1
|
Petkovic N, Colegrave N. The effects of sex on extinction dynamics of Chlamydomonas reinhardtii depend on the rate of environmental change. J Evol Biol 2023; 36:1783-1795. [PMID: 37897099 DOI: 10.1111/jeb.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 10/29/2023]
Abstract
The continued existence of sex, despite many the costs it entails, still lacks an adequate explanation, as previous studies demonstrated that the effects of sex are environment-dependent: sex enhances the rate of adaptation in changing environments, but the benefits level off in benign conditions. To the best of our knowledge, the potential impact of different patterns of environmental change on the magnitude of these benefits received less attention in theoretical studies. In this paper, we begin to explore this issue by examining the effect of the rate of environmental deterioration (negatively correlated with population survival rate), on the benefits of sex. To investigate the interplay of sex and the rate of environmental deterioration, we carried out a long-term selection experiment with a unicellular alga (Chlamydomonas reinhardtii), by manipulating mode of reproduction (asexual, facultative or obligate sexual) and the rate of environmental deterioration (an increase of salt concentration). We monitored both the population size and extinction dynamics. The results revealed that the relative advantage of sex increased at the intermediate rate and plateaued at the highest rate of environmental deterioration. Obligate sexual populations had the slowest extinction rate under the intermediate rate of environmental deterioration, while facultative sexuality was favoured under the high rate-treatment. To the best of our knowledge, our study is the first to demonstrate that the interplay of sex and the rate of environmental deterioration affects the probability of survival, which indicates that mode of reproduction may be an important determinant of survival of the anthropogenic-induced environmental change.
Collapse
Affiliation(s)
- Nikola Petkovic
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Zhao R, Lukacsovich T, Gaut R, Emerson JJ. FREQ-Seq2: a method for precise high-throughput combinatorial quantification of allele frequencies. G3 (BETHESDA, MD.) 2023; 13:jkad162. [PMID: 37494033 PMCID: PMC10542570 DOI: 10.1093/g3journal/jkad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/26/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
The accurate determination of allele frequencies is crucially important across a wide range of problems in genetics, such as developing population genetic models, making inferences from genome-wide association studies, determining genetic risk for diseases, as well as other scientific and medical applications. Furthermore, understanding how allele frequencies change over time in populations is central to ascertaining their evolutionary dynamics. We present a precise, efficient, and economical method (FREQ-Seq2) for quantifying the relative frequencies of different alleles at loci of interest in mixed population samples. Through the creative use of paired barcode sequences, we exponentially increased the throughput of the original FREQ-Seq method from 48 to 2,304 samples. FREQ-Seq2 can be targeted to specific genomic regions of interest, which are amplified using universal barcoded adapters to generate Illumina sequencing libraries. Our enhanced method, available as a kit along with open-source software for analyzing sequenced libraries, enables the detection and removal of errors that are undetectable in the original FREQ-Seq method as well as other conventional methods for allele frequency quantification. Finally, we validated the performance of our sequencing-based approach with a highly multiplexed set of control samples as well as a competitive evolution experiment in Escherichia coli and compare the latter to estimates derived from manual colony counting. Our analyses demonstrate that FREQ-Seq2 is flexible, inexpensive, and produces large amounts of data with low error, low noise, and desirable statistical properties. In summary, FREQ-Seq2 is a powerful method for quantifying allele frequency that provides a versatile approach for profiling mixed populations.
Collapse
Affiliation(s)
- Roy Zhao
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Tamas Lukacsovich
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Rebecca Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - J J Emerson
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Garnier J, Cotto O, Bouin E, Bourgeron T, Lepoutre T, Ronce O, Calvez V. Adaptation of a quantitative trait to a changing environment: New analytical insights on the asexual and infinitesimal sexual models. Theor Popul Biol 2023; 152:1-22. [PMID: 37172789 DOI: 10.1016/j.tpb.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Predicting the adaptation of populations to a changing environment is crucial to assess the impact of human activities on biodiversity. Many theoretical studies have tackled this issue by modeling the evolution of quantitative traits subject to stabilizing selection around an optimal phenotype, whose value is shifted continuously through time. In this context, the population fate results from the equilibrium distribution of the trait, relative to the moving optimum. Such a distribution may vary with the shape of selection, the system of reproduction, the number of loci, the mutation kernel or their interactions. Here, we develop a methodology that provides quantitative measures of population maladaptation and potential of survival directly from the entire profile of the phenotypic distribution, without any a priori on its shape. We investigate two different systems of reproduction (asexual and infinitesimal sexual models of inheritance), with various forms of selection. In particular, we recover that fitness functions such that selection weakens away from the optimum lead to evolutionary tipping points, with an abrupt collapse of the population when the speed of environmental change is too high. Our unified framework allows deciphering the mechanisms that lead to this phenomenon. More generally, it allows discussing similarities and discrepancies between the two systems of reproduction, which are ultimately explained by different constraints on the evolution of the phenotypic variance. We demonstrate that the mean fitness in the population crucially depends on the shape of the selection function in the infinitesimal sexual model, in contrast with the asexual model. In the asexual model, we also investigate the effect of the mutation kernel and we show that kernels with higher kurtosis tend to reduce maladaptation and improve fitness, especially in fast changing environments.
Collapse
Affiliation(s)
- J Garnier
- LAMA, UMR 5127, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Chambery, France.
| | - O Cotto
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - E Bouin
- CEREMADE, UMR 7534, CNRS, Univ. Paris Dauphine, Paris, France
| | | | - T Lepoutre
- ICJ, UMR 5208, CNRS, Univ. Claude Bernard Lyon 1, Lyon, France; Equipe-projet Inria Dracula, Lyon, France
| | - O Ronce
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; CNRS, Biodiversity Research Center, Univ. British Columbia, Vancouver, British Columbia, Canada
| | - V Calvez
- ICJ, UMR 5208, CNRS, Univ. Claude Bernard Lyon 1, Lyon, France; Equipe-projet Inria Dracula, Lyon, France
| |
Collapse
|
4
|
BONNEUIL NOËL. OPTIMAL CONTROL OF GENETIC DIVERSITY IN THE MORAN MODEL WITH POPULATION GROWTH. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the Moran model of drift and selection of a mutant allele with population growth, instead of examining the consequences of pre-specified selection and population growth, the coexistence of the wild allele and the mutant allele becomes the maximization of the expected sojourn time in a given set. The process is controlled by the additional mortality of the mutant and by population growth. This makes it possible to retroactively assign fitness values as functions of the constraints, thus guiding a conservation policy or the achievement of a wishful proportion of mutants. This also gives the optimal conditions that have allowed an observed coexistence.
