1
|
Van Deurs S, Reutimann O, Luqman H, Lifshitz D, Mayzlish-Gati E, Alexander J, Fior S. Genomic Signatures of Adaptation Across a Precipitation Gradient From Niche Centre to Niche Edge. Mol Ecol 2025; 34:e17696. [PMID: 39960029 DOI: 10.1111/mec.17696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Evaluating the potential for species to adapt to changing climates relies on understanding current patterns of adaptive variation and selection, which might vary in intensity across a species' niche, hence affecting our inference of where adaptation might be most important in the future. Here, we investigate the genetic basis of adaptation in Lactuca serriola along a steep precipitation gradient in Israel approaching the species' arid niche limit and use candidate loci to inform predictions of its past and future adaptive evolution. Environmental association analyses combined with generalised dissimilarity models revealed 108 candidate genes showing nonlinear shifts in allele frequencies across the gradient, with 66% of these genes under strong selection near the dry niche edge. We detected selection acting on genes with separate suites of biological functions, specifically related to phenology and responses to environmental stressors, including osmotic stress, at the dry niche edge, and related to biotic interactions and defence closer to the niche centre. The adaptive genetic composition of populations, as inferred through polygenic risk scores, point to intensified selection operating towards the dry niche edge. However, inference of past and future evolutionary change predicts larger adaptive shifts occurring in the mesic part of the range, which is most affected by climate change. Our study reveals that adaptive shifts in response to climate change can be heterogeneous across a species' range and not necessarily strongest near its niche edge.
Collapse
Affiliation(s)
| | - Oliver Reutimann
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Hirzi Luqman
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Dikla Lifshitz
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Einav Mayzlish-Gati
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Jake Alexander
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Simone Fior
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| |
Collapse
|
2
|
Sheeja TE, Kumar IPV, Giridhari A, Minoo D, Rajesh MK, Babu KN. Amplified Fragment Length Polymorphism: Applications and Recent Developments. Methods Mol Biol 2021; 2222:187-218. [PMID: 33301096 DOI: 10.1007/978-1-0716-0997-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.
Collapse
Affiliation(s)
- Thotten Elampilay Sheeja
- Indian Institute of Spices Research, Kozhikode, Kerala, India.
- Division of Crop Improvement and Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India.
| | | | | | | | | | | |
Collapse
|
3
|
D'Andrea L, Meirmans P, van de Wiel C, Guadagnuolo R, van Treuren R, Kozlowski G, den Nijs H, Felber F. Molecular Biogeography of Prickly Lettuce (Lactuca serriola L.) Shows Traces of Recent Range Expansion. J Hered 2017; 108:194-206. [PMID: 28172969 DOI: 10.1093/jhered/esw078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2023] Open
Abstract
Prickly lettuce (Lactuca serriola L., Asteraceae), a wild relative of cultivated lettuce, is an autogamous species which greatly expanded throughout Western and Northern Europe during the last 2 centuries. Here, we present a large-scale biogeographic genetic analysis performed on a dataset represented by 2622 individuals from 110 wild European populations. Thirty-two maternally inherited chloroplast RFLP-markers and 10 nuclear microsatellite loci were used. Microsatellites revealed low genetic variation and high inbreeding coefficients within populations, as well as strong genetic differentiation between populations, which was in accordance with the autogamous breeding system. Analysis of molecular variance based clustering indicated the presence of 3 population clusters, which showed strong geographical patterns. One cluster occupied United Kingdom and part of Northern Europe, and characterized populations with a single predominant genotype. The second mostly combined populations from Northern Europe, while the third cluster grouped populations particularly from Southern Europe. Kriging of gene diversity for L. serriola corroborated northwards and westwards spread from Central (Eastern) Europe. Significant lower genetic diversity characterized the newly colonized parts of the range compared to the historical ones, confirming the importance of founder effects. Stronger pattern of isolation by distance was assessed in the newly colonized areas than in the historical areas (Mantel’s r = 0.20). In the newly colonized areas, populations at short geographic distances were genetically more similar than those in the historical areas. Our results corroborate the species’ recent and rapid northward and westward colonization from Eastern Europe, as well as a decrease of genetic diversity in recently established populations.
