1
|
Guha S. Binder and monomer valencies determine the extent of collapse and reswelling of chromatin. J Chem Phys 2025; 162:194904. [PMID: 40387774 DOI: 10.1063/5.0236102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
Multivalent DNA-bridging protein-mediated collapse of chromatin polymers have long been established as one of the driving factors in chromatin organization inside cells. These multivalent proteins can bind to distant binding sites along the chromatin backbone and bring them together in spatial proximity, leading to collapsed conformations. Recently, it has been suggested that these proteins not only drive the collapse of the chromatin polymer but also reswelling at higher concentrations. In this study, we investigate the physical mechanisms underlying this unexpected reswelling behavior. We use the Langevin dynamics simulation of a coarse-grained homopolymer to investigate the effects of the valencies of both the binders and the monomers on the polymer conformations. We find that while the extent of collapse of the polymer is strongly dependent on the binder valency, the extent of reswelling is largely determined by the monomer valency. Furthermore, we also discovered two different physical mechanisms that drive the reswelling of the polymer-excluded volume effects and loss of long-range loops. Finally, we obtain a classification map to determine the regimes in which each of these mechanisms is the dominant factor leading to polymer reswelling.
Collapse
Affiliation(s)
- Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India and INFN Napoli, Complesso Universitario di Monte S. Angelo, Napoli 80126, Italy
| |
Collapse
|
2
|
Tsukamoto S, Mofrad MRK. Bridging scales in chromatin organization: Computational models of loop formation and their implications for genome function. J Chem Phys 2025; 162:054122. [PMID: 39918128 DOI: 10.1063/5.0232328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 05/08/2025] Open
Abstract
Chromatin loop formation plays a crucial role in 3D genome interactions, with misfolding potentially leading to irregular gene expression and various diseases. While experimental tools such as Hi-C have advanced our understanding of genome interactions, the biophysical principles underlying chromatin loop formation remain elusive. This review examines computational approaches to chromatin folding, focusing on polymer models that elucidate chromatin loop mechanics. We discuss three key models: (1) the multi-loop-subcompartment model, which investigates the structural effects of loops on chromatin conformation; (2) the strings and binders switch model, capturing thermodynamic chromatin aggregation; and (3) the loop extrusion model, revealing the role of structural maintenance of chromosome complexes. In addition, we explore advanced models that address chromatin clustering heterogeneity in biological processes and disease progression. The review concludes with an outlook on open questions and current trends in chromatin loop formation and genome interactions, emphasizing the physical and computational challenges in the field.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
- Molecular Biophysics and Integrative BioImaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Borando F, Tiana G. Effective model of protein-mediated interactions in chromatin. Phys Rev E 2024; 109:064406. [PMID: 39021027 DOI: 10.1103/physreve.109.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Protein-mediated interactions are ubiquitous in the cellular environment, and particularly in the nucleus, where they are responsible for the structuring of chromatin. We show through molecular-dynamics simulations of a polymer surrounded by binders that the strength of the binder-polymer interaction separates an equilibrium from a nonequilibrium regime. In the equilibrium regime, the system can be efficiently described by an effective model in which the binders are traced out. Even in this case, the polymers display features that are different from those of a standard homopolymer interacting with two-body interactions. We then extend the effective model to deal with the case where binders cannot be regarded as in equilibrium and a new phenomenology appears, including local blobs in the polymer. An effective description of this system can be useful in elucidating the fundamental mechanisms that govern chromatin structuring in particular and indirect interactions in general.
Collapse
|
4
|
Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling. Int J Mol Sci 2023; 24:ijms24043660. [PMID: 36835064 PMCID: PMC9967178 DOI: 10.3390/ijms24043660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the mechanisms underlying the complex 3D architecture of mammalian genomes poses, at a more fundamental level, the problem of how two or multiple genomic sites can establish physical contacts in the nucleus of the cells. Beyond stochastic and fleeting encounters related to the polymeric nature of chromatin, experiments have revealed specific, privileged patterns of interactions that suggest the existence of basic organizing principles of folding. In this review, we focus on two major and recently proposed physical processes of chromatin organization: loop-extrusion and polymer phase-separation, both supported by increasing experimental evidence. We discuss their implementation into polymer physics models, which we test against available single-cell super-resolution imaging data, showing that both mechanisms can cooperate to shape chromatin structure at the single-molecule level. Next, by exploiting the comprehension of the underlying molecular mechanisms, we illustrate how such polymer models can be used as powerful tools to make predictions in silico that can complement experiments in understanding genome folding. To this aim, we focus on recent key applications, such as the prediction of chromatin structure rearrangements upon disease-associated mutations and the identification of the putative chromatin organizing factors that orchestrate the specificity of DNA regulatory contacts genome-wide.