Collapse
Affiliation(s)
- NOËL BONNEUIL
- Ined and Ehess, 54, bld Raspail 75006, Paris, France
| |
Collapse
|
5
|
Connallon T, Hodgins KA. Allen Orr and the genetics of adaptation. Evolution 2021; 75:2624-2640. [PMID: 34606622 DOI: 10.1111/evo.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023]
Abstract
Over most of the 20th century, evolutionary biologists predominantly subscribed to a strong form of "micro-mutationism," in which adaptive phenotypic divergence arises from allele frequency changes at many loci, each with a small effect on the phenotype. To be sure, there were well-known examples of large-effect alleles contributing to adaptation, yet such cases were generally regarded as atypical and unrepresentative of evolutionary change in general. In 1998, Allen Orr published a landmark theoretical paper in Evolution, which showed that both small- and large-effect mutations are likely to contribute to "adaptive walks" of a population to an optimum. Coupled with a growing set of empirical examples of large-effect alleles contributing to divergence (e.g., from QTL studies), Orr's paper provided a mathematical formalism that converted many evolutionary biologists from micro-mutationism to a more pluralistic perspective on the genetic basis of evolutionary change. We revisit the theoretical insights emerging from Orr's paper within the historical context leading up to 1998, and track the influence of this paper on the field of evolutionary biology through an examination of its citations over the last two decades and an analysis of the extensive body of theoretical and empirical research that Orr's pioneering paper inspired.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Wheeler LC, Wing BA, Smith SD. Structure and contingency determine mutational hotspots for flower color evolution. Evol Lett 2021; 5:61-74. [PMID: 33552536 PMCID: PMC7857289 DOI: 10.1002/evl3.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 01/26/2023] Open
Abstract
Evolutionary genetic studies have uncovered abundant evidence for genomic hotspots of phenotypic evolution, as well as biased patterns of mutations at those loci. However, the theoretical basis for this concentration of particular types of mutations at particular loci remains largely unexplored. In addition, historical contingency is known to play a major role in evolutionary trajectories, but has not been reconciled with the existence of such hotspots. For example, do the appearance of hotspots and the fixation of different types of mutations at those loci depend on the starting state and/or on the nature and direction of selection? Here, we use a computational approach to examine these questions, focusing the anthocyanin pigmentation pathway, which has been extensively studied in the context of flower color transitions. We investigate two transitions that are common in nature, the transition from blue to purple pigmentation and from purple to red pigmentation. Both sets of simulated transitions occur with a small number of mutations at just four loci and show strikingly similar peaked shapes of evolutionary trajectories, with the mutations of the largest effect occurring early but not first. Nevertheless, the types of mutations (biochemical vs. regulatory) as well as their direction and magnitude are contingent on the particular transition. These simulated color transitions largely mirror findings from natural flower color transitions, which are known to occur via repeated changes at a few hotspot loci. Still, some types of mutations observed in our simulated color evolution are rarely observed in nature, suggesting that pleiotropic effects further limit the trajectories between color phenotypes. Overall, our results indicate that the branching structure of the pathway leads to a predictable concentration of evolutionary change at the hotspot loci, but the types of mutations at these loci and their order is contingent on the evolutionary context.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Boswell A. Wing
- Department of Geological SciencesUniversity of ColoradoBoulderCOUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| |
Collapse
|
7
|
Pinek L, Mansour I, Lakovic M, Ryo M, Rillig MC. Rate of environmental change across scales in ecology. Biol Rev Camb Philos Soc 2020; 95:1798-1811. [PMID: 32761787 DOI: 10.1111/brv.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
The rate of change (RoC) of environmental drivers matters: biotic and abiotic components respond differently when faced with a fast or slow change in their environment. This phenomenon occurs across spatial scales and thus levels of ecological organization. We investigated the RoC of environmental drivers in the ecological literature and examined publication trends across ecological levels, including prevalent types of evidence and drivers. Research interest in environmental driver RoC has increased over time (particularly in the last decade), however, the amount of research and type of studies were not equally distributed across levels of organization and different subfields of ecology use temporal terminology (e.g. 'abrupt' and 'gradual') differently, making it difficult to compare studies. At the level of individual organisms, evidence indicates that responses and underlying mechanisms are different when environmental driver treatments are applied at different rates, thus we propose including a time dimension into reaction norms. There is much less experimental evidence at higher levels of ecological organization (i.e. population, community, ecosystem), although theoretical work at the population level indicates the importance of RoC for evolutionary responses. We identified very few studies at the community and ecosystem levels, although existing evidence indicates that driver RoC is important at these scales and potentially could be particularly important for some processes, such as community stability and cascade effects. We recommend shifting from a categorical (e.g. abrupt versus gradual) to a quantitative and continuous (e.g. °C/h) RoC framework and explicit reporting of RoC parameters, including magnitude, duration and start and end points to ease cross-scale synthesis and alleviate ambiguity. Understanding how driver RoC affects individuals, populations, communities and ecosystems, and furthermore how these effects can feed back between levels is critical to making improved predictions about ecological responses to global change drivers. The application of a unified quantitative RoC framework for ecological studies investigating environmental driver RoC will both allow cross-scale synthesis to be accomplished more easily and has the potential for the generation of novel hypotheses.
Collapse
Affiliation(s)
- Liliana Pinek
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - India Mansour
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
8
|
Melero‐Jiménez IJ, Martín‐Clemente E, García‐Sánchez MJ, Bañares‐España E, Flores‐Moya A. The limit of resistance to salinity in the freshwater cyanobacterium Microcystis aeruginosa is modulated by the rate of salinity increase. Ecol Evol 2020; 10:5045-5055. [PMID: 32551080 PMCID: PMC7297762 DOI: 10.1002/ece3.6257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The overall mean levels of different environmental variables are changing rapidly in the present Anthropocene, in some cases creating lethal conditions for organisms. Under this new scenario, it is crucial to know whether the adaptive potential of organisms allows their survival under different rates of environmental change. Here, we used an eco-evolutionary approach, based on a ratchet protocol, to investigate the effect of environmental change rate on the limit of resistance to salinity of three strains of the toxic cyanobacterium Microcystis aeruginosa. Specifically, we performed two ratchet experiments in order to simulate two scenarios of environmental change. In the first scenario, the salinity increase rate was slow (1.5-fold increase), while in the second scenario, the rate was faster (threefold increase). Salinity concentrations ranging 7-10 gL-1 NaCl (depending on the strain) inhibited growth completely. However, when performing the ratchet experiment, an increase in salinity resistance (9.1-13.6 gL-1 NaCl) was observed in certain populations. The results showed that the limit of resistance to salinity that M. aeruginosa strains were able to reach depended on the strain and on the rate of environmental change. In particular, a higher number of populations were able to grow under their initial lethal salinity levels when the rate of salinity increment was slow. In future scenarios of increased salinity in natural freshwater bodies, this could have toxicological implications due to the production of microcystin by this species.
