1
|
Song Y, Hou G, Diep J, Ooi YS, Akopyants NS, Beverley SM, Carette JE, Greenberg HB, Ding S. Inhibitor of growth protein 3 epigenetically silences endogenous retroviral elements and prevents innate immune activation. Nucleic Acids Res 2021; 49:12706-12715. [PMID: 34791430 PMCID: PMC8682784 DOI: 10.1093/nar/gkab1070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous retroviruses (ERVs) are subject to transcriptional repression in adult tissues, in part to prevent autoimmune responses. However, little is known about the epigenetic silencing of ERV expression. Here, we describe a new role for inhibitor of growth family member 3 (ING3), to add to an emerging group of ERV transcriptional regulators. Our results show that ING3 binds to several ERV promoters (for instance MER21C) and establishes an EZH2-mediated H3K27 trimethylation modification. Loss of ING3 leads to decreases of H3K27 trimethylation enrichment at ERVs, induction of MDA5-MAVS-interferon signaling, and functional inhibition of several virus infections. These data demonstrate an important new function of ING3 in ERV silencing and contributing to innate immune regulation in somatic cells.
Collapse
Affiliation(s)
- Yanhua Song
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Natalia S Akopyants
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Harry B Greenberg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.,Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Li H, Zhang H, Tan X, Liu D, Guo R, Wang M, Tang Y, Zheng K, Chen W, Li H, Tan M, Wang K, Liu R, Tang S. Overexpression of ING3 is associated with attenuation of migration and invasion in breast cancer. Exp Ther Med 2021; 22:699. [PMID: 34007308 PMCID: PMC8120550 DOI: 10.3892/etm.2021.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 3 (ING3) has been identified as a potential cancer drug target, but little is known about its role in breast cancer. Thus, the present study aimed to investigate ING3 expression in breast cancer, its clinical value, and how ING3 influences the migration and invasion of breast cancer cells. The Cancer Genome Atlas and UALCAN databases were used to analyze ING3 expression in cancer tissues and normal tissues. Survival analysis was performed using the UALCAN, UCSC Xena and KM-plot databases. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect ING3 mRNA and protein expression levels. ING3 was overexpressed via lentiviral vector transfection, while the Transwell and wound healing assays were performed to assess the cell migratory and invasive abilities. Protein interaction and pathway analyses were performed using the GeneMANIA and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The results demonstrated that ING3 expression was significantly lower in cancer tissues compared with normal tissues (P<0.05). In addition, luminal A and human epidermal growth factor receptor 2 (HER2)-enriched breast cancer tissues expressed lower levels of ING3 compared with normal breast tissues. Notably, statistically significant differences were observed in long-term survival between patients with luminal A (P=0.04) and HER2-enriched (P=0.008) breast cancer, with high and low expression levels of ING3. The results of the Transwell migration and invasion assays demonstrated that overexpression of ING3 significantly inhibited the migratory and invasive abilities of MCF7 (P<0.05) and HCC1937 (P<0.05) cells. The results of the wound healing assay demonstrated that the percentage wound closure significantly decreased in cells transfected with LV5-ING3 compared with the negative control group at 12 h (P<0.05) and 24 h (P<0.01). The PI3K/AKT, JAK/STAT, NF-κB and Wnt/β-catenin pathways are the potential pathways regulated by ING3. Notably, overexpression of ING3 inhibited migration and invasion in vitro. However, further studies are required to determine whether ING3 regulates the biological behavior of breast cancer via tumor-related pathways.
Collapse
Affiliation(s)
- Huimeng Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hengyu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Xin Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rong Guo
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Yiyin Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Kai Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hongwan Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Mingjian Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shicong Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
3
|
Jacquet K, Binda O. ING Proteins: Tumour Suppressors or Oncoproteins. Cancers (Basel) 2021; 13:cancers13092110. [PMID: 33925563 PMCID: PMC8123807 DOI: 10.3390/cancers13092110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The INhibitor of Growth family was defined in the mid-1990s by the identification of a tumour suppressor, ING1, and subsequent expansion of the family based essentially on sequence similarities. However, later work and more recent investigations demonstrate that at least a few ING proteins are actually required for normal proliferation of eukaryotic cells, from yeast to human. ING proteins are also part of a larger family of chromatin-associated factors marked by a plant homeodomain (PHD), which mediates interactions with methylated lysine residues. Herein, we discuss the role of ING proteins and their various roles in chromatin signalling in the context of cancer development and progression.
