1
|
Siljestam M, Rueffler C. Heterozygote advantage can explain the extraordinary diversity of immune genes. eLife 2024; 13:e94587. [PMID: 39589392 PMCID: PMC11723581 DOI: 10.7554/elife.94587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.
Collapse
Affiliation(s)
- Mattias Siljestam
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
2
|
Slatkin M. Joint estimation of selection intensity and mutation rate under balancing selection with applications to HLA. Genetics 2022; 221:6569836. [PMID: 35435218 PMCID: PMC9157114 DOI: 10.1093/genetics/iyac058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
A composite likelihood method is introduced for jointly estimating the intensity of selection and the rate of mutation, both scaled by the effective population size, when there is balancing selection at a single multi-allelic locus in an isolated population at demographic equilibrium. The performance of the method is tested using simulated data. Average estimated mutation rates and selection intensities are close to the true values but there is considerable variation about the averages. Allowing for both population growth and population subdivision does not result in qualitative differences but the estimated mutation rates and selection intensities do not in general reflect the current effective population size. The method is applied to three class I (HLA-A, HLA-B and HLA-C) and two class II loci (HLA-DRB1 and HLA-DQA1) in the 1000 Genomes populations. Allowing for asymmetric balancing selection has only a slight effect on the results from the symmetric model. Mutations that restore symmetry of the selection model are preferentially retained because of the tendency of natural selection to maximize average fitness. However, slight differences in selective effects result in much longer persistence time of some alleles. Trans-species polymorphism (TSP), which is characteristic of major-histocompatibility loci in vertebrates, is more likely when there are small differences in allelic fitness than when complete symmetry is assumed. Therefore, variation in allelic fitness expands the range of parameter values consistent with observations of TSP.
Collapse
Affiliation(s)
- Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
| |
Collapse
|
3
|
Inference from the stationary distribution of allele frequencies in a family of Wright-Fisher models with two levels of genetic variability. Theor Popul Biol 2018; 122:78-87. [PMID: 29574050 DOI: 10.1016/j.tpb.2018.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of allele frequencies obtained from diffusion approximations to Wright-Fisher models is useful in developing intuition about the population level effects of evolutionary processes. The statistical properties of the stationary distributions of K-allele models have been extensively studied under neutrality or under selection. Here, we introduce a new family of Wright-Fisher models in which there are two hierarchical levels of genetic variability. The genotypes composed of alleles differing from each other at the selected level have fitness differences with respect to each other and evolve under selection. The genotypes composed of alleles differing from each other only at the neutral level have the same fitness and evolve under neutrality. We show that with an appropriate scaling of the mutation parameter with respect to the number of alleles at each level, the frequencies of alleles at the selected and the neutral level are conditionally independent of each other, conditional on knowing the number of alleles at all levels. This conditional independence allows us to simulate from the joint stationary distribution of the allele frequencies. We use these simulated frequencies to perform inference on parameters of the model with two levels of genetic variability using Approximate Bayesian Computation.
Collapse
|
4
|
Abstract
Frequency-dependent selection (FDS) remains a common heuristic explanation for the maintenance of genetic variation in natural populations. The pairwise-interaction model (PIM) is a well-studied general model of frequency-dependent selection, which assumes that a genotype's fitness is a function of within-population intergenotypic interactions. Previous theoretical work indicated that this type of model is able to sustain large numbers of alleles at a single locus when it incorporates recurrent mutation. These studies, however, have ignored the impact of the distribution of fitness effects of new mutations on the dynamics and end results of polymorphism construction. We suggest that a natural way to model mutation would be to assume mutant fitness is related to the fitness of the parental allele, i.e., the existing allele from which the mutant arose. Here we examine the numbers and distributions of fitnesses and alleles produced by construction under the PIM with mutation from parental alleles and the impacts on such measures due to different methods of generating mutant fitnesses. We find that, in comparison with previous results, generating mutants from existing alleles lowers the average number of alleles likely to be observed in a system subject to FDS, but produces polymorphisms that are highly stable and have realistic allele-frequency distributions.
Collapse
|
5
|
Effects of genetic drift and gene flow on the selective maintenance of genetic variation. Genetics 2013; 194:235-44. [PMID: 23457235 DOI: 10.1534/genetics.113.149781] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explanations for the genetic variation ubiquitous in natural populations are often classified by the population-genetic processes they emphasize: natural selection or mutation and genetic drift. Here we investigate models that incorporate all three processes in a spatially structured population, using what we call a construction approach, simulating finite populations under selection that are bombarded with a steady stream of novel mutations. As expected, the amount of genetic variation compared to previous models that ignored the stochastic effects of drift was reduced, especially for smaller populations and when spatial structure was most profound. By contrast, however, for higher levels of gene flow and larger population sizes, the amount of genetic variation found after many generations was greater than that in simulations without drift. This increased amount of genetic variation is due to the introduction of slightly deleterious alleles by genetic drift and this process is more efficient when migration load is higher. The incorporation of genetic drift also selects for fitness sets that exhibit allele-frequency equilibria with larger domains of attraction: they are "more stable." Moreover, the finiteness of populations strongly influences levels of local adaptation, selection strength, and the proportion of allele-frequency vectors that can be distinguished from the neutral expectation.