Collapse
Affiliation(s)
| | - Elena Martín‐Clemente
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| | | | - Elena Bañares‐España
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Antonio Flores‐Moya
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| |
Collapse
|
9
|
Nev OA, Jepson A, Beardmore RE, Gudelj I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J R Soc Interface 2020; 17:20190776. [PMID: 32453982 DOI: 10.1098/rsif.2019.0776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microbes occupy almost every niche within and on their human hosts. Whether colonizing the gut, mouth or bloodstream, microorganisms face temporal fluctuations in resources and stressors within their niche but we still know little of how environmental fluctuations mediate certain microbial phenotypes, notably antimicrobial-resistant ones. For instance, do rapid or slow fluctuations in nutrient and antimicrobial concentrations select for, or against, resistance? We tackle this question using an ecological approach by studying the dynamics of a synthetic and pathogenic microbial community containing two species, one sensitive and the other resistant to an antibiotic drug where the community is exposed to different rates of environmental fluctuation. We provide mathematical models, supported by experimental data, to demonstrate that simple community outcomes, such as competitive exclusion, can shift to coexistence and ecosystem bistability as fluctuation rates vary. Theory gives mechanistic insight into how these dynamical regimes are related. Importantly, our approach highlights a fundamental difference between resistance in single-species populations, the context in which it is usually assayed, and that in communities. While fast environmental changes are known to select against resistance in single-species populations, here we show that they can promote the resistant species in mixed-species communities. Our theoretical observations are verified empirically using a two-species Candida community.
Collapse
Affiliation(s)
- Olga A Nev
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Robert E Beardmore
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
10
|
Collins S, Boyd PW, Doblin MA. Evolution, Microbes, and Changing Ocean Conditions. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:181-208. [PMID: 31451085 DOI: 10.1146/annurev-marine-010318-095311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experimental evolution and the associated theory are underutilized in marine microbial studies; the two fields have developed largely in isolation. Here, we review evolutionary tools for addressing four key areas of ocean global change biology: linking plastic and evolutionary trait changes, the contribution of environmental variability to determining trait values, the role of multiple environmental drivers in trait change, and the fate of populations near their tolerance limits. Wherever possible, we highlight which data from marine studies could use evolutionary approaches and where marine model systems can advance our understanding of evolution. Finally, we discuss the emerging field of marine microbial experimental evolution. We propose a framework linking changes in environmental quality (defined as the cumulative effect on population growth rate) with population traits affecting evolutionary potential, in order to understand which evolutionary processes are likely to be most important across a range of locations for different types of marine microbes.
Collapse
Affiliation(s)
- Sinéad Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia;
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia;
| |
Collapse
|
11
|
Morris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, Dasmahapatra KK. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) 2019; 123:138-152. [PMID: 30670842 PMCID: PMC6781118 DOI: 10.1038/s41437-018-0180-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a ~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Collapse
Affiliation(s)
- Jake Morris
- Department of Biology, University of York, Heslington, YO10 5DD, UK.
| | - Nicolas Navarro
- EPHE, PSL University, 21000, Dijon, France
- Biogéosciences, UMR CNRS 6282, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Pasi Rastas
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Lauren D Rawlins
- Department of Environment and Geography, University of York, Heslington, YO10 5DD, UK
| | - Joshua Sammy
- Department of Biology, University of York, Heslington, YO10 5DD, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
12
|
Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, Hutchins DA, Riebesell U, Rintoul MS, Vichi M, Biswas H, Ciotti A, Gao K, Gehlen M, Hurd CL, Kurihara H, McGraw CM, Navarro JM, Nilsson GE, Passow U, Pörtner HO. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review. GLOBAL CHANGE BIOLOGY 2018; 24:2239-2261. [PMID: 29476630 DOI: 10.1111/gcb.14102] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 05/19/2023]
Abstract
Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
Collapse
Affiliation(s)
- Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas., Australia
| | - Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sam Dupont
- Department of Biological & Environmental Sciences - Kristineberg, University of Gothenburg, Gothenburg, Sweden
| | | | - Jean-Pierre Gattuso
- Observatoire Océanologique, Laboratoire d'Océanographie, CNRS-UPMC, Villefranche-Sur-Mer, France
| | - Jonathan Havenhand
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Gothenburg, Sweden
| | | | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Max S Rintoul
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas., Australia
| | - Marcello Vichi
- Marine Research Institute and Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | | | - Aurea Ciotti
- Centro de Biologia Marinha, Universidade de São Paulo, Sao Sebastiao, São Paulo, Brazil
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - Marion Gehlen
- Laboratoire des Sciences du Climat et de l'Environnement, Gif-Sur-Yvette, France
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | | | - Christina M McGraw
- Department of Chemistry, NIWA/University of Otago Research Centre for Oceanography, University of Otago, Dunedin, New Zealand
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | | | - Uta Passow
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, USA
| | - Hans-Otto Pörtner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| |
Collapse
|
13
|
Abstract
Persistent genetic variation within populations presents an evolutionary problem, as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the maintenance of genetic variation observed in natural populations. Negative frequency-dependent selection is a powerful type of balancing selection that maintains many natural polymorphisms, but it is also commonly misinterpreted. This review aims to clarify the processes underlying negative frequency-dependent selection, describe classes of polymorphisms that can and cannot result from these processes, and discuss the empirical data needed to accurately identify processes that generate or maintain diversity in nature. Finally, the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress is considered.
