis of heterosis.
Collapse
Affiliation(s)
- Candice N. Hansey
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Rajandeep S. Sekhon
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
The heterotic hybrid offspring of Arabidopsis accessions C24 and Landsberg erecta have altered methylomes. Changes occur most frequently at loci where parental methylation levels are different. There are context-specific biases in the nonadditive methylation patterns with (m)CG generally increased and (m)CHH decreased relative to the parents. These changes are a result of two main mechanisms, Trans Chromosomal Methylation and Trans Chromosomal deMethylation, where the methylation level of one parental allele alters to resemble that of the other parent. Regions of altered methylation are enriched around genic regions and are often correlated with changes in siRNA levels. We identified examples of genes with altered expression likely to be due to methylation changes and suggest that in crosses between the C24 and Ler accessions, epigenetic controls can be important in the generation of altered transcription levels that may contribute to the increased biomass of the hybrids.
Collapse
|
14
|
Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh CT, Jia Y, Gendler K, Freeling M, Schnable PS, Vaughn MW, Springer NM. Heritable epigenetic variation among maize inbreds. PLoS Genet 2011; 7:e1002372. [PMID: 22125494 PMCID: PMC3219600 DOI: 10.1371/journal.pgen.1002372] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/20/2011] [Indexed: 11/26/2022] Open
Abstract
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation. Heritable variation within a species provides the basis for natural and artificial selection. A substantial portion of heritable variation is based on alterations in DNA sequence among individuals and is termed genetic variation. There is also evidence for epigenetic variation, which refers to heritable differences that are not caused by DNA sequence changes. Methylation of cytosine residues provides one molecular mechanism for epigenetic variation in many eukaryotic species. The genome-wide distribution of DNA methylation was assessed in two different inbred genotypes of maize to identify differentially methylated regions that may contribute to epigenetic variation. There are hundreds of genomic regions that have differences in DNA methylation levels in these two different genotypes, including methylation differences in regions without genetic variation. By studying the inheritance of the differential methylation in near-isogenic progeny of the two inbred lines, it is possible to demonstrate relatively stable inheritance of epigenetic variation, even in the absence of DNA sequence changes. The epigenetic variation among individuals of the same species may provide important contributions to phenotypic variation within a species even in the absence of genetic differences.
Collapse
Affiliation(s)
- Steve R. Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Ruth A. Swanson-Wagner
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - James C. Schnable
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Amanda J. Waters
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Peter J. Hermanson
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Sanzhen Liu
- Iowa State University, Ames, Iowa, United States of America
| | - Cheng-Ting Yeh
- Iowa State University, Ames, Iowa, United States of America
| | - Yi Jia
- Iowa State University, Ames, Iowa, United States of America
| | - Karla Gendler
- Texas Advanced Computing Center, University of Texas–Austin, Austin, Texas, United States of America
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | | | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas–Austin, Austin, Texas, United States of America
- * E-mail: (MWV); (NMS)
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (MWV); (NMS)
| |
Collapse
|
15
|
Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA, Dennis ES, Peacock WJ. Epigenetics in plants-vernalisation and hybrid vigour. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:427-37. [PMID: 21459171 DOI: 10.1016/j.bbagrm.2011.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/26/2022]
Abstract
In this review we have analysed two major biological systems involving epigenetic control of gene activity. In the first system we demonstrate the interplay between genetic and epigenetic controls over the transcriptional activity of FLC, a major repressor of flowering in Arabidopsis. FLC is down-regulated by low temperature treatment (vernalisation) releasing the repressor effect on flowering. We discuss the mechanisms of the reduced transcription and the memory of the vernalisation treatment through vegetative development. We also discuss the resetting of the repressed activity level of the FLC gene, following vernalisation, to the default high activity level and show it occurs during both male and female gametogenesis but with different timing in each. In the second part of the review discussed the complex multigenic system which is responsible for the patterns of gene activity which bring about hybrid vigour in crosses between genetically similar but epigenetically distinct parents. The epigenetic systems that we have identified as contributing to the heterotic phenotype are the 24nt siRNAs and their effects on RNA dependent DNA methylation (RdDM) at the target loci leading to changed expression levels. We conclude that it is likely that epigenetic controls are involved in expression systems in many aspects of plant development and plant function.