Collapse
|
5
|
Consistencies and contradictions in different polymer models of chromatin architecture. Comput Struct Biotechnol J 2023; 21:1084-1091. [PMID: 36789261 PMCID: PMC9900451 DOI: 10.1016/j.csbj.2023.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Genetic information is stored in very long DNA molecules, which are folded to form chromatin, a similarly long polymer fibre that is ultimately organised into chromosomes. The organisation of chromatin is fundamental to many cellular functions, from the expression of the genetic information to cell division. As a long polymer, chromatin is very flexible and may adopt a myriad of shapes. Globally, the polymer physics governing chromatin dynamics is very well understood. But chromatin is not uniform and regions of it, with chemical modifications and bound effectors, form domains and compartments through mechanisms not yet clear. Polymer models have been successfully used to investigate these mechanisms to explain cytological observations and build hypothesis for experimental validation. Many different approaches to conceptualise chromatin in polymer models can be envisioned and each reflects different aspects. Here, we compare recent approaches that aim at reproducing prominent features of interphase chromatin organisation: the compartmentalisation into eu- and heterochromatin compartments, the formation of a nucleolus, chromatin loops and the rosette and Rabl conformations of interphase chromosomes. We highlight commonalities and contradictions that point to a modulation of the mechanisms involved to fine degree. Consolidating models will require the inclusion of yet hidden or neglected parameters.
Collapse
|
6
|
Ng WS, Sielaff H, Zhao ZW. Phase Separation-Mediated Chromatin Organization and Dynamics: From Imaging-Based Quantitative Characterizations to Functional Implications. Int J Mol Sci 2022; 23:8039. [PMID: 35887384 PMCID: PMC9316379 DOI: 10.3390/ijms23148039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
As an effective and versatile strategy to compartmentalize cellular components without the need for lipid membranes, phase separation has been found to underpin a wide range of intranuclear processes, particularly those involving chromatin. Many of the unique physico-chemical properties of chromatin-based phase condensates are harnessed by the cell to accomplish complex regulatory functions in a spatially and temporally controlled manner. Here, we survey key recent findings on the mechanistic roles of phase separation in regulating the organization and dynamics of chromatin-based molecular processes across length scales, packing states and intranuclear functions, with a particular emphasis on quantitative characterizations of these condensates enabled by advanced imaging-based approaches. By illuminating the complex interplay between chromatin and various chromatin-interacting molecular species mediated by phase separation, this review sheds light on an emerging multi-scale, multi-modal and multi-faceted landscape that hierarchically regulates the genome within the highly crowded and dynamic nuclear space. Moreover, deficiencies in existing studies also highlight the need for mechanism-specific criteria and multi-parametric approaches for the characterization of chromatin-based phase separation using complementary techniques and call for greater efforts to correlate the quantitative features of these condensates with their functional consequences in close-to-native cellular contexts.
Collapse
Affiliation(s)
- Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
7
|
Diffusion and distal linkages govern interchromosomal dynamics during meiotic prophase. Proc Natl Acad Sci U S A 2022; 119:e2115883119. [PMID: 35302885 PMCID: PMC8944930 DOI: 10.1073/pnas.2115883119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.
Collapse
|
8
|
Child MB, Bateman JR, Jahangiri A, Reimer A, Lammers NC, Sabouni N, Villamarin D, McKenzie-Smith GC, Johnson JE, Jost D, Garcia HG. Live imaging and biophysical modeling support a button-based mechanism of somatic homolog pairing in Drosophila. eLife 2021; 10:64412. [PMID: 34100718 PMCID: PMC8294847 DOI: 10.7554/elife.64412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Three-dimensional eukaryotic genome organization provides the structural basis for gene regulation. In Drosophila melanogaster, genome folding is characterized by somatic homolog pairing, where homologous chromosomes are intimately paired from end to end; however, how homologs identify one another and pair has remained mysterious. Recently, this process has been proposed to be driven by specifically interacting 'buttons' encoded along chromosomes. Here, we turned this hypothesis into a quantitative biophysical model to demonstrate that a button-based mechanism can lead to chromosome-wide pairing. We tested our model using live-imaging measurements of chromosomal loci tagged with the MS2 and PP7 nascent RNA labeling systems. We show solid agreement between model predictions and experiments in the pairing dynamics of individual homologous loci. Our results strongly support a button-based mechanism of somatic homolog pairing in Drosophila and provide a theoretical framework for revealing the molecular identity and regulation of buttons.