Collapse
Affiliation(s)
- Luigi D'Andrea
- Laboratoire de Botanique évolutive, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Patrick Meirmans
- Institute for Biodiversity & Ecosystem Dynamics (UvA), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Roberto Guadagnuolo
- Laboratoire de Botanique évolutive, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | | | - Gregor Kozlowski
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hans den Nijs
- Institute for Biodiversity & Ecosystem Dynamics (UvA), University of Amsterdam, Amsterdam, The Netherlands
| | - François Felber
- Laboratoire de Botanique évolutive, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
- Musée et Jardins botaniques cantonaux, Lausanne, Switzerland
| |
Collapse
|
4
|
Huang L, Sela H, Feng L, Chen Q, Krugman T, Yan J, Dubcovsky J, Fahima T. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:921-34. [PMID: 26847646 DOI: 10.1007/s00122-016-2672-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/09/2016] [Indexed: 05/18/2023]
Abstract
The wheat stripe rust resistance gene Yr36 ( WKS1 ) with a unique kinase-START domain architecture is highly conserved in wild emmer wheat natural populations. Wild emmer wheat (Triticum dicoccoides) populations have developed various resistance strategies against the stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst). The wild emmer gene, Yr36 (WKS1), which confers partial resistance to a broad spectrum of Pst races, is composed of a kinase and a START lipid-binding domain, a unique gene architecture found only in the Triticeae tribe. The analysis of 435 wild emmer accessions from a broad range of natural habitats revealed that WKS1 and its paralogue WKS2 are present only in the southern distribution range of wild emmer in the Fertile Crescent, supporting the idea that wheat domestication occurred in the northern populations. An analysis of full-length WKS1 sequence from 54 accessions identified 15 different haplotypes and very low-nucleotide diversity (π = 0.00019). The high level of WKS1 sequence conservation among wild emmer populations is in contrast to the high level of diversity previously observed in NB-LRR genes (e.g., Lr10 and Pm3). This phenomenon may reflect the different resistance mechanisms and different evolutionary pathways that shaped these genes, and may shed light on the evolution of genes that confer partial resistance to stripe rust. Only five WKS1 coding sequence haplotypes were revealed among all tested accessions, encoding four different putative WKS1 proteins (designated P0, P1, P2, and P3). Infection tests showed that P0, P1, and P3 haplotypes display a resistance response, while P2 displayed a susceptible response. These results show that the WKS1 proteins (P0, P1, and P3) can be useful to improve wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Lin Huang
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Hanan Sela
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Lihua Feng
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Qijiao Chen
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Tamar Krugman
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
| | - Jun Yan
- Faculty of Industrial Biotechnology, Chengdu University, Chengdu, 610106, China
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
5
|
Kerbiriou PJ, Maliepaard CA, Stomph TJ, Koper M, Froissart D, Roobeek I, Lammerts Van Bueren ET, Struik PC. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2016; 7:343. [PMID: 27064203 PMCID: PMC4812043 DOI: 10.3389/fpls.2016.00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.
Collapse
Affiliation(s)
- Pauline J. Kerbiriou
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | - Chris A. Maliepaard
- Plant Sciences, Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | - Tjeerd Jan Stomph
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| | | | | | | | | | - Paul C. Struik
- Plant Sciences, Centre for Crop Systems Analysis, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
6
|
Bell JL, Burke IC, Neff MM. Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:593-602. [PMID: 25513853 DOI: 10.1021/jf503934v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alternative sources of natural rubber are of importance due to economic, biological, and political threats that could diminish supplies of this resource. Prickly lettuce (Lactuca serriola L.) synthesizes long-chain natural rubber and was studied to determine underlying genetic and phenotypic characteristics of rubber biosynthesis. Genotypic and phenotypic analysis of an F2 segregating population using EST-SSR markers led to the discovery of genetic regions linked to natural rubber production. Interval mapping (IM) and multiple QTL mapping (MQM) identified several QTL in the mapping population that had significance based on LOD score thresholds. The discovered QTL and the corresponding local markers are genetic resources for understanding rubber biosynthesis in prickly lettuce and could be used in marker-assisted selection (MAS) breeding. Prickly lettuce is an excellent candidate for elucidating the rubber synthesis mechanism and has potential as a crop plant for rubber production.