Collapse
|
6
|
Bronson PG, Mack SJ, Erlich HA, Slatkin M. A sequence-based approach demonstrates that balancing selection in classical human leukocyte antigen (HLA) loci is asymmetric. Hum Mol Genet 2012; 22:252-61. [PMID: 23065702 DOI: 10.1093/hmg/dds424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Balancing selection has maintained human leukocyte antigen (HLA) allele diversity, but it is unclear whether this selection is symmetric (all heterozygotes are comparable and all homozygotes are comparable in terms of fitness) or asymmetric (distinct heterozygote genotypes display greater fitness than others). We tested the hypothesis that HLA is under asymmetric balancing selection in populations by estimating allelic branch lengths from genetic sequence data encoding peptide-binding domains. Significant deviations indicated changes in the ratio of terminal to internal branch lengths. Such deviations could arise even if no individual alleles present a strikingly altered branch length (e.g. if there is an overall distortion, with all or many terminal branches being longer than expected). DQ and DP loci were also analyzed as haplotypes. Using allele frequencies for 419 distinct populations in 10 geographical regions, we examined population differentiation in alleles within and between regions, and the relationship between allelic branch length and frequency. The strongest evidence for asymmetrical balancing selection was observed for HLA-DRB1, HLA-B and HLA-DPA1, with significant deviation (P ≤ 1.1 × 10(-4)) in about half of the populations. There were significant results at all loci except HLA-DQB1/DQA1. We observed moderate genetic variation within and between geographic regions, similar to the rest of the genome. Branch length was not correlated with allele frequency. In conclusion, sequence data suggest that balancing selection in HLA is asymmetric (some heterozygotes enjoy greater fitness than others). Because HLA polymorphism is crucial for pathogen resistance, this may manifest as a frequency-dependent selection with fluctuation in the fitness of specific heterozygotes over time.
Collapse
Affiliation(s)
- Paola G Bronson
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| | | | | | | |
Collapse
|
7
|
Hedrick PW. What is the evidence for heterozygote advantage selection? Trends Ecol Evol 2012; 27:698-704. [PMID: 22975220 DOI: 10.1016/j.tree.2012.08.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
Recent genomic data have found that many genes show the signal of selection. How many of these genes are undergoing heterozygote advantage selection is only beginning to be known. Initial genomic surveys have suggested that only a small proportion of loci have polymorphisms maintained by heterozygote advantage and this is consistent with the few examples generated from other approaches within given species. Unless further studies provide large numbers of loci with heterozygote advantage, it appears that loci with heterozygote advantage must be considered only a small minority of all loci in a species. This is not to say that some heterozygote advantage loci do not have important adaptive functions, but that their role in overall evolutionary change might be more of an unusual phenomenon than a major player in adaptation.
Collapse
|
8
|
Sanchez-Mazas A, Lemaître JF, Currat M. Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments. Philos Trans R Soc Lond B Biol Sci 2012; 367:830-9. [PMID: 22312050 PMCID: PMC3267122 DOI: 10.1098/rstb.2011.0312] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human leucocyte antigen (HLA) loci have a complex evolution where both stochastic (e.g. genetic drift) and deterministic (natural selection) forces are involved. Owing to their extraordinary level of polymorphism, HLA genes are useful markers for reconstructing human settlement history. However, HLA variation often deviates significantly from neutral expectations towards an excess of genetic diversity. Because HLA molecules play a crucial role in immunity, this observation is generally explained by pathogen-driven-balancing selection (PDBS). In this study, we investigate the PDBS model by analysing HLA allelic diversity on a large database of 535 populations in relation to pathogen richness. Our results confirm that geographical distances are excellent predictors of HLA genetic differentiation worldwide. We also find a significant positive correlation between genetic diversity and pathogen richness at two HLA class I loci (HLA-A and -B), as predicted by PDBS, and a significant negative correlation at one HLA class II locus (HLA-DQB1). Although these effects are weak, as shown by a loss of significance when populations submitted to rapid genetic drift are removed from the analysis, the inverse relationship between genetic diversity and pathogen richness at different loci indicates that HLA genes have adopted distinct evolutionary strategies to provide immune protection in pathogen-rich environments.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland.