Collapse
Affiliation(s)
- Myron Barber Child
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, United States
| | - Amir Jahangiri
- Univ Grenoble Alpes CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Armando Reimer
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Nicholas C Lammers
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Nica Sabouni
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | | | | | - Daniel Jost
- Univ Grenoble Alpes CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.,Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratory of Biology and Modeling of the Cell, Lyon, France
| | - Hernan G Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
9
|
Fiorillo L, Bianco S, Chiariello AM, Barbieri M, Esposito A, Annunziatella C, Conte M, Corrado A, Prisco A, Pombo A, Nicodemi M. Inference of chromosome 3D structures from GAM data by a physics computational approach. Methods 2020; 181-182:70-79. [PMID: 31604121 DOI: 10.1016/j.ymeth.2019.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/02/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
The combination of modelling and experimental advances can provide deep insights for understanding chromatin 3D organization and ultimately its underlying mechanisms. In particular, models of polymer physics can help comprehend the complexity of genomic contact maps, as those emerging from technologies such as Hi-C, GAM or SPRITE. Here we discuss a method to reconstruct 3D structures from Genome Architecture Mapping (GAM) data, based on PRISMR, a computational approach introduced to find the minimal polymer model best describing Hi-C input data from only polymer physics. After recapitulating the PRISMR procedure, we describe how we extended it for treating GAM data. We successfully test the method on a 6 Mb region around the Sox9 gene and, at a lower resolution, on the whole chromosome 7 in mouse embryonic stem cells. The PRISMR derived 3D structures from GAM co-segregation data are finally validated against independent Hi-C contact maps. The method results to be versatile and robust, hinting that it can be similarly applied to different experimental data, such as SPRITE or microscopy distance data.
Collapse
Affiliation(s)
- Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy.
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mariano Barbieri
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Robert-Rössle Strasse, Berlin-Buch 13092, Germany
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy; Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Robert-Rössle Strasse, Berlin-Buch 13092, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Alfonso Corrado
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Antonella Prisco
- Institute of Genetics and Biophysics, Consiglio Nazionale Delle Ricerche (CNR), Italy
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Robert-Rössle Strasse, Berlin-Buch 13092, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy; Berlin Institute of Health (BIH), MDC-Berlin, Germany.
| |
Collapse
|
10
|
Chiariello AM, Bianco S, Oudelaar AM, Esposito A, Annunziatella C, Fiorillo L, Conte M, Corrado A, Prisco A, Larke MSC, Telenius JM, Sciarretta R, Musella F, Buckle VJ, Higgs DR, Hughes JR, Nicodemi M. A Dynamic Folded Hairpin Conformation Is Associated with α-Globin Activation in Erythroid Cells. Cell Rep 2020; 30:2125-2135.e5. [PMID: 32075757 DOI: 10.1016/j.celrep.2020.01.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/13/2019] [Accepted: 01/14/2020] [Indexed: 01/07/2023] Open
Abstract
We investigate the three-dimensional (3D) conformations of the α-globin locus at the single-allele level in murine embryonic stem cells (ESCs) and erythroid cells, combining polymer physics models and high-resolution Capture-C data. Model predictions are validated against independent fluorescence in situ hybridization (FISH) data measuring pairwise distances, and Tri-C data identifying three-way contacts. The architecture is rearranged during the transition from ESCs to erythroid cells, associated with the activation of the globin genes. We find that in ESCs, the spatial organization conforms to a highly intermingled 3D structure involving non-specific contacts, whereas in erythroid cells the α-globin genes and their enhancers form a self-contained domain, arranged in a folded hairpin conformation, separated from intermingling flanking regions by a thermodynamic mechanism of micro-phase separation. The flanking regions are rich in convergent CTCF sites, which only marginally participate in the erythroid-specific gene-enhancer contacts, suggesting that beyond the interaction of CTCF sites, multiple molecular mechanisms cooperate to form an interacting domain.
Collapse
Affiliation(s)
- Andrea M Chiariello
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy.
| | - Simona Bianco
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Esposito
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy; Berlin Institute for Medical Systems Biology at the Max Delbruck Center for Molecular Medicine in the Helmholtz, Association, Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Alfonso Corrado
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | | | - Martin S C Larke
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena M Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Renato Sciarretta
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Francesco Musella
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mario Nicodemi
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy; Berlin Institute of Health (BIH), MDC-Berlin, 13125 Berlin, Germany.
| |
Collapse
|
11
|
Sarnataro S, Chiariello AM, Esposito A, Prisco A, Nicodemi M. Structure of the human chromosome interaction network. PLoS One 2017; 12:e0188201. [PMID: 29141034 PMCID: PMC5687706 DOI: 10.1371/journal.pone.0188201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.