Collapse
Affiliation(s)
- Dustin Brisson
- Biology Department, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Singhal S, Leon Guerrero CM, Whang SG, McClure EM, Busch HG, Kerr B. Adaptations of an RNA virus to increasing thermal stress. PLoS One 2017; 12:e0189602. [PMID: 29267297 PMCID: PMC5739421 DOI: 10.1371/journal.pone.0189602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Environments can change in incremental fashions, where a shift from one state to another occurs over multiple organismal generations. The rate of the environmental change is expected to influence how and how well populations adapt to the final environmental state. We used a model system, the lytic RNA bacteriophage Φ6, to investigate this question empirically. We evolved viruses for thermostability by exposing them to heat shocks that increased to a maximum temperature at different rates. We observed increases in the ability of many heat-shocked populations to survive high temperature heat shocks. On their first exposure to the highest temperature, populations that experienced a gradual increase in temperature had higher average survival than populations that experienced a rapid temperature increase. However, at the end of the experiment, neither the survival of populations at the highest temperature nor the number of mutations per population varied significantly according to the rate of thermal change. We also evaluated mutations from the endpoint populations for their effects on viral thermostability and growth. As expected, some mutations did increase viral thermostability. However, other mutations decreased thermostability but increased growth rate, suggesting that benefits of an increased replication rate may have sometimes outweighed the benefits of enhanced thermostability. Our study highlights the importance of considering the effects of multiple selective pressures, even in environments where a single factor changes.
Collapse
Affiliation(s)
- Sonia Singhal
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | | | - Stella G Whang
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Erin M McClure
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Hannah G Busch
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Benjamin Kerr
- Department of Biology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
15
|
Zan Y, Sheng Z, Lillie M, Rönnegård L, Honaker CF, Siegel PB, Carlborg Ö. Artificial Selection Response due to Polygenic Adaptation from a Multilocus, Multiallelic Genetic Architecture. Mol Biol Evol 2017; 34:2678-2689. [DOI: 10.1093/molbev/msx194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Morley VJ, Turner PE. Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change. Evolution 2017; 71:872-883. [PMID: 28121018 PMCID: PMC5382103 DOI: 10.1111/evo.13193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022]
Abstract
Understanding the dynamics of molecular adaptation is a fundamental goal of evolutionary biology. While adaptation to constant environments has been well characterized, the effects of environmental complexity remain seldom studied. One simple but understudied factor is the rate of environmental change. Here we used experimental evolution with RNA viruses to investigate whether evolutionary dynamics varied based on the rate of environmental turnover. We used whole-genome next-generation sequencing to characterize evolutionary dynamics in virus populations adapting to a sudden versus gradual shift onto a novel host cell type. In support of theoretical models, we found that when populations evolved in response to a sudden environmental change, mutations of large beneficial effect tended to fix early, followed by mutations of smaller beneficial effect; as predicted, this pattern broke down in response to a gradual environmental change. Early mutational steps were highly parallel across replicate populations in both treatments. The fixation of single mutations was less common than sweeps of associated "cohorts" of mutations, and this pattern intensified when the environment changed gradually. Additionally, clonal interference appeared stronger in response to a gradual change. Our results suggest that the rate of environmental change is an important determinant of evolutionary dynamics in asexual populations.
Collapse
Affiliation(s)
- Valerie J Morley
- Department of Ecology and Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut, 06520
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut, 06520.,Graduate Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, 06520
| |
Collapse
|
17
|
He F, Arce AL, Schmitz G, Koornneef M, Novikova P, Beyer A, de Meaux J. The Footprint of Polygenic Adaptation on Stress-ResponsiveCis-Regulatory Divergence in theArabidopsis Genus. Mol Biol Evol 2016; 33:2088-101. [DOI: 10.1093/molbev/msw096] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Morley VJ, Mendiola SY, Turner PE. Rate of novel host invasion affects adaptability of evolving RNA virus lineages. Proc Biol Sci 2016; 282:20150801. [PMID: 26246544 DOI: 10.1098/rspb.2015.0801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although differing rates of environmental turnover should be consequential for the dynamics of adaptive change, this idea has been rarely examined outside of theory. In particular, the importance of RNA viruses in disease emergence warrants experiments testing how differing rates of novel host invasion may impact the ability of viruses to adaptively shift onto a novel host. To test whether the rate of environmental turnover influences adaptation, we experimentally evolved 144 Sindbis virus lineages in replicated tissue-culture environments, which transitioned from being dominated by a permissive host cell type to a novel host cell type. The rate at which the novel host 'invaded' the environment varied by treatment. The fitness (growth rate) of evolved virus populations was measured on each host type, and molecular substitutions were mapped via whole genome consensus sequencing. Results showed that virus populations more consistently reached high fitness levels on the novel host when the novel host 'invaded' the environment more gradually, and gradual invasion resulted in less variable genomic outcomes. Moreover, virus populations that experienced a rapid shift onto the novel host converged upon different genotypes than populations that experienced a gradual shift onto the novel host, suggesting a strong effect of historical contingency.
Collapse
Affiliation(s)
- Valerie J Morley
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, 165 Prospect Street, New Haven, CT 06520-8106, USA
| | - Sandra Y Mendiola
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, 165 Prospect Street, New Haven, CT 06520-8106, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, 165 Prospect Street, New Haven, CT 06520-8106, USA
| |
Collapse
|
19
|
Thurman TJ, Barrett RDH. The genetic consequences of selection in natural populations. Mol Ecol 2016; 25:1429-48. [DOI: 10.1111/mec.13559] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/21/2015] [Accepted: 01/27/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Timothy J. Thurman
- Redpath Museum and Department of Biology; McGill University; Sherbrooke Street West Montreal Quebec Canada H3A 1B1 Canada
- Smithsonian Tropical Research Institute; Panamá Panamá
| | - Rowan D. H. Barrett
- Redpath Museum and Department of Biology; McGill University; Sherbrooke Street West Montreal Quebec Canada H3A 1B1 Canada
| |
Collapse
|
20
|
Kronholm I, Collins S. Epigenetic mutations can both help and hinder adaptive evolution. Mol Ecol 2015; 25:1856-68. [PMID: 26139359 DOI: 10.1111/mec.13296] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Epigenetic variation is being integrated into our understanding of adaptation, yet we lack models on how epigenetic mutations affect evolution that includes de novo genetic change. We model the effects of epigenetic mutations on the dynamics and endpoints of adaptive walks-a process where a series of beneficial mutations move a population towards a fitness optimum. We use an individual-based model of an asexual population, where mutational effects are drawn from Fisher's geometric model. We find cases where epigenetic mutations speed adaptation or result in populations with higher fitness. However, we also find cases where they slow adaptation or result in populations with lower fitness. The effect of epigenetic mutations on adaptive walks depends crucially on their stability and fitness effects relative to genetic mutations, with small-effect epigenetic mutations generally speeding adaptation, and epigenetic mutations with the same fitness effects as genetic mutations slowing adaptation. Our work reveals a complex relationship between epigenetic mutations and natural selection and highlights the need for empirical data.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK.,Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Sinéad Collins
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK
| |
Collapse
|
21
|
Hao YQ, Brockhurst MA, Petchey OL, Zhang QG. Evolutionary rescue can be impeded by temporary environmental amelioration. Ecol Lett 2015; 18:892-8. [PMID: 26119065 DOI: 10.1111/ele.12465] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/13/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Rapid evolutionary adaptation has the potential to rescue from extinction populations experiencing environmental changes. Little is known, however, about the impact of short-term environmental fluctuations during long-term environmental deterioration, an intrinsic property of realistic environmental changes. Temporary environmental amelioration arising from such fluctuations could either facilitate evolutionary rescue by allowing population recovery (a positive demographic effect) or impede it by relaxing selection for beneficial mutations required for future survival (a negative population genetic effect). We address this uncertainty in an experiment with populations of a bacteriophage virus that evolved under deteriorating conditions (gradually increasing temperature). Periodic environmental amelioration (short periods of reduced temperature) caused demographic recovery during the early phase of the experiment, but ultimately reduced the frequency of evolutionary rescue. These experimental results suggest that environmental fluctuations could reduce the potential of evolutionary rescue.