Collapse
Affiliation(s)
- Michael Groszmann
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, Canberra ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA (tel +1 608 262 9571; email )
| |
Collapse
|
17
|
La Paz JL, Pla M, Papazova N, Puigdomènech P, Vicient CM. Stability of the MON 810 transgene in maize. PLANT MOLECULAR BIOLOGY 2010; 74:563-571. [PMID: 20936423 DOI: 10.1007/s11103-010-9696-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
We analysed the DNA variability of the transgene insert and its flanking regions in maize MON 810 commercial varieties. Southern analysis demonstrates that breeding, since the initial transformation event more than 10 years ago, has not resulted in any rearrangements. A detailed analysis on the DNA variability at the nucleotide level, using DNA mismatch endonuclease assays, showed the lack of polymorphisms in the transgene insert. We conclude that the mutation rate of the transgene is not significantly different from that observed in the maize endogenous genes. Six SNPs were observed in the 5'flanking region, corresponding to a Zeon1 retrotransposon long terminal repeat. All six SNPs are more than 500 bp upstream of the point of insertion of the transgene and do not affect the reliability of the established PCR-based transgene detection and quantification methods. The mutation rate of the flanking region is similar to that expected for a maize repetitive sequence. We detected low levels of cytosine methylation in leaves of different transgenic varieties, with no significant differences on comparing different transgenic varieties, and minor differences in cytosine methylation when comparing leaves at different developmental stages. There was also a reduction in cryIAb mRNA accumulation during leaf development.
Collapse
Affiliation(s)
- Jose Luis La Paz
- Molecular Genetics Department, Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Jordi Girona 18-24, 08034, Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. THE PLANT CELL 2010; 22:3249-67. [PMID: 21037104 PMCID: PMC2990141 DOI: 10.1105/tpc.109.072181] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 09/23/2010] [Accepted: 10/09/2010] [Indexed: 05/18/2023]
Abstract
Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. Although apomixis is genetically regulated, its core genetic component(s) has not been determined yet. Using profiling experiments comparing sexual development in maize (Zea mays) to apomixis in maize-Tripsacum hybrids, we identified six loci that are specifically downregulated in ovules of apomictic plants. Four of them share strong homology with members of the RNA-directed DNA methylation pathway, which in Arabidopsis thaliana is involved in silencing via DNA methylation. Analyzing loss-of-function alleles for two maize DNA methyltransferase genes belonging to that subset, dmt102 and dmt103, which are downregulated in the ovules of apomictic plants and are homologous to the Arabidopsis CHROMOMETHYLASEs and DOMAINS REARRANGED METHYLTRANSFERASE families, revealed phenotypes reminiscent of apomictic development, including the production of unreduced gametes and formation of multiple embryo sacs in the ovule. Loss of DMT102 activity in ovules resulted in the establishment of a transcriptionally competent chromatin state in the archesporial tissue and in the egg cell that mimics the chromatin state found in apomicts. Interestingly, dmt102 and dmt103 expression in the ovule is found in a restricted domain in and around the germ cells, indicating that a DNA methylation pathway active during reproduction is essential for gametophyte development in maize and likely plays a critical role in the differentiation between apomictic and sexual reproduction.
Collapse
|
19
|
Johnson LJ, Tricker PJ. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity (Edinb) 2010; 105:113-21. [PMID: 20332811 DOI: 10.1038/hdy.2010.25] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epigenetics has progressed rapidly from an obscure quirk of heredity into a data-heavy 'omic' science. Our understanding of the molecular mechanisms of epigenomic regulation, and the extent of its importance in nature, are far from complete, but in spite of such drawbacks, population-level studies are extremely valuable: epigenomic regulation is involved in several processes central to evolutionary biology including phenotypic plasticity, evolvability and the mediation of intragenomic conflicts. The first studies of epigenomic variation within populations suggest high levels of phenotypically relevant variation, with the patterns of epigenetic regulation varying between individuals and genome regions as well as with environment. Epigenetic mechanisms appear to function primarily as genome defences, but result in the maintenance of plasticity together with a degree of buffering of developmental programmes; periodic breakdown of epigenetic buffering could potentially cause variation in rates of phenotypic evolution.
Collapse
Affiliation(s)
- L J Johnson
- School of Biological Sciences, University of Reading, Reading, UK.
| | | |
Collapse
|
20
|
He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. THE PLANT CELL 2010; 22:17-33. [PMID: 20086188 PMCID: PMC2828707 DOI: 10.1105/tpc.109.072041] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/15/2009] [Accepted: 12/23/2009] [Indexed: 05/17/2023]
Abstract
The behavior of transcriptomes and epigenomes in hybrids of heterotic parents is of fundamental interest. Here, we report highly integrated maps of the epigenome, mRNA, and small RNA transcriptomes of two rice (Oryza sativa) subspecies and their reciprocal hybrids. We found that gene activity was correlated with DNA methylation and both active and repressive histone modifications in transcribed regions. Differential epigenetic modifications correlated with changes in transcript levels among hybrids and parental lines. Distinct patterns in gene expression and epigenetic modifications in reciprocal hybrids were observed. Through analyses of single nucleotide polymorphisms from our sequence data, we observed a high correlation of allelic bias of epigenetic modifications or gene expression in reciprocal hybrids with their differences in the parental lines. The abundance of distinct small RNA size classes differed between the parents, and more small RNAs were downregulated than upregulated in the reciprocal hybrids. Together, our data reveal a comprehensive overview of transcriptional and epigenetic trends in heterotic rice crosses and provide a useful resource for the rice community.