Collapse
Affiliation(s)
- Sergio Sarnataro
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Mario Nicodemi
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
12
|
Chiariello AM, Esposito A, Annunziatella C, Bianco S, Fiorillo L, Prisco A, Nicodemi M. A Polymer Physics Investigation of the Architecture of the Murine Orthologue of the 7q11.23 Human Locus. Front Neurosci 2017; 11:559. [PMID: 29066944 PMCID: PMC5641313 DOI: 10.3389/fnins.2017.00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.
Collapse
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Antonella Prisco
- Institute of Genetics and Biophysics, Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Computational inference of physical spatial organization of eukaryotic genomes. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Annunziatella C, Chiariello AM, Bianco S, Nicodemi M. Polymer models of the hierarchical folding of the Hox-B chromosomal locus. Phys Rev E 2016; 94:042402. [PMID: 27841585 DOI: 10.1103/physreve.94.042402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 06/06/2023]
Abstract
As revealed by novel technologies, chromosomes in the nucleus of mammalian cells have a complex spatial organization that serves vital functional purposes. Here we use models from polymer physics to identify the mechanisms that control their three-dimensional spatial organization. In particular, we investigate a model of the Hox-B locus, an important genomic region involved in embryo development, to expose the principles regulating chromatin folding and its complex behaviors in mouse embryonic stem cells. We reconstruct with high accuracy the pairwise contact matrix of the Hox-B locus as derived by Hi-C experiments and investigate its hierarchical folding dynamics. We trace back the observed behaviors to general scaling properties of polymer physics.
Collapse
Affiliation(s)
- Carlo Annunziatella
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Universitá di Napoli Federico II, INFN Napoli, CNR, SPIN, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| |
Collapse
|
15
|
Pueschel R, Coraggio F, Meister P. From single genes to entire genomes: the search for a function of nuclear organization. Development 2016; 143:910-23. [PMID: 26980791 DOI: 10.1242/dev.129007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of different domains within the nucleus has been clear from the time, in the late 1920s, that heterochromatin and euchromatin were discovered. The observation that heterochromatin is less transcribed than euchromatin suggested that microscopically identifiable structures might correspond to functionally different domains of the nucleus. Until 15 years ago, studies linking gene expression and subnuclear localization were limited to a few genes. As we discuss in this Review, new genome-wide techniques have now radically changed the way nuclear organization is analyzed. These have provided a much more detailed view of functional nuclear architecture, leading to the emergence of a number of new paradigms of chromatin folding and how this folding evolves during development.
Collapse
Affiliation(s)
- Ringo Pueschel
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Francesca Coraggio
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
16
|
Bianco S, Chiariello AM, Annunziatella C, Esposito A, Nicodemi M. Polymer Physics of the Large-Scale Structure of Chromatin. Methods Mol Biol 2016; 1480:201-206. [PMID: 27659986 DOI: 10.1007/978-1-4939-6380-5_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.
Collapse
Affiliation(s)
- Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, INFN, SPIN-CNR, Complesso Universitario di Monte S.Angelo, via Cintia, Naples, 80126, Italy
| | - Andrea Maria Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, INFN, SPIN-CNR, Complesso Universitario di Monte S.Angelo, via Cintia, Naples, 80126, Italy
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, INFN, SPIN-CNR, Complesso Universitario di Monte S.Angelo, via Cintia, Naples, 80126, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, INFN, SPIN-CNR, Complesso Universitario di Monte S.Angelo, via Cintia, Naples, 80126, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, INFN, SPIN-CNR, Complesso Universitario di Monte S.Angelo, via Cintia, Naples, 80126, Italy.
| |
Collapse
|
17
|
Pombo A, Nicodemi M. Physical mechanisms behind the large scale features of chromatin organization. Transcription 2015; 5:e28447. [PMID: 25764220 DOI: 10.4161/trns.28447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We review the picture emerging from recently published models of classical polymer physics of the general features of chromatin large scale spatial organization, as revealed by microscopy and Hi-C data.