Collapse
Affiliation(s)
- Karine Jacquet
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
| | - Olivier Binda
- Institut NeuroMyoGène (INMG), Université Claude Bernard Lyon 1, Université de Lyon, CNRS UMR 5310, INSERM U 1217, 69008 Lyon, France;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
4
|
The Biological and Clinical Relevance of Inhibitor of Growth (ING) Genes in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11081118. [PMID: 31390718 PMCID: PMC6721451 DOI: 10.3390/cancers11081118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023] Open
Abstract
Carcinogenic mutations allow cells to escape governing mechanisms that commonly inhibit uncontrolled cell proliferation and maintain tightly regulated homeostasis between cell death and survival. Members of the inhibition of growth (ING) family act as tumor suppressors, governing cell cycle, apoptosis and cellular senescence. The molecular mechanism of action of ING genes, as well as their anchor points in pathways commonly linked to malignant transformation of cells, have been studied with respect to a variety of cancer specimens. This review of the current literature focuses specifically on the action mode of ING family members in lung cancer. We have summarized data from in vitro and in vivo studies, highlighting the effects of varying levels of ING expression in cancer cells. Based on the increasing insight into the function of these proteins, the use of ING family members as clinically useful biomarkers for lung cancer detection and prognosis will probably become routine in everyday clinical practice.
Collapse
|
5
|
Chang HY, Xie RX, Zhang L, Fu LZ, Zhang CT, Chen HH, Wang ZQ, Zhang Y, Quan FS. Overexpression of miR-101-2 in donor cells improves the early development of Holstein cow somatic cell nuclear transfer embryos. J Dairy Sci 2019; 102:4662-4673. [PMID: 30879805 DOI: 10.3168/jds.2018-15072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Accumulating studies have suggested that microRNA play a part in regulating multiple cellular processes, such as cell proliferation, apoptosis, the cell cycle, and embryo development. This study explored the effects of miR-101-2 on donor cell physiological status and the development of Holstein cow somatic cell nuclear transfer (SCNT) embryos in vitro. Holstein cow bovine fetal fibroblasts (BFF) overexpressing miR-101-2 were used as donor cells to perform SCNT; then, cleavage rate, blastocyst rate, inner cell mass-to-trophectoderm ratio, and the expression of some development- and apoptosis-related genes in different groups were analyzed. The miR-101-2 suppressed the expression of inhibitor of growth protein 3 (ING3) at mRNA and protein levels, expedited cell proliferation, and decreased apoptosis in BFF, suggesting that ING3, a target gene of miR-101-2, is a potential player in this process. Moreover, by utilizing donor cells overexpressing miR-101-2, the development of bovine SCNT embryos in vitro was significantly enhanced; the apoptotic rate in SCNT blastocysts was reduced, and the inner cell mass-to-trophectoderm ratio and SOX2, POU5F1, and BCL2L1 expression significantly increased, whereas BAX and ING3 expression decreased. Collectively, these findings suggest that miR-101-2 promotes BFF proliferation and vitality, reduces their apoptosis, and improves the early development of SCNT embryos.
Collapse
Affiliation(s)
- H Y Chang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - R X Xie
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - L Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - L Z Fu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - C T Zhang
- Animal Husbandry and Veterinary Station of Xining, Xining 810003, Qinghai, China
| | - H H Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Z Q Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Y Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - F S Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Kincaid-Smith J, Picard MAL, Cosseau C, Boissier J, Severac D, Grunau C, Toulza E. Parent-of-Origin-Dependent Gene Expression in Male and Female Schistosome Parasites. Genome Biol Evol 2018; 10:840-856. [PMID: 29447366 PMCID: PMC5861417 DOI: 10.1093/gbe/evy037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million people worldwide. Additionally to their major impact on human health, they are also models of choice in evolutionary biology. These parasitic flatworms are unique among the common hermaphroditic trematodes as they have separate sexes. This so-called “evolutionary scandal” displays a female heterogametic genetic sex-determination system (ZZ males and ZW females), as well as a pronounced adult sexual dimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocus sexual conflicts. To resolve these conflicts in sexually selected traits, molecular mechanisms such as sex-biased gene expression could occur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the latter mechanism, that is, genes expressed preferentially from either the maternal or the paternal allele, in Schistosoma mansoni species. To this end, transcriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide polymorphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parental expression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistent with paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, the remaining SNPs found in male and female transcriptomes were situated in genes that have the potential to explain sexual differences in schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Marion A L Picard
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Céline Cosseau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Dany Severac
- MGX, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, France
| | - Christoph Grunau
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, IFREMER, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
7
|
Zhang R, Jin J, Shi J, Hou Y. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 2017; 143:189-197. [PMID: 27544390 DOI: 10.1007/s00432-016-2219-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression. METHODS The literatures of INGs regulating tumor progression were searched and assayed. RESULTS The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed. CONCLUSIONS This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.