Collapse
Affiliation(s)
- Yi-Qi Hao
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| | | | - Owen L Petchey
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
22
|
Lagator M, Colegrave N, Neve P. Selection history and epistatic interactions impact dynamics of adaptation to novel environmental stresses. Proc Biol Sci 2015; 281:20141679. [PMID: 25232137 DOI: 10.1098/rspb.2014.1679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In rapidly changing environments, selection history may impact the dynamics of adaptation. Mutations selected in one environment may result in pleiotropic fitness trade-offs in subsequent novel environments, slowing the rates of adaptation. Epistatic interactions between mutations selected in sequential stressful environments may slow or accelerate subsequent rates of adaptation, depending on the nature of that interaction. We explored the dynamics of adaptation during sequential exposure to herbicides with different modes of action in Chlamydomonas reinhardtii. Evolution of resistance to two of the herbicides was largely independent of selection history. For carbetamide, previous adaptation to other herbicide modes of action positively impacted the likelihood of adaptation to this herbicide. Furthermore, while adaptation to all individual herbicides was associated with pleiotropic fitness costs in stress-free environments, we observed that accumulation of resistance mechanisms was accompanied by a reduction in overall fitness costs. We suggest that antagonistic epistasis may be a driving mechanism that enables populations to more readily adapt in novel environments. These findings highlight the potential for sequences of xenobiotics to facilitate the rapid evolution of multiple-drug and -pesticide resistance, as well as the potential for epistatic interactions between adaptive mutations to facilitate evolutionary rescue in rapidly changing environments.
Collapse
Affiliation(s)
- Mato Lagator
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nick Colegrave
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Paul Neve
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
23
|
Catch Me if You Can: Adaptation from Standing Genetic Variation to a Moving Phenotypic Optimum. Genetics 2015; 200:1255-74. [PMID: 26038348 PMCID: PMC4574244 DOI: 10.1534/genetics.115.178574] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Adaptation lies at the heart of Darwinian evolution. Accordingly, numerous studies have tried to provide a formal framework for the description of the adaptive process. Of these, two complementary modeling approaches have emerged: While so-called adaptive-walk models consider adaptation from the successive fixation of de novo mutations only, quantitative genetic models assume that adaptation proceeds exclusively from preexisting standing genetic variation. The latter approach, however, has focused on short-term evolution of population means and variances rather than on the statistical properties of adaptive substitutions. Our aim is to combine these two approaches by describing the ecological and genetic factors that determine the genetic basis of adaptation from standing genetic variation in terms of the effect-size distribution of individual alleles. Specifically, we consider the evolution of a quantitative trait to a gradually changing environment. By means of analytical approximations, we derive the distribution of adaptive substitutions from standing genetic variation, that is, the distribution of the phenotypic effects of those alleles from the standing variation that become fixed during adaptation. Our results are checked against individual-based simulations. We find that, compared to adaptation from de novo mutations, (i) adaptation from standing variation proceeds by the fixation of more alleles of small effect and (ii) populations that adapt from standing genetic variation can traverse larger distances in phenotype space and, thus, have a higher potential for adaptation if the rate of environmental change is fast rather than slow.
Collapse
|
24
|
Matuszewski S, Hermisson J, Kopp M. Fisher's geometric model with a moving optimum. Evolution 2014; 68:2571-88. [PMID: 24898080 PMCID: PMC4285815 DOI: 10.1111/evo.12465] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/15/2014] [Indexed: 12/29/2022]
Abstract
Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps.
Collapse
Affiliation(s)
- Sebastian Matuszewski
- Mathematics and BioSciences Group, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090, Vienna, Austria.
| | | | | |
Collapse
|
25
|
Kopp M, Matuszewski S. Rapid evolution of quantitative traits: theoretical perspectives. Evol Appl 2014; 7:169-91. [PMID: 24454555 PMCID: PMC3894905 DOI: 10.1111/eva.12127] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
An increasing number of studies demonstrate phenotypic and genetic changes in natural populations that are subject to climate change, and there is hope that some of these changes will contribute to avoiding species extinctions ('evolutionary rescue'). Here, we review theoretical models of rapid evolution in quantitative traits that can shed light on the potential for adaptation to a changing climate. Our focus is on quantitative-genetic models with selection for a moving phenotypic optimum. We point out that there is no one-to-one relationship between the rate of adaptation and population survival, because the former depends on relative fitness and the latter on absolute fitness. Nevertheless, previous estimates that sustainable rates of genetically based change usually do not exceed 0.1 haldanes (i.e., phenotypic standard deviations per generation) are probably correct. Survival can be greatly facilitated by phenotypic plasticity, and heritable variation in plasticity can further speed up genetic evolution. Multivariate selection and genetic correlations are frequently assumed to constrain adaptation, but this is not necessarily the case and depends on the geometric relationship between the fitness landscape and the structure of genetic variation. Similar conclusions hold for adaptation to shifting spatial gradients. Recent models of adaptation in multispecies communities indicate that the potential for rapid evolution is strongly influenced by interspecific competition.