Collapse
Affiliation(s)
- Ana Pombo
- a Berlin Institute for Medical Systems Biology; Max Delbrück Center for Molecular Medicine; Berlin-Buch, Germany
| | | |
Collapse
|
18
|
Nicodemi M, Pombo A. Models of chromosome structure. Curr Opin Cell Biol 2014; 28:90-5. [PMID: 24804566 DOI: 10.1016/j.ceb.2014.04.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Understanding the mechanisms that control chromosome folding in the nucleus of eukaryotes and their contribution to gene regulation is a key open issue in molecular biology. Microscopy and chromatin-capture techniques have shown that chromatin has a complex organization, which dynamically changes across organisms and cell types. The need to make sense of such a fascinating complexity has prompted the development of quantitative models from physics, to find the principles of chromosome folding, its origin and function. Here, we concisely review recent advances in chromosome modeling, focusing on a recently proposed framework, the Strings & Binders Switch (SBS) model, which recapitulates key features of chromosome organization in space and time.
Collapse
Affiliation(s)
- Mario Nicodemi
- Universita' di Napoli "Federico II", Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin-Buch, Germany.
| |
Collapse
|
19
|
Single-cell states in the estrogen response of breast cancer cell lines. PLoS One 2014; 9:e88485. [PMID: 24586334 PMCID: PMC3934861 DOI: 10.1371/journal.pone.0088485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/07/2014] [Indexed: 12/25/2022] Open
Abstract
Estrogen responsive breast cancer cell lines have been extensively studied to characterize transcriptional patterns in hormone-responsive tumors. Nevertheless, due to current technological limitations, genome-wide studies have typically been limited to population averaged data. Here we obtain, for the first time, a characterization at the single-cell level of the states and expression signatures of a hormone-starved MCF-7 cell system responding to estrogen. To do so, we employ a recently proposed model that allows for dissecting single-cell states from time-course microarray data. We show that within 32 hours following stimulation, MCF-7 cells traverse, most likely, six states, with a faster early response followed by a progressive deceleration. We also derive the genome-wide transcriptional profiles of such single-cell states and their functional characterization. Our results support a scenario where estrogen promotes cell cycle progression by controlling multiple, sequential regulatory steps, whose single-cell events are here identified.
Collapse
|
20
|
Barbieri M, Scialdone A, Piccolo A, Chiariello AM, di Lanno C, Prisco A, Pombo A, Nicodemi M. Polymer models of chromatin organization. Front Genet 2013; 4:113. [PMID: 23802011 PMCID: PMC3687138 DOI: 10.3389/fgene.2013.00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/03/2023] Open
Affiliation(s)
- Mariano Barbieri
- Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Universita' di Napoli Federico IINapoli, Italy
| | - Antonio Scialdone
- Computational and Systems Biology, John Innes Centre, Norwich Research ParkNorwich, UK
| | - Andrea Piccolo
- Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Universita' di Napoli Federico IINapoli, Italy
| | - Andrea M. Chiariello
- Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Universita' di Napoli Federico IINapoli, Italy
| | - Ciro di Lanno
- Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Universita' di Napoli Federico IINapoli, Italy
| | - Antonella Prisco
- CNR Institute of Genetics and Biophysics “Buzzati Traverso”Naples, Italy
| | - Ana Pombo
- M. Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems BiologyBerlin-Buch, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, INFN Sezione di Napoli, CNR-SPIN, Universita' di Napoli Federico IINapoli, Italy
| |
Collapse
|
21
|
Barbieri M, Fraser J, Lavitas LM, Chotalia M, Dostie J, Pombo A, Nicodemi M. A polymer model explains the complexity of large-scale chromatin folding. Nucleus 2013; 4:267-73. [PMID: 23823730 DOI: 10.4161/nucl.25432] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The underlying global organization of chromatin within the cell nucleus has been the focus of intense recent research. Hi-C methods have allowed for the detection of genome-wide chromatin interactions, revealing a complex large-scale organization where chromosomes tend to partition into megabase-sized "topological domains" of local chromatin interactions and intra-chromosomal contacts extends over much longer scales, in a cell-type and chromosome specific manner. Until recently, the distinct chromatin folding properties observed experimentally have been difficult to explain in a single conceptual framework. We reported that a simple polymer-physics model of chromatin, the strings and binders switch (SBS) model, succeeds in describing the full range of chromatin configurations observed in vivo. The SBS model simulates the interactions between randomly diffusing binding molecules and binding sites on a polymer chain. It explains how polymer architectural patterns can be established, how different stable conformations can be produced and how conformational changes can be reliably regulated by simple strategies, such as protein upregulation or epigenetic modifications, via fundamental thermodynamics mechanisms.