Collapse
Affiliation(s)
- Jared L Bell
- Discovery Research, Dow Agrosciences, Indianapolis, Indiana, United States
| | | | | |
Collapse
|
7
|
Lebeda A, Kitner M, Křístková E, Doležalová I, Beharav A. Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H. Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. PLANT PHYSIOLOGY 2012; 159:197-210. [PMID: 22422941 PMCID: PMC3375961 DOI: 10.1104/pp.111.192062] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
The proper use of resistance genes (R genes) requires a comprehensive understanding of their genomics and evolution. We analyzed genes encoding nucleotide-binding sites and leucine-rich repeats in the genomes of rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), and Brachypodium distachyon. Frequent deletions and translocations of R genes generated prevalent presence/absence polymorphism between different accessions/species. The deletions were caused by unequal crossover, homologous repair, nonhomologous repair, or other unknown mechanisms. R gene loci identified from different genomes were mapped onto the chromosomes of rice cv Nipponbare using comparative genomics, resulting in an integrated map of 495 R loci. Sequence analysis of R genes from the partially sequenced genomes of an African rice cultivar and 10 wild accessions suggested that there are many additional R gene lineages in the AA genome of Oryza. The R genes with chimeric structures (termed type I R genes) are diverse in different rice accessions but only account for 5.8% of all R genes in the Nipponbare genome. In contrast, the vast majority of R genes in the rice genome are type II R genes, which are highly conserved in different accessions. Surprisingly, pseudogene-causing mutations in some type II lineages are often conserved, indicating that their conservations were not due to their functions. Functional R genes cloned from rice so far have more type II R genes than type I R genes, but type I R genes are predicted to contribute considerable diversity in wild species. Type I R genes tend to reduce the microsynteny of their flanking regions significantly more than type II R genes, and their flanking regions have slightly but significantly lower G/C content than those of type II R genes.
Collapse
Affiliation(s)
| | | | - Qun Hu
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Jiongjiong Chen
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Kunpeng Li
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Chen Lu
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Hui Liu
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Wen Wang
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Hanhui Kuang
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| |
Collapse
|
9
|
Biruma M, Martin T, Fridborg I, Okori P, Dixelius C. Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1005-15. [PMID: 22143275 DOI: 10.1007/s00122-011-1764-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/23/2011] [Indexed: 05/22/2023]
Abstract
The aim of this work was to identify plant resistance genes to the sorghum anthracnose fungus Colletotrichum sublineolum. cDNA-AFLP transcript profiling on two contrasting sorghum genotypes inoculated with C. sublineolum generated about 3,000 informative fragments. In a final set of 126 sequenced genes, 15 were identified as biotic stress related. Seven of the plant-derived genes were selected for functional analysis using a Brome mosaic virus-based virus-induced gene silencing (VIGS) system followed by fungal inoculation and quantitative real-time PCR analysis. The candidate set comprised genes encoding resistance proteins (Cs1A, Cs2A), a lipid transfer protein (SbLTP1), a zinc finger-like transcription factor (SbZnTF1), a rice defensin-like homolog (SbDEFL1), a cell death related protein (SbCDL1), and an unknown gene harboring a casein kinase 2-like domain (SbCK2). Our results demonstrate that down-regulation of Cs1A, Cs2A, SbLTP1, SbZnF1 and SbCD1 via VIGS, significantly compromised the resistance response while milder effects were observed with SbDEFL1 and SbCK2. Expanded genome analysis revealed that Cs1A and Cs2A genes are located in two different loci on chromosome 9 closely linked with duplicated genes Cs1B and Cs2B, respectively. The nucleotide binding-leucine rich repeat (NB-LRR) encoding Cs gene sequence information is presently employed in regional breeding programs.