Collapse
Affiliation(s)
- Michael Kopp
- LATP UMR-CNRS 7353, Evolutionary Biology and Modeling Group, Aix Marseille UniversityMarseille, France
| | - Sebastian Matuszewski
- Mathematics and BioSciences Group, Faculty of Mathematics, University of ViennaVienna, Austria
| |
Collapse
|
26
|
Haller BC, Hendry AP. SOLVING THE PARADOX OF STASIS: SQUASHED STABILIZING SELECTION AND THE LIMITS OF DETECTION. Evolution 2013; 68:483-500. [PMID: 24102172 DOI: 10.1111/evo.12275] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin C. Haller
- Department of Biology and Redpath Museum; McGill University; 859 Sherbrooke Street West Montreal Quebec Canada H3A 0C4
| | - Andrew P. Hendry
- Department of Biology and Redpath Museum; McGill University; 859 Sherbrooke Street West Montreal Quebec Canada H3A 0C4
| |
Collapse
|
27
|
Stoks R, Geerts AN, De Meester L. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evol Appl 2013; 7:42-55. [PMID: 24454547 PMCID: PMC3894897 DOI: 10.1111/eva.12108] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/30/2013] [Indexed: 12/14/2022] Open
Abstract
We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.
Collapse
Affiliation(s)
- Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| | - Aurora N Geerts
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| |
Collapse
|
28
|
Pekkonen M, Ketola T, Laakso JT. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community. PLoS One 2013; 8:e76471. [PMID: 24098791 PMCID: PMC3787024 DOI: 10.1371/journal.pone.0076471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph) and Novosphingobium capsulatum (oligotroph) were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation.
Collapse
Affiliation(s)
- Minna Pekkonen
- Integrative Ecology Unit, Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jouni T. Laakso
- Integrative Ecology Unit, Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
29
|
Collins S, Rambaut A, Bridgett SJ. Fold or hold: experimental evolution in vitro. J Evol Biol 2013; 26:2123-34. [PMID: 24003997 PMCID: PMC4274015 DOI: 10.1111/jeb.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 11/27/2022]
Abstract
We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change.
Collapse
Affiliation(s)
- S Collins
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
30
|
Bell G. Evolutionary rescue and the limits of adaptation. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120080. [PMID: 23209162 DOI: 10.1098/rstb.2012.0080] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.
Collapse
Affiliation(s)
- Graham Bell
- Biology Department, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada.
| |
Collapse
|
31
|
Walters RJ, Blanckenhorn WU, Berger D. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02045.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard J. Walters
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
- Environmental Biology; School of Biological Sciences, University of Reading; Reading RG6 6BX UK
| | - Wolf U. Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - David Berger
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
- Evolutionary Biology Centre, Uppsala University; Norbyvägen 14-18 75236 Uppsala Sweden
| |
Collapse
|
32
|
Abstract
Populations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.
Collapse
Affiliation(s)
- Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | |
Collapse
|
33
|
Uecker H, Hermisson J. On the fixation process of a beneficial mutation in a variable environment. Genetics 2011; 188:915-30. [PMID: 21652524 PMCID: PMC3176092 DOI: 10.1534/genetics.110.124297] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022] Open
Abstract
A population that adapts to gradual environmental change will typically experience temporal variation in its population size and the selection pressure. On the basis of the mathematical theory of inhomogeneous branching processes, we present a framework to describe the fixation process of a single beneficial allele under these conditions. The approach allows for arbitrary time-dependence of the selection coefficient s(t) and the population size N(t), as may result from an underlying ecological model. We derive compact analytical approximations for the fixation probability and the distribution of passage times for the beneficial allele to reach a given intermediate frequency. We apply the formalism to several biologically relevant scenarios, such as linear or cyclic changes in the selection coefficient, and logistic population growth. Comparison with computer simulations shows that the analytical results are accurate for a large parameter range, as long as selection is not very weak.
Collapse
Affiliation(s)
- Hildegard Uecker
- Mathematics and Biosciences Group, Faculty of Mathematics and Max F. Perutz Laboratories, University of Vienna, A-1090 Vienna, Austria.
| | | |
Collapse
|
34
|
De Meester L, Van Doorslaer W, Geerts A, Orsini L, Stoks R. Thermal genetic adaptation in the water flea Daphnia and its impact: an evolving metacommunity approach. Integr Comp Biol 2011; 51:703-18. [PMID: 21775388 DOI: 10.1093/icb/icr027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic adaptation to temperature change can impact responses of populations and communities to global warming. Here we integrate previously published results on experimental evolution trials with follow-up experiments involving the water flea Daphnia as a model system. Our research shows (1) the capacity of natural populations of this species to genetically adapt to changes in temperature in a time span of months to years, (2) the context-dependence of these genetic changes, emphasizing the role of ecology and community composition on evolutionary responses to climatic change, and (3) the impact of micro-evolutionary changes on immigration success of preadapted genotypes. Our study involves (1) experimental evolution trials in the absence and presence of the community of competitors, predators, and parasites, (2) life-table and competition experiments to assess the fitness consequences of micro-evolution, and (3) competition experiments with putative immigrant genotypes. We use these observations as building blocks of an evolving metacommunity to understand biological responses to climatic change. This approach integrates both local and regional responses at both the population and community levels. Finally, we provide an outline of current gaps in knowledge and suggest fruitful avenues for future research.
Collapse
Affiliation(s)
- Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Gifford DR, Schoustra SE, Kassen R. The length of adaptive walks is insensitive to starting fitness in Aspergillus nidulans. Evolution 2011; 65:3070-8. [PMID: 22023575 DOI: 10.1111/j.1558-5646.2011.01380.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adaptation involves the successive substitution of beneficial mutations by selection, a process known as an adaptive walk. Gradualist models of adaptation, which assume that all mutations are small relative to the distance to a fitness optimum, predict that adaptive walks should be longer when the founding genotype is less well adapted. More recent work modeling adaptation as a sequence of moves in phenotype or genotype space predicts, by contrast, much shorter adaptive walks irrespective of the fitness of the founding genotype. Here, we provide what is, to the best of our knowledge, the first direct test of these alternative models, measuring the length of adaptive walks in evolving lineages of fungus that differ initially in fitness. Contrary to the gradualist view, we show that the length of adaptive walks in the fungus Aspergillus nidulans is insensitive to starting fitness and involves just two mutations on average. This arises because poorly adapted populations tend to fix mutations of larger average effect than those of better-adapted populations. Our results suggest that the length of adaptive walks may be independent of the fitness of the founding genotype and, moreover, that poorly adapted populations can quickly adapt to novel environments.