Collapse
Affiliation(s)
- Mariano Barbieri
- Universita' di Napoli "Federico II"; Dipartimento di Fisica; INFN Sezione di Napoli; CNR-SPIN, Complesso Universitario di Monte S. Angelo; Napoli, Italy; Department of Biochemistry and Goodman Cancer Research Center; McGill University; Montréal, Québec Canada; Berlin Institute for Medical Systems Biology; Max Delbrück Center for Molecular Medicine; Berlin-Buch, Germany; Genome Function Group; MRC Clinical Sciences Centre; Imperial College London; Hammersmith Hospital Campus; London, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Cherstvy AG, Teif VB. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging. J Biol Phys 2013; 39:363-85. [PMID: 23860914 PMCID: PMC3689366 DOI: 10.1007/s10867-012-9294-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/11/2012] [Indexed: 11/26/2022] Open
Abstract
Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476, Potsdam-Golm, Germany.
| | | |
Collapse
|
23
|
Abstract
A variety of important cellular processes require, for functional purposes, the colocalization of multiple DNA loci at specific time points. In most cases, the physical mechanisms responsible for bringing them in close proximity are still elusive. Here we show that the interaction of DNA loci with a concentration of diffusing molecular factors can induce spontaneously their colocalization, through a mechanism based on a thermodynamic phase transition. We consider up to four DNA loci and different valencies for diffusing molecular factors. In particular, our analysis illustrates that a variety of nontrivial stable spatial configurations is allowed in the system, depending on the details of the molecular factor/DNA binding-sites interaction. Finally, we discuss as a case study an application of our model to the pairing of X chromosome at X inactivation, one of the best-known examples of DNA colocalization. We also speculate on the possible links between X colocalization and inactivation.
Collapse
|
24
|
Complexity of chromatin folding is captured by the strings and binders switch model. Proc Natl Acad Sci U S A 2012; 109:16173-8. [PMID: 22988072 DOI: 10.1073/pnas.1204799109] [Citation(s) in RCA: 382] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the "strings and binders switch" model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed "fractal-globule" model, but only as one of many possible transient conformations.
Collapse
|
25
|
Fritsche M, Reinholdt LG, Lessard M, Handel MA, Bewersdorf J, Heermann DW. The impact of entropy on the spatial organization of synaptonemal complexes within the cell nucleus. PLoS One 2012; 7:e36282. [PMID: 22574147 PMCID: PMC3344857 DOI: 10.1371/journal.pone.0036282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
We employ 4Pi-microscopy to study SC organization in mouse spermatocyte nuclei allowing for the three-dimensional reconstruction of the SC's backbone arrangement. Additionally, we model the SCs in the cell nucleus by confined, self-avoiding polymers, whose chain ends are attached to the envelope of the confining cavity and diffuse along it. This work helps to elucidate the role of entropy in shaping pachytene SC organization. The framework provided by the complex interplay between SC polymer rigidity, tethering and confinement is able to qualitatively explain features of SC organization, such as mean squared end-to-end distances, mean squared center-of-mass distances, or SC density distributions. However, it fails in correctly assessing SC entanglement within the nucleus. In fact, our analysis of the 4Pi-microscopy images reveals a higher ordering of SCs within the nuclear volume than what is expected by our numerical model. This suggests that while effects of entropy impact SC organization, the dedicated action of proteins or actin cables is required to fine-tune the spatial ordering of SCs within the cell nucleus.
Collapse
Affiliation(s)
- Miriam Fritsche
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Scialdone A, Nicodemi M. Diffusion-based DNA target colocalization by thermodynamic mechanisms. Development 2010; 137:3877-85. [PMID: 20978079 DOI: 10.1242/dev.053322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In eukaryotic cell nuclei, a variety of DNA interactions with nuclear elements occur, which, in combination with intra- and inter-chromosomal cross-talks, shape a functional 3D architecture. In some cases they are organized by active, i.e. actin/myosin, motors. More often, however, they have been related to passive diffusion mechanisms. Yet, the crucial questions on how DNA loci recognize their target and are reliably shuttled to their destination by Brownian diffusion are still open. Here, we complement the current experimental scenario by considering a physics model, in which the interaction between distant loci is mediated by diffusing bridging molecules. We show that, in such a system, the mechanism underlying target recognition and colocalization is a thermodynamic switch-like process (a phase transition) that only occurs if the concentration and affinity of binding molecules is above a threshold, or else stable contacts are not possible. We also briefly discuss the kinetics of this `passive-shuttling' process, as produced by random diffusion of DNA loci and their binders, and derive predictions based on the effects of genomic modifications and deletions.