Collapse
Affiliation(s)
- Moses Biruma
- Department of Crop Science, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | | | | | | |
Collapse
|
10
|
Abstract
Patterns of diversity distribution in the Isa defense locus in wild-barley populations suggest adaptive selection at this locus. The extent to which environmental selection may act at additional nuclear-encoded defense loci and within the whole chloroplast genome has now been examined by analyses in two grass species. Analysis of genetic diversity in wild barley (Hordeum spontaneum) defense genes revealed much greater variation in biotic stress-related genes than abiotic stress-related genes. Genetic diversity at the Isa defense locus in wild populations of weeping ricegrass [Microlaena stipoides (Labill.) R. Br.], a very distant wild-rice relative, was more diverse in samples from relatively hotter and drier environments, a phenomenon that reflects observations in wild barley populations. Whole-chloroplast genome sequences of bulked weeping ricegrass individuals sourced from contrasting environments showed higher levels of diversity in the drier environment in both coding and noncoding portions of the genome. Increased genetic diversity may be important in allowing plant populations to adapt to greater environmental variation in warmer and drier climatic conditions.
Collapse
|
11
|
Sela H, Loutre C, Keller B, Schulman A, Nevo E, Korol A, Fahima T. Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:175-187. [PMID: 20859611 DOI: 10.1007/s00122-010-1434-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Recombination is a key evolutionary factor enhancing diversity. However, the effect of recombination on diversity in inbreeding species is expected to be low. To estimate this effect, recombination and diversity patterns of Lr10 gene were studied in natural populations of the inbreeder species, wild emmer wheat (Triticum dicoccoides). Wild emmer wheat is the progenitor of most cultivated wheats and it harbors rich genetic resources for disease resistance. Lr10 is a leaf rust resistance gene encoding three domains: a coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NBS-LRR). RESULTS Lr10 was sequenced from 58 accessions representing 12 diverse habitats in Israel. Diversity analysis revealed a high rate of synonymous and non-synonymous substitutions (d (S) = 0.029, d (N) = 0.018, respectively) in the NBS-LRR domains. Moreover, in contrast to other resistance genes, in Lr10 the CC domain was more diverse than the NBS-LRR domains (d (S) = 0.069 vs. 0.029, d (N) = 0.094 vs. 0.018) and was subjected to positive selection in some of the populations. Seventeen recombination events were detected between haplotypes, especially in the CC domain. Linkage disequilibrium (LD) analysis has shown a rapid decay from r (2) = 0.5 to r (2) = 0.1 within a 2-kb span. CONCLUSION These results suggest that recombination is a diversifying force for the R-gene, Lr10, in the selfing species T. dicoccoides. This is the first report of a short-range LD decay in wild emmer wheat.
Collapse
Affiliation(s)
- Hanan Sela
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Riar DS, Rustgi S, Burke IC, Gill KS, Yenish JP. EST-SSR development from 5 Lactuca species and their use in studying genetic diversity among L. serriola biotypes. J Hered 2011; 102:17-28. [PMID: 21148616 DOI: 10.1093/jhered/esq103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Prickly lettuce (Lactuca serriola L.) is a problematic weed of Pacific Northwest and recently developed resistance to the auxinic herbicide 2,4-D. There are no publically available simple sequence repeat (SSR) markers to tag 2,4-D resistance genes in L. serriola. Therefore, a study was conducted to develop SSR markers from expressed sequence tags (ESTs) of 5 Lactuca species. A total of 15,970 SSRs were identified among 57,126 EST assemblies belonging to 5 Lactuca species. SSR-containing ESTs (SSR-ESTs) ranged from 6.23% to 7.87%, and SSR densities ranged from 1.28 to 2.51 kb(-1) among the ESTs of 5 Lactuca species. Trinucleotide repeats were the most abundant SSRs detected during the study. As a representative sample, 45 ESTs carrying class I SSRs (≥ 20 nucleotides) were selected for designing primers and were also searched against the dbEST entries for L. sativa and Helianthus annuus (≤ 10(-50); score ≥ 100). In silico analysis of 45 SSR-ESTs showed 82% conservation across species and 68% conservation across genera. Primer pairs synthesized for the above 45 EST-SSRs were used to study genetic diversity among a collection of 22 L. serriola biotypes. Comparison of the resultant dendrogram to that developed using phenotypic evaluation of the same subset of lines showed limited correspondence. Taken together, this study reported a collection of useful SSR markers for L. serriola, confirmed transferability of these markers within and across genera, and demonstrated their usefulness in studying genetic diversity.