Collapse
Affiliation(s)
- Danna R Gifford
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
36
|
|
37
|
Schluter D, Marchinko KB, Barrett RDH, Rogers SM. Natural selection and the genetics of adaptation in threespine stickleback. Philos Trans R Soc Lond B Biol Sci 2010; 365:2479-86. [PMID: 20643737 DOI: 10.1098/rstb.2010.0036] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Growing knowledge of the molecular basis of adaptation in wild populations is expanding the study of natural selection. We summarize ongoing efforts to infer three aspects of natural selection--mechanism, form and history--from the genetics of adaptive evolution in threespine stickleback that colonized freshwater after the last ice age. We tested a mechanism of selection for reduced bony armour in freshwater by tracking genotype and allele frequency changes at an underlying major locus (Ectodysplasin) in transplanted stickleback populations. We inferred disruptive selection on genotypes at the same locus in a population polymorphic for bony armour. Finally, we compared the distribution of phenotypic effect sizes of genes underlying changes in body shape with that predicted by models of adaptive peak shifts following colonization of freshwater. Studies of the effects of selection on genes complement efforts to identify the molecular basis of adaptive differences, and improve our understanding of phenotypic evolution.
Collapse
Affiliation(s)
- Dolph Schluter
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
38
|
Evolvability and Speed of Evolutionary Algorithms in Light of Recent Developments in Biology. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/568375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological and artificial evolutionary systems exhibit varying degrees of evolvability and different rates of evolution. Such quantities can be affected by various factors. Here, we review some evolutionary mechanisms and discuss new developments in biology that can potentially improve evolvability or accelerate evolution in artificial systems. Biological notions are discussed to the degree they correspond to notions in Evolutionary Computation. We hope that the findings put forward here can be used to design computational models of evolution that produce significant gains in evolvability and evolutionary speed.
Collapse
|
39
|
The genetic basis of phenotypic adaptation II: the distribution of adaptive substitutions in the moving optimum model. Genetics 2009; 183:1453-76. [PMID: 19805820 DOI: 10.1534/genetics.109.106195] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We consider a population that adapts to a gradually changing environment. Our aim is to describe how ecological and genetic factors combine to determine the genetic basis of adaptation. Specifically, we consider the evolution of a polygenic trait that is under stabilizing selection with a moving optimum. The ecological dynamics are defined by the strength of selection, sigma, and the speed of the optimum, v; the key genetic parameters are the mutation rate Theta and the variance of the effects of new mutations, omega. We develop analytical approximations within an "adaptive-walk" framework and describe how selection acts as a sieve that transforms a given distribution of new mutations into the distribution of adaptive substitutions. Our analytical results are complemented by individual-based simulations. We find that (i) the ecological dynamics have a strong effect on the distribution of adaptive substitutions and their impact depends largely on a single composite measure gamma=v/(sigmaThetaomega(3)), which combines the ecological and genetic parameters; (ii) depending on gamma, we can distinguish two distinct adaptive regimes: for large gamma the adaptive process is mutation limited and dominated by genetic constraints, whereas for small gamma it is environmentally limited and dominated by the external ecological dynamics; (iii) deviations from the adaptive-walk approximation occur for large mutation rates, when different mutant alleles interact via linkage or epistasis; and (iv) in contrast to predictions from previous models assuming constant selection, the distribution of adaptive substitutions is generally not exponential.
Collapse
|
40
|
Abstract
We investigate how different rates of environmental change affect adaptive outcomes and dynamics by selecting Chlamydomonas populations for over 200 generations in environments where the rate of change varies. We find that slower rates of environmental change result in end populations that grow faster and pay a lower cost of adaptation than populations that adapt to a sudden change of the same magnitude. We detected partial selective sweeps in adapting populations by monitoring changes in marker frequency in each population. Although populations adapting to a sudden environmental change showed evidence of mutations of large effect segregating early on, populations adapting to slow rates of change showed patterns that were consistent with mutations of relatively small effect occurring at less predictable times. This work suggests that rates of environmental change may fundamentally alter adaptive dynamics and outcomes of adaptation by changing the size and timing of fitness increases. We suggest that using mutations of smaller effect during adaptation may result in lower levels of pleiotropy and historical constraints, which could in turn result in higher fitness by the end of the experiment.
Collapse
Affiliation(s)
- Sinéad Collins
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3JT UK.
| | | |
Collapse
|
41
|
Van Doorslaer W, Stoks R, Duvivier C, Bednarska A, De Meester L. POPULATION DYNAMICS DETERMINE GENETIC ADAPTATION TO TEMPERATURE INDAPHNIA. Evolution 2009; 63:1867-78. [DOI: 10.1111/j.1558-5646.2009.00679.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Wolinska J, King KC. Environment can alter selection in host-parasite interactions. Trends Parasitol 2009; 25:236-44. [PMID: 19356982 DOI: 10.1016/j.pt.2009.02.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/30/2009] [Accepted: 02/13/2009] [Indexed: 02/06/2023]
Abstract
Characteristics of hosts and parasites have a genetic basis, and thus can be shaped by coevolution. Infections measured under laboratory conditions have shown that the environment in which hosts and parasites interact might substantially affect the strength and specificity of selection. In addition, various components of host-parasite fitness are differentially altered by the environment. Despite this, environmental fluctuations are often excluded from experimental coevolutionary studies and theoretical models as 'noise'. Because most host-parasite interactions exist in heterogeneous environments, we argue that there is a need to incorporate fluctuating environments into future empirical and theoretical work on host-parasite coevolution.