Collapse
Affiliation(s)
- Antonio Scialdone
- Dipartimento di Scienze Fisiche, Università di Napoli "Federico II" and INFN, Napoli, 80126, Italy.
| | | |
Collapse
|
27
|
Abstract
The X-linked region now known as the "X-inactivation center" (Xic) was once dominated by protein-coding genes but, with the rise of Eutherian mammals some 150-200 million years ago, became infiltrated by genes that produce long noncoding RNA (ncRNA). Some of the noncoding genes have been shown to play crucial roles during X-chromosome inactivation (XCI), including the targeting of chromatin modifiers to the X. The rapid establishment of ncRNA hints at a possible preference for long transcripts in some aspects of epigenetic regulation. This article discusses the role of RNA in XCI and considers the advantages RNA offers in delivering allelic, cis-limited, and locus-specific control. Unlike proteins and small RNAs, long ncRNAs are tethered to the site of transcription and effectively tag the allele of origin. Furthermore, long ncRNAs are drawn from larger sequence space than proteins and can mark a unique region in a complex genome. Thus, like their small RNA cousins, long ncRNAs may emerge as versatile and powerful regulators of the epigenome.
Collapse
|
28
|
DNA loci cross-talk through thermodynamics. J Biomed Biotechnol 2009; 2009:516723. [PMID: 19759859 PMCID: PMC2744883 DOI: 10.1155/2009/516723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/05/2009] [Accepted: 07/08/2009] [Indexed: 11/17/2022] Open
Abstract
The recognition and pairing of specific DNA loci, though crucial for a plenty of important cellular processes, are produced by still mysterious physical mechanisms. We propose the first quantitative
model from Statistical Mechanics, able to clarify the interaction allowing such “DNA cross-talk”
events. Soluble molecules, which bind some DNA recognition sequences, produce an effective attraction
between distant DNA loci; if their affinity, their concentration, and the relative DNA binding
sites number exceed given thresholds, DNA colocalization occurs as a result of a thermodynamic
phase transition. In this paper, after a concise report on some of the most recent experimental results,
we introduce our model and carry out a detailed “in silico” analysis of it, by means of Monte
Carlo simulations. Our studies, while rationalize several experimental observations, result in very
interesting and testable predictions.
Collapse
|
29
|
Abstract
Chromosomes are not distributed randomly in nuclei. Appropriate positioning can activate (or repress) genes by bringing them closer to active (or inactive) compartments like euchromatin (or heterochromatin), and this is usually assumed to be driven by specific local forces (e.g., involving H bonds between nucleosomes or between nucleosomes and the lamina). Using Monte Carlo simulations, we demonstrate that nonspecific (entropic) forces acting alone are sufficient to position and shape self-avoiding polymers within a confining sphere in the ways seen in nuclei. We suggest that they can drive long flexible polymers (representing gene-rich chromosomes) to the interior, compact/thick ones (and heterochromatin) to the periphery, looped (but not linear) ones into appropriately shaped (ellipsoidal) territories, and polymers with large terminal beads (representing centromeric heterochromatin) into peripheral chromocenters. Flexible polymers tend to intermingle less than others, which is in accord with observations that gene-dense (and so flexible) chromosomes make poor translocation partners. Thus, entropic forces probably participate in the self-organization of chromosomes within nuclei.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK.
| | | |
Collapse
|
30
|
Veglio A, Gamba A, Nicodemi M, Bussolino F, Serini G. Symmetry breaking mechanism for epithelial cell polarization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031919. [PMID: 19905158 DOI: 10.1103/physreve.80.031919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 07/09/2009] [Indexed: 05/28/2023]
Abstract
In multicellular organisms, epithelial cells form layers separating compartments responsible for different physiological functions. At the early stage of epithelial layer formation, each cell of an aggregate defines an inner and an outer side by breaking the symmetry of its initial state, in a process known as epithelial polarization. By integrating recent biochemical and biophysical data with stochastic simulations of the relevant reaction-diffusion system, we provide evidence that epithelial cell polarization is a chemical phase-separation process induced by a local bistability in the signaling network at the level of the cell membrane. The early symmetry breaking event triggering phase separation is induced by adhesion-dependent mechanical forces localized in the point of convergence of cell surfaces when a threshold number of confluent cells is reached. The generality of the emerging phase-separation scenario is likely common to many processes of cell polarity formation.