Collapse
Affiliation(s)
- Dilpreet S Riar
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
13
|
Lebeda A, Kitner M, Dziechciarková M, Doležalová I, Křístková E, Lindhout P. An insight into the genetic polymorphism among European populations of Lactuca serriola assessed by AFLP. BIOCHEM SYST ECOL 2009. [DOI: 10.1016/j.bse.2009.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
McHale LK, Truco MJ, Kozik A, Wroblewski T, Ochoa OE, Lahre KA, Knapp SJ, Michelmore RW. The genomic architecture of disease resistance in lettuce. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:565-80. [PMID: 19005638 DOI: 10.1007/s00122-008-0921-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/14/2008] [Indexed: 05/03/2023]
Abstract
Genbank and The Compositae Genome Project database, containing over 42,000 lettuce unigenes from Lactuca sativa cv. Salinas and L. serriola accession UC96US23 were mined to identify 702 candidate genes involved in pathogen recognition (RGCs), resistance signal transduction, defense responses, and disease susceptibility. In addition, to identify sequences representing additional sub-families of nucleotide binding site (NBS)-leucine-rich repeat encoding genes; the major classes of resistance genes (R-genes), NBS-encoding sequences were amplified by PCR using degenerate oligonucleotides designed to NBS sub-families specific to the subclass Asteridae, which includes the Compositae family. These products were cloned and sequenced resulting in 18 novel NBS sequences from cv. Salinas and 15 novel NBS sequences from UC96US23. Using a variety of marker technologies, 294 of the 735 candidate disease resistance genes were mapped in our primary mapping population, which consisted of 119 F7 recombinant inbred lines derived from an interspecific cross between cv. Salinas and UC96US23. Using markers shared across multiple genetic maps, 36 resistance phenotypic loci, including two new loci for resistance to downy mildew and two quantitative trait loci for resistance to anthracnose were positioned onto the reference map to provide a global view of the genomic architecture of disease resistance in lettuce and to identify candidate genes for resistance phenotypes. The majority but not all of the resistance phenotypes were genetically associated with RGCs.
Collapse
Affiliation(s)
- Leah K McHale
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McHale LK, Truco MJ, Kozik A, Wroblewski T, Ochoa OE, Lahre KA, Knapp SJ, Michelmore RW. The genomic architecture of disease resistance in lettuce. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009. [PMID: 19005638 DOI: 10.1007/s00122-008-0921-921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genbank and The Compositae Genome Project database, containing over 42,000 lettuce unigenes from Lactuca sativa cv. Salinas and L. serriola accession UC96US23 were mined to identify 702 candidate genes involved in pathogen recognition (RGCs), resistance signal transduction, defense responses, and disease susceptibility. In addition, to identify sequences representing additional sub-families of nucleotide binding site (NBS)-leucine-rich repeat encoding genes; the major classes of resistance genes (R-genes), NBS-encoding sequences were amplified by PCR using degenerate oligonucleotides designed to NBS sub-families specific to the subclass Asteridae, which includes the Compositae family. These products were cloned and sequenced resulting in 18 novel NBS sequences from cv. Salinas and 15 novel NBS sequences from UC96US23. Using a variety of marker technologies, 294 of the 735 candidate disease resistance genes were mapped in our primary mapping population, which consisted of 119 F7 recombinant inbred lines derived from an interspecific cross between cv. Salinas and UC96US23. Using markers shared across multiple genetic maps, 36 resistance phenotypic loci, including two new loci for resistance to downy mildew and two quantitative trait loci for resistance to anthracnose were positioned onto the reference map to provide a global view of the genomic architecture of disease resistance in lettuce and to identify candidate genes for resistance phenotypes. The majority but not all of the resistance phenotypes were genetically associated with RGCs.