Collapse
Affiliation(s)
- Runyun Zhang
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
8
|
Satpathy S, Guérillon C, Kim TS, Bigot N, Thakur S, Bonni S, Riabowol K, Pedeux R. SUMOylation of the ING1b tumor suppressor regulates gene transcription. Carcinogenesis 2014; 35:2214-23. [PMID: 24903338 DOI: 10.1093/carcin/bgu126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The INhibitor of Growth (ING) proteins are encoded as multiple isoforms in five ING genes (ING1 -5) and act as type II tumor suppressors. They are growth inhibitory when overexpressed and are frequently mislocalized or downregulated in several forms of cancer. ING1 and ING2 are stoichiometric members of histone deacetylase complexes, whereas ING3-5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis and senescence, but how the proteins themselves are regulated is not yet clear. Here, we find a small ubiquitin-like modification (SUMOylation) of the ING1b protein and identify lysine 193 (K193) as the preferred ING1b SUMO acceptor site. We also show that PIAS4 is the E3 SUMO ligase responsible for ING1b SUMOylation on K193. Sequence alignment reveals that the SUMO consensus site on ING1b contains a phosphorylation-dependent SUMOylation motif (PDSM) and our data indicate that the SUMOylation on K193 is enhanced by the S199D phosphomimic mutant. Using an ING1b protein mutated at the major SUMOylation site (ING1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription.
Collapse
Affiliation(s)
- Shankha Satpathy
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Present address: The Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Claire Guérillon
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France, Université de Rennes 1, 350043 Rennes, France and
| | - Tae-Sun Kim
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nicolas Bigot
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France, Université de Rennes 1, 350043 Rennes, France and
| | - Satbir Thakur
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France
| | - Shirin Bonni
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| | - Rémy Pedeux
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France
| |
Collapse
|
9
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
10
|
RegulatING chromatin regulators: post-translational modification of the ING family of epigenetic regulators. Biochem J 2013; 450:433-42. [DOI: 10.1042/bj20121632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.
Collapse
|
11
|
Jolliffe AK, Derry WB. The TP53 signaling network in mammals and worms. Brief Funct Genomics 2012; 12:129-41. [PMID: 23165352 DOI: 10.1093/bfgp/els047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has been an invaluable model organism for studying the molecular mechanisms that govern cell fate, from fundamental aspects of multicellular development to programmed cell death (apoptosis). The transparency of this organism permits visualization of cells in living animals at high resolution. The powerful genetics and functional genomics tools available in C. elegans allow for detailed analysis of gene function, including genes that are frequently deregulated in human diseases such as cancer. The TP53 protein is a critical suppressor of tumor formation in vertebrates, and the TP53 gene is mutated in over 50% of human cancers. TP53 suppresses malignancy by integrating a variety of cellular stresses that direct it to activate transcription of genes that help to repair the damage or trigger apoptotic death if the damage is beyond repair. The TP53 paralogs, TP63 and TP73, have distinct roles in development as well as overlapping functions with TP53 in apoptosis and repair, which complicates their analysis in vertebrates. C. elegans contains a single TP53 family member, cep-1, that shares properties of all three vertebrate genes and thus offers a simple system in which to study the biological functions of this important gene family. This review summarizes major advances in our understanding of the TP53 family using C. elegans as a model organism.
Collapse
|
12
|
Jafarnejad SM, Li G. Regulation of p53 by ING family members in suppression of tumor initiation and progression. Cancer Metastasis Rev 2012; 31:55-73. [PMID: 22095030 DOI: 10.1007/s10555-011-9329-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The INhibitor of Growth (ING) family is an evolutionarily conserved set of proteins, implicated in suppression of initiation and progression of cancers in various tissues. They promote cell cycle arrest, cellular senescence and apoptosis, participate in stress responses, regulate DNA replication and DNA damage responses, and inhibit cancer cell migration, invasion, and angiogenesis of the tumors. At the molecular level, ING proteins are believed to participate in chromatin remodeling and transcriptional regulation of their target genes. However, the best known function of ING proteins is their cooperation with p53 tumor suppressor protein in tumor suppression. All major isoforms of ING family members can promote the transactivition of p53 and the majority of them are shown to directly interact with p53. In addition, ING proteins are thought to interact with and modulate the function of auxiliary members of p53 pathway, such as MDM2, ARF , p300, and p21, indicating their widespread involvement in the regulation and function of this prominent tumor suppressor pathway. It seems that p53 pathway is the main mechanism by which ING proteins exert their functions. Nevertheless, regulation of other pathways which are not relevant to p53, yet important for tumorigenesis such as TGF-β and NF-κB, by ING proteins is also observed. This review summarizes the current understanding of the mutual interactions and cooperation between different members of ING family with p53 pathway and implications of this cooperation in the suppression of cancer initiation and progression.