Collapse
Affiliation(s)
- Justyna Wolinska
- Ludwig-Maximilians-Universität, Department Biologie II, Evolutionsökologie, Grosshaderner Str. 2, D-82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
43
|
The genetic basis of phenotypic adaptation I: fixation of beneficial mutations in the moving optimum model. Genetics 2009; 182:233-49. [PMID: 19255369 DOI: 10.1534/genetics.108.099820] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We study the genetic basis of adaptation in a moving optimum model, in which the optimal value for a quantitative trait increases over time at a constant rate. We first analyze a one-locus two-allele model with recurrent mutation, for which we derive accurate analytical approximations for (i) the time at which a previously deleterious allele becomes beneficial, (ii) the waiting time for a successful new mutation, and (iii) the time the mutant allele needs to reach fixation. On the basis of these results, we show that the shortest total time to fixation is for alleles with intermediate phenotypic effect. We derive an approximation for this "optimal" effect, and we show that it depends in a simple way on a composite parameter, which integrates the ecological parameters and the genetic architecture of the trait. In a second step, we use stochastic computer simulations of a multilocus model to study the order in which mutant alleles with different effects go to fixation. In agreement with the one-locus results, alleles with intermediate effect tend to become fixed earlier than those with either small or large effects. However, the effect size of the fastest mutations differs from the one predicted in the one-locus model. We show how these differences can be explained by two specific effects of multilocus genetics. Finally, we discuss our results in the light of three relevant timescales acting in the system-the environmental, mutation, and fixation timescales-which define three parameter regimes leading to qualitative differences in the adaptive substitution pattern.
Collapse
|
44
|
Lexer C, Widmer A. Review. The genic view of plant speciation: recent progress and emerging questions. Philos Trans R Soc Lond B Biol Sci 2008; 363:3023-36. [PMID: 18579476 DOI: 10.1098/rstb.2008.0078] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The genic view of the process of speciation is based on the notion that species isolation may be achieved by a modest number of genes. Although great strides have been made to characterize 'speciation genes' in some groups of animals, little is known about the nature of genic barriers to gene flow in plants. We review recent progress in the characterization of genic species barriers in plants with a focus on five 'model' genera: Mimulus (monkey flowers); Iris (irises); Helianthus (sunflowers); Silene (campions); and Populus (poplars, aspens, cottonwoods). The study species in all five genera are diploid in terms of meiotic behaviour, and chromosomal rearrangements are assumed to play a minor role in species isolation, with the exception of Helianthus for which data on the relative roles of chromosomal and genic isolation factors are available. Our review identifies the following key topics as being of special interest for future research: the role of intraspecific variation in speciation; the detection of balancing versus directional selection in speciation genetic studies; the timing of fixation of alleles of major versus minor effects during plant speciation; the likelihood of adaptive trait introgression; and the identification and characterization of speciation genes and speciation gene networks.
Collapse
Affiliation(s)
- Christian Lexer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| | | |
Collapse
|
45
|
Perron GG, Gonzalez A, Buckling A. The rate of environmental change drives adaptation to an antibiotic sink. J Evol Biol 2008; 21:1724-31. [PMID: 18681913 DOI: 10.1111/j.1420-9101.2008.01596.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent accelerated trends of human-induced global changes are providing many examples of adaptation to novel environments. Although the rate of environmental change can vary dramatically, its effect on evolving populations is unknown. A crucial feature explaining the adaptation to harsh environments is the supply of beneficial mutations via immigration from a 'source' population. In this study, we tested the effect of immigration on adaptation to increasing concentrations of antibiotics. Using experimental population of Pseudomonas aeruginosa, a pathogenic bacterium, we show that higher immigration rates and a slow increase in antibiotic concentration result in a more rapid evolution of resistance; however, a high immigration rate combined with rapid increases in concentration resulted in higher maximal levels of resistance. These findings, which support recent theoretical work, have important implications for the control of antibiotic resistance because they show that rapid rates of change can produce variants with the ability to resist future treatments.
Collapse
Affiliation(s)
- G G Perron
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
46
|
Abstract
What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE), Department of Zoology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
47
|
Tenaillon MI, Tiffin PL. The quest for adaptive evolution: a theoretical challenge in a maze of data. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:110-115. [PMID: 18255332 DOI: 10.1016/j.pbi.2007.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 05/25/2023]
Abstract
Advances in sequencing technology have brought opportunities to refine our searches for adaptive evolution and to address and identify new questions regarding how adaptive evolution has shaped genomic diversity. Recent theoretical developments incorporate demographic and complex selective histories into tests of non-neutral evolution, thereby significantly improving our power to detect selection. These analyses combined with large data sets promise to identify targets of selection for which there was no a priori expectation. Moreover, they contribute to elucidate the role selection has played in shaping diversity in transposable elements, conserved noncoding DNA, gene family size, and other multicopy features of genomes.
Collapse
Affiliation(s)
- Maud I Tenaillon
- INRA/Univ Paris-Sud/CNRS/AgroParisTech, UMR8120 de Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
48
|
Abstract
We discuss three interlinked issues: the natural pace of environmental change and adaptation, the likelihood that a population will adapt to a potentially lethal change, and adaptation to elevated CO2, the prime mover of global change. Environmental variability is governed by power laws showing that ln difference in conditions increases with ln elapsed time at a rate of 0.3-0.4. This leads to strong but fluctuating selection in many natural populations.The effect of repeated adverse change on mean fitness depends on its frequency rather than its severity. If the depression of mean fitness leads to population decline, however, severe stress may cause extinction. Evolutionary rescue from extinction requires abundant genetic variation or a high mutation supply rate, and thus a large population size. Although natural populations can sustain quite intense selection, they often fail to adapt to anthropogenic stresses such as pollution and acidification and instead become extinct.Experimental selection lines of algae show no specific adaptation to elevated CO2, but instead lose their carbon-concentrating mechanism through mutational degradation. This is likely to reduce the effectiveness of the oceanic carbon pump. Elevated CO2 is also likely to lead to changes in phytoplankton community composition, although it is not yet clear what these will be. We emphasize the importance of experimental evolution in understanding and predicting the biological response to global change. This will be one of the main tasks of evolutionary biologists in the coming decade.
Collapse
Affiliation(s)
- Graham Bell
- Biology Department, McGill UniversityMontréal, QC, Canada
- NERC Centre for Population Biology, Imperial College LondonSilwood Park Campus, Ascot, Berks, UK
| | - Sinéad Collins
- Institute of Evolutionary Biology, School of Biological Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|
49
|
Abstract
The suggestion that there are characteristics of living organisms that have evolved because they increase the rate of evolution is controversial and difficult to study. In this review, we examine the role that experimental evolution might play in resolving this issue. We focus on three areas in which experimental evolution has been used previously to examine questions of evolvability; the evolution of mutational supply, the evolution of genetic exchange and the evolution of genetic architecture. In each case, we summarize what studies of experimental evolution have told us so far and speculate on where progress might be made in the future. We show that, while experimental evolution has helped us to begin to understand the evolutionary dynamics of traits that affect evolvability, many interesting questions remain to be answered.
Collapse
|