Collapse
Affiliation(s)
- Guangming He
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Xiaopeng Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Axel A. Elling
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Liangbi Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiangfeng Wang
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Lan Guo
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Manzhong Liang
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hang He
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Huiyong Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fangfang Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yijun Qi
- National Institute of Biological Sciences, Beijing 102206, China
| | - Runsheng Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing-Wang Deng
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
- Address correspondence to
| |
Collapse
|
21
|
Banaei Moghaddam AM, Fuchs J, Czauderna T, Houben A, Mette MF. Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:215-226. [PMID: 19690829 DOI: 10.1007/s00122-009-1127-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/28/2009] [Indexed: 05/28/2023]
Abstract
Arabidopsis accessions Col-0 and C24 and their reciprocal hybrids were employed as a model system to investigate the potential relationship between changes in DNA methylation, chromatin structure, endopolyploidization and gene expression in heterotic genotypes. Nucleolus size, endopolyploidization level and distribution of DNA and histone H3 methylation at the microscopic level does not differ between parents and their hybrids. Methylation sensitive amplified polymorphism revealed a largely constant pattern of DNA methylation (97% of signals analyzed) after intraspecific crosses. The parental expression profile of selected genes was maintained in hybrid offspring. No correlation was found between expression pattern and DNA methylation levels at restriction sites within 5' regulatory regions. Thus, the results revealed only minor changes of chromatin properties and other nuclear features in response to intraspecific hybridization in Arabidopsis thaliana.
Collapse
|
22
|
Epigenetic Phenomena and Epigenomics in Maize. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC PLANT BIOLOGY 2008; 8:33. [PMID: 18402703 PMCID: PMC2365949 DOI: 10.1186/1471-2229-8-33] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 04/10/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Heterosis is the superior performance of F1 hybrid progeny relative to the parental phenotypes. Maize exhibits heterosis for a wide range of traits, however the magnitude of heterosis is highly variable depending on the choice of parents and the trait(s) measured. We have used expression profiling to determine whether the level, or types, of non-additive gene expression vary in maize hybrids with different levels of genetic diversity or heterosis. RESULTS We observed that the distributions of better parent heterosis among a series of 25 maize hybrids generally do not exhibit significant correlations between different traits. Expression profiling analyses for six of these hybrids, chosen to represent diversity in genotypes and heterosis responses, revealed a correlation between genetic diversity and transcriptional variation. The majority of differentially expressed genes in each of the six different hybrids exhibited additive expression patterns, and approximately 25% exhibited statistically significant non-additive expression profiles. Among the non-additive profiles, approximately 80% exhibited hybrid expression levels between the parental levels, approximately 20% exhibited hybrid expression levels at the parental levels and ~1% exhibited hybrid levels outside the parental range. CONCLUSION We have found that maize inbred genetic diversity is correlated with transcriptional variation. However, sampling of seedling tissues indicated that the frequencies of additive and non-additive expression patterns are very similar across a range of hybrid lines. These findings suggest that heterosis is probably not a consequence of higher levels of additive or non-additive expression, but may be related to transcriptional variation between parents. The lack of correlation between better parent heterosis levels for different traits suggests that transcriptional diversity at specific sets of genes may influence heterosis for different traits.
Collapse
Affiliation(s)
- Robert M Stupar
- Center for Plant and Microbial Genomics, Department of Plant Biology, University of Minnesota, Saint Paul MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul MN 55108, USA
| | - Jack M Gardiner
- Department of Plant Science, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Aaron G Oldre
- Center for Plant and Microbial Genomics, Department of Plant Biology, University of Minnesota, Saint Paul MN 55108, USA
| | - William J Haun
- Center for Plant and Microbial Genomics, Department of Plant Biology, University of Minnesota, Saint Paul MN 55108, USA
| | - Vicki L Chandler
- Department of Plant Science, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Nathan M Springer
- Center for Plant and Microbial Genomics, Department of Plant Biology, University of Minnesota, Saint Paul MN 55108, USA
| |
Collapse
|