| | | | | |
Collapse
|
9
|
Ashcroft KJ, Syed F, Arscott G, Bayat A. Assessment of the influence of HLA class I and class II loci on the prevalence of keloid disease in Jamaican Afro-Caribbeans. ACTA ACUST UNITED AC 2011; 78:390-6. [DOI: 10.1111/j.1399-0039.2011.01755.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Cutrera AP, Zenuto RR, Lacey EA. MHC variation, multiple simultaneous infections and physiological condition in the subterranean rodent Ctenomys talarum. INFECTION GENETICS AND EVOLUTION 2011; 11:1023-36. [PMID: 21497205 DOI: 10.1016/j.meegid.2011.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/28/2011] [Accepted: 03/24/2011] [Indexed: 01/15/2023]
Abstract
Parasites and pathogens can play a significant role in shaping the genetic diversity of host populations, particularly at genes associated with host immune response. To explore this relationship in a natural population of vertebrates, we characterized Major Histocompatibility Complex (MHC) variation in the subterranean rodent Ctenomys talarum (the talas tuco-tuco) as a function of parasite load and ability to mount an adaptive immune response against a novel antigen. Specifically, we quantified genotypic diversity at the MHC class II DRB locus in relation to (1) natural variation in infection by multiple genera of parasites (potential agents of selection on MHC genes) and (2) antibody production in response to injection with sheep red blood cells (a measure of immunocompetence). Data were analyzed using co-inertia multivariate statistics, with epidemiological proxies for individual condition (hematocrit, leukocyte profile, body weight) and risk of parasite exposure (season of capture, sex). A significant excess of DRB heterozygotes was evident in the study population. Co-inertia analyses revealed significant associations between specific DRB alleles and both parasite load and intensity of humoral immune response against sheep red blood cells. The presence of specific DRB aminoacid sequences appeared to be more strongly associated with parasite load and response to a novel antigen than was heterozygosity at the DRB locus. These data suggest a role for parasite-driven balancing selection in maintaining MHC variation in natural populations of C. talarum. At the same time, these findings underscore the importance of using diverse parameters to study interactions among physiological conditions, immunocompetence, and MHC diversity in free-living animals that are confronted with multiple simultaneous immune challenges.
Collapse
Affiliation(s)
- Ana Paula Cutrera
- Laboratorio de Ecofisiología, Departamento de Biología, Universidad Nacional de Mar del Plata, CONICET, CC 1245, Mar del Plata, Argentina.
| | | | | |
Collapse
|
11
|
Characterisation of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri). Immunogenetics 2010; 62:613-22. [PMID: 20661731 DOI: 10.1007/s00251-010-0466-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/08/2010] [Indexed: 12/31/2022]
Abstract
Genes of the major histocompatibility complex (MHC) mainly code for proteins of the immune system of jawed vertebrates. In particular, MHC class I and II cell surface proteins are crucial for the self/non-self discrimination of the adaptive immune system and are the most polymorphic genes in vertebrates. Positive selection, gene duplications and pseudogenes shape the face of the MHC and reflect a highly dynamic evolution. Here, we present for the first time data of the highly polymorphic MHC class II DRB exon 2 of a representative of the mammalian order scandentia, the northern tree shrew Tupaia belangeri. We found up to eight different alleles per individual and determined haplotype constitution by intensively studying their inheritance. The alleles were assigned to four putative loci, all of which were polymorphic. Only the most polymorphic locus was subject to positive selection within the antigen binding sites and only alleles of this locus were transcribed.
Collapse
|
12
|
Kekäläinen J, Vallunen JA, Primmer CR, Rättyä J, Taskinen J. Signals of major histocompatibility complex overdominance in a wild salmonid population. Proc Biol Sci 2009; 276:3133-40. [PMID: 19515657 DOI: 10.1098/rspb.2009.0727] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major histocompatibility complex (MHC) contains the most variable genes in vertebrates, but despite extensive research, the mechanisms maintaining this polymorphism are still unresolved. One hypothesis is that MHC polymorphism is a result of balancing selection operating by overdominance, but convincing evidence for overdominant selection in natural populations has been lacking. We present strong evidence consistent with MHC-specific overdominance in a free-living population of Arctic charr (Salvelinus alpinus) in northernmost Europe. In this population, where just two MHC alleles were observed, MHC heterozygous fish had a lower parasite load, were in better condition (as estimated by a fatness indicator) and had higher survival under stress than either of the homozygotes. Conversely, there was no consistent association between these fitness measures and assumedly neutral microsatellite variability, indicating an MHC-specific effect. Our results provide convincing empirical evidence consistent with the notion that overdominance can be an important evolutionary mechanism contributing to MHC polymorphism in wild animal populations. They also support a recent simulation study indicating that the number of alleles expected to be maintained at an MHC loci can be low, even under strong heterozygote advantage.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35 (YAC-315.2), 40014 Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
13
|
Abstract
We present a Moran-model approach to modeling general multiallelic selection in a finite population and show how it may be used to develop theoretical models of biological systems of balancing selection such as plant gametophytic self-incompatibility loci. We propose new expressions for the stationary distribution of allele frequencies under selection and use them to show that the continuous-time Markov chain describing allele frequency change with exchangeable selection and Moran-model reproduction is reversible. We then use the reversibility property to derive the expected allele frequency spectrum in a finite population for several general models of multiallelic selection. Using simulations, we show that our approach is valid over a broader range of parameters than previous analyses of balancing selection based on diffusion approximations to the Wright-Fisher model of reproduction. Our results can be applied to any model of multiallelic selection in which fitness is solely a function of allele frequency.
Collapse
|
14
|
Oliver MK, Telfer S, Piertney SB. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc Biol Sci 2009; 276:1119-28. [PMID: 19129114 DOI: 10.1098/rspb.2008.1525] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host-parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC-parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations.
Collapse
Affiliation(s)
- M K Oliver
- Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Aberdeen AB24 2TZ, UK.
| | | | | |
Collapse
|