Collapse
Affiliation(s)
- Leah K McHale
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The genomic era revolutionized evolutionary population biology. The ecological genomics of the wild progenitors of wheat and barley reviewed here was central in the research program of the Institute of Evolution, University of Haifa, since 1975 ( http://evolution.haifa.ac.il ). We explored the following questions: (1) How much of the genomic and phenomic diversity of wild progenitors of cultivars (wild emmer wheat, Triticum dicoccoides, the progenitor of most wheat, plus wild relatives of the Aegilops species; wild barley, Hordeum spontaneum, the progenitor of cultivated barley; wild oat, Avena sterilis, the progenitor of cultivated oats; and wild lettuce species, Lactuca, the progenitor and relatives of cultivated lettuce) are adaptive and processed by natural selection at both coding and noncoding genomic regions? (2) What is the origin and evolution of genomic adaptation and speciation processes and their regulation by mutation, recombination, and transposons under spatiotemporal variables and stressful macrogeographic and microgeographic environments? (3) How much genetic resources are harbored in the wild progenitors for crop improvement? We advanced ecological genetics into ecological genomics and analyzed (regionally across Israel and the entire Near East Fertile Crescent and locally at microsites, focusing on the "Evolution Canyon" model) hundreds of populations and thousands of genotypes for protein (allozyme) and deoxyribonucleic acid (DNA) (coding and noncoding) diversity, partly combined with phenotypic diversity. The environmental stresses analyzed included abiotic (climatic and microclimatic, edaphic) and biotic (pathogens, demographic) stresses. Recently, we introduced genetic maps, cloning, and transformation of candidate genes. Our results indicate abundant genotypic and phenotypic diversity in natural plant populations. The organization and evolution of molecular and organismal diversity in plant populations, at all genomic regions and geographical scales, are nonrandom and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection including diversifying, balancing, cyclical, and purifying selection regimes interacting with, but, ultimately, overriding the effects of mutation, migration, and stochasticity. The progenitors of cultivated plants harbor rich genetic resources and are the best hope for crop improvement by both classical and modern biotechnological methods. Future studies should focus on the interplay between structural and functional genome organization focusing on gene regulation.
Collapse
Affiliation(s)
- Eviatar Nevo
- Institute of Evolution and the International Graduate Center of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
17
|
Gos G, Wright SI. Conditional neutrality at two adjacent NBS-LRR disease resistance loci in natural populations of Arabidopsis lyrata. Mol Ecol 2008; 17:4953-62. [PMID: 18992006 DOI: 10.1111/j.1365-294x.2008.03968.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We examined patterns of nucleotide diversity at a genomic region containing two linked candidate disease resistance (NBS-LRR) genes in seven populations of the outcrossing plant Arabidopsis lyrata. In comparison with two adjacent control genes and neutral reference genes across the genome, the NBS-LRR genes exhibited elevated nonsynonymous variation and a large number of major-effect polymorphisms causing early stop codons and/or frameshift mutations. In contrast, analysis of synonymous diversity provided no evidence that the region was subject to long-term balancing selection or recent selective sweeps in any of the seven populations surveyed. Also in contrast with earlier surveys of one of these R genes, there was no evidence that the resistance genes or the major-effect mutations were subject to elevated differentiation between populations. We suggest that conditional neutrality in the absence of the corresponding pathogen, rather than long-term balancing selection or local adaptation, may in some circumstances be a significant cause of elevated functional polymorphism at R genes. In contrast with the R genes, analysis of diversity and differentiation at the flanking FERONIA locus showed high population divergence, suggesting local adaptation on this locus controlling male-female signalling during fertilization.
Collapse
Affiliation(s)
- Gesseca Gos
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada M3J1P3
| | | |
Collapse
|