Collapse
Affiliation(s)
- Seyed Mehdi Jafarnejad
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
13
|
Yang HY, Liu HL, Tian LT, Song RP, Song X, Yin DL, Liang YJ, Qu LD, Jiang HC, Liu JR, Liu LX. Expression and prognostic value of ING3 in human primary hepatocellular carcinoma. Exp Biol Med (Maywood) 2012; 237:352-361. [PMID: 22550337 DOI: 10.1258/ebm.2011.011346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor-suppressor ING3 has been shown to be involved in tumor transcriptional regulation, apoptosis and the cell cycle. Some studies have demonstrated that ING3 is dysregulated in several types of cancers. However, the expression and function of ING3 in human hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate ING3 expression in hepatic tumors and its clinical relevance in hepatic cancer. The expression of ING3 protein was examined in 120 dissected HCC tissues and 47 liver tissues adjacent to the tumor by immunohistochemical assays and confirmed by Western blot analysis in 20 paired frozen tumor and non-tumor liver tissues. The relationship between ING3 staining and clinico-pathological characteristics of HCC was further analyzed. The mRNA expression of ING3 in the dissected tissues was also analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and realtime PCR. Both mRNA and protein concentrations of ING3 were found to be downregulated in the majority of HCC tumors in comparison with matched non-tumor hepatic tissues. Analysis of the relationship between ING3 staining and clinico-pathological characteristics of HCC showed that the low expression of ING3 protein is correlated with more aggressive behavior of the tumor. Kaplan-Meier curves demonstrated that patients with a low expression of ING3 have a significantly increased risk of shortened survival time. In addition, multivariate analysis suggested that the level of ING3 expression may be an independent prognostic factor. Our findings indicate that ING3 may be an important marker for human hepatocellular carcinoma progression and prognosis, as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thalappilly S, Feng X, Pastyryeva S, Suzuki K, Muruve D, Larocque D, Richard S, Truss M, von Deimling A, Riabowol K, Tallen G. The p53 tumor suppressor is stabilized by inhibitor of growth 1 (ING1) by blocking polyubiquitination. PLoS One 2011; 6:e21065. [PMID: 21731648 PMCID: PMC3120833 DOI: 10.1371/journal.pone.0021065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/19/2011] [Indexed: 01/01/2023] Open
Abstract
The INhibitor of Growth tumor suppressors (ING1-ING5) affect aging, apoptosis, DNA repair and tumorigenesis. Plant homeodomains (PHD) of ING proteins bind histones in a methylation-sensitive manner to regulate chromatin structure. ING1 and ING2 contain a polybasic region (PBR) adjacent to their PHDs that binds stress-inducible phosphatidylinositol monophosphate (PtIn-MP) signaling lipids to activate these INGs. ING1 induces apoptosis independently of p53 but other studies suggest proapoptotic interdependence of ING1 and p53 leaving their functional relationship unclear. Here we identify a novel ubiquitin-binding domain (UBD) that overlaps with the PBR of ING1 and shows similarity to previously described UBDs involved in DNA damage responses. The ING1 UBD binds ubiquitin with high affinity (K(d)∼100 nM) and ubiquitin competes with PtIn-MPs for ING1 binding. ING1 expression stabilized wild-type, but not mutant p53 in an MDM2-independent manner and knockdown of endogenous ING1 depressed p53 levels in a transcription-independent manner. ING1 stabilized unmodified and six multimonoubiquitinated forms of wild-type p53 that were also seen upon DNA damage, but not p53 mutants lacking the six known sites of ubiquitination. We also find that ING1 physically interacts with herpesvirus-associated ubiquitin-specific protease (HAUSP), a p53 and MDM2 deubiquitinase (DUB), and knockdown of HAUSP blocks the ability of ING1 to stabilize p53. These data link lipid stress signaling to ubiquitin-mediated proteasomal degradation through the PBR/UBD of ING1 and further indicate that ING1 stabilizes p53 by inhibiting polyubiquitination of multimonoubiquitinated forms via interaction with and colocalization of the HAUSP-deubiquitinase with p53.
Collapse
Affiliation(s)
- Subhash Thalappilly
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Xiaolan Feng
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Svitlana Pastyryeva
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Keiko Suzuki
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Muruve
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Larocque
- Preclinical Research Team on Neurodegenerative Diseases, Chronic Disorders DAP, GlaxoSmithKline Biologicals North America, Laval, Quebec, Canada
| | - Stephane Richard
- Department of Medicine and Oncology, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Matthias Truss
- Laboratory for Molecular Biology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg and Clinical Cooperation Unit Neuropathology, Heidelberg, Germany
| | - Karl Riabowol
- Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Gesche Tallen
- Department of Pediatric Oncology/Haematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Ross AJ, Li M, Yu B, Gao MX, Derry WB. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans. Cell Death Differ 2011; 18:1140-9. [PMID: 21233842 DOI: 10.1038/cdd.2010.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.
Collapse
Affiliation(s)
- A J Ross
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Piche B, Li G. Inhibitor of growth tumor suppressors in cancer progression. Cell Mol Life Sci 2010; 67:1987-99. [PMID: 20195696 PMCID: PMC11115670 DOI: 10.1007/s00018-010-0312-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/11/2010] [Accepted: 01/29/2010] [Indexed: 12/27/2022]
Abstract
The inhibitor of growth (ING) family of tumor suppressors has five members and is implicated in the control of apoptosis, senescence, DNA repair, and cancer progression. However, little is known about ING activity in the regulation of cancer progression. ING members and splice variants seem to behave differently with respect to cancer invasion and metastasis. Interaction with histone trimethylated at lysine 4 (H3K4me3), hypoxia inducible factor-1 (HIF-1), p53, and nuclear factor kappa-B (NF-kappaB) are potential mechanisms by which ING members exert effects on invasion and metastasis. Subcellular mislocalization, rapid protein degradation, and to a lesser extent ING gene mutation are among the mechanisms responsible for inappropriate ING levels in cancer cells. The aim of this review is to summarize the different roles of ING family tumor suppressors in cancer progression and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Brad Piche
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| | - Gang Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6 Canada
| |
Collapse
|
17
|
Rutkowski R, Hofmann K, Gartner A. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2010; 2:a001131. [PMID: 20595397 DOI: 10.1101/cshperspect.a001131] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The origin of the p53 superfamily predates animal evolution and first appears in unicellular Flagellates. Invertebrate p53 superfamily members appear to have a p63-like domain structure, which seems to be evolutionarily ancient. The radiation into p53, p63, and p73 proteins is a vertebrate invention. In invertebrate models amenable to genetic analysis p53 superfamily members mainly act in apoptosis regulation in response to genotoxic agents and do not have overt developmental functions. We summarize the literature on cnidarian and mollusc p53 superfamily members and focus on the function and regulation of Drosophila melanogaster and Caenorhabditis elegans p53 superfamily members in triggering apoptosis. Furthermore, we examine the emerging evidence showing that invertebrate p53 superfamily proteins also have functions unrelated to apoptosis, such as DNA repair, cell cycle checkpoint responses, compensatory proliferation, aging, autophagy, and innate immunity.
Collapse
Affiliation(s)
- Rachael Rutkowski
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
18
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
19
|
Sakashita T, Takanami T, Yanase S, Hamada N, Suzuki M, Kimura T, Kobayashi Y, Ishii N, Higashitani A. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. JOURNAL OF RADIATION RESEARCH 2010; 51:107-121. [PMID: 20208402 DOI: 10.1269/jrr.09100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The study of radiation effect in Caenorhabditis (C.) elegans has been carried out over three decades and now allow for understanding at the molecular, cellular and individual levels. This review describes the current knowledge of the biological effects of ionizing irradiation with a scope of the germ line, aging and behavior. In germ cells, ionizing radiation induces apoptosis, cell cycle arrest and DNA repair. Lots of molecules involved in these responses and functions have been identified in C. elegans, which are highly conserved throughout eukaryotes. Radiosensitivity and the effect of heavy-ion microbeam irradiation on germ cells with relationship between initiation of meiotic recombination and DNA lesions are discussed. In addition to DNA damage, ionizing radiation produces free radicals, and the free radical theory is the most popular aging theory. A first signal transduction pathway of aging has been discovered in C. elegans, and radiation-induced metabolic oxidative stress is recently noted for an inducible factor of hormetic response and genetic instability. The hormetic response in C. elegans exposed to oxidative stress is discussed with genetic pathways of aging. Moreover, C. elegans is well known as a model organism for behavior. The recent work reported the radiation effects via specific neurons on learning behavior, and radiation and hydrogen peroxide affect the locomotory rate similarly. These findings are discussed in relation to the evidence obtained with other organisms. Altogether, C. elegans may be a good "in vivo" model system in the field of radiation biology.
Collapse
|