Collapse
Affiliation(s)
- A Veglio
- Department of Oncological Sciences and Division of Vascular Biology, Institute for Cancer Research and Treatment, School of Medicine, University of Torino, 10060 Candiolo, Torino, Italy
| | | | | | | | | |
Collapse
|
31
|
Abstract
Transcriptome studies are revealing that the eukaryotic genome actively transcribes a diverse repertoire of large noncoding RNAs (ncRNAs), many of which are unannotated and distinct from the small RNAs that have garnered much attention in recent years. Why are they so pervasive, and do they have a function? X-chromosome inactivation (XCI) is a classic epigenetic phenomenon associated with many large ncRNAs. Here, I provide a perspective on how XCI is achieved in mice and suggest how this knowledge can be applied to the rest of the genome. Emerging data indicate that long ncRNAs can function as guides and tethers, and may be the molecules of choice for epigenetic regulation: First, unlike proteins and small RNAs, large ncRNAs remain tethered to the site of transcription, and can therefore uniquely direct allelic regulation. Second, ncRNAs command a much larger sequence space than proteins, and can therefore achieve very precise spatiotemporal control of development. These properties imply that long noncoding transcripts may ultimately rival small RNAs and proteins in their versatility as epigenetic regulators, particularly for locus- and allele-specific control.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
32
|
Nicodemi M, Prisco A. Thermodynamic pathways to genome spatial organization in the cell nucleus. Biophys J 2009; 96:2168-2177. [PMID: 19289043 PMCID: PMC2717292 DOI: 10.1016/j.bpj.2008.12.3919] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/16/2008] [Accepted: 12/09/2008] [Indexed: 12/17/2022] Open
Abstract
The architecture of the eukaryotic genome is characterized by a high degree of spatial organization. Chromosomes occupy preferred territories correlated to their state of activity and, yet, displace their genes to interact with remote sites in complex patterns requiring the orchestration of a huge number of DNA loci and molecular regulators. Far from random, this organization serves crucial functional purposes, but its governing principles remain elusive. By computer simulations of a statistical mechanics model, we show how architectural patterns spontaneously arise from the physical interaction between soluble binding molecules and chromosomes via collective thermodynamics mechanisms. Chromosomes colocalize, loops and territories form, and find their relative positions as stable thermodynamic states. These are selected by thermodynamic switches, which are regulated by concentrations/affinity of soluble mediators and by number/location of their attachment sites along chromosomes. Our thermodynamic switch model of nuclear architecture, thus, explains on quantitative grounds how well-known cell strategies of upregulation of DNA binding proteins or modification of chromatin structure can dynamically shape the organization of the nucleus.
Collapse
Affiliation(s)
- Mario Nicodemi
- Department of Physics and Complexity Science, University of Warwick, Coventry, United Kingdom.
| | | |
Collapse
|
33
|
Mechanics and dynamics of X-chromosome pairing at X inactivation. PLoS Comput Biol 2008; 4:e1000244. [PMID: 19112484 PMCID: PMC2592697 DOI: 10.1371/journal.pcbi.1000244] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/06/2008] [Indexed: 11/21/2022] Open
Abstract
At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism inducing recognition and pairing of the X's remains, though, elusive. Starting from recent discoveries on the molecular factors and on the DNA sequences (the so-called “pairing sites”) involved, we dissect the mechanical basis of Xic colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model predictions to available experimental data. Some important cellular processes involve homologous chromosome recognition and pairing. A prominent example is the colocalization of X chromosomes occurring at the onset of X chromosome inactivation, the vital process whereby female mammalian cells silence one of their two X chromosomes to equalize the dosage of X products with respect to males (having just one X). The crucial question on how the Xs recognize each other and come together is, however, still open. Starting from important recent experimental discoveries, we propose a quantitative model, from statistical mechanics, which elucidates the mechanical basis of such phenomena. We demonstrate that a set of soluble molecules binding specific DNA sequences are sufficient to induce recognition and colocalization. This is possible, however, only when their binding energy/concentration exceeds a threshold value, and this suggests how the cell could regulate colocalization. The pairing mechanism that we propose is grounded in general thermodynamic principles, so it could apply to other DNA pairing processes. While we also explore the kinetics of X colocalization, we compare our results to available experimental data and produce testable predictions.
Collapse
|
34
|
Nicodemi M, Panning B, Prisco A. The colocalization transition of homologous chromosomes at meiosis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:061913. [PMID: 18643306 DOI: 10.1103/physreve.77.061913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 03/28/2008] [Indexed: 05/26/2023]
Abstract
Meiosis is the specialized cell division required in sexual reproduction. During its early stages, in the mother cell nucleus, homologous chromosomes recognize each other and colocalize in a crucial step that remains one of the most mysterious of meiosis. Starting from recent discoveries on the system molecular components and interactions, we discuss a statistical mechanics model of chromosome early pairing. Binding molecules mediate long-distance interaction of special DNA recognition sequences and, if their concentration exceeds a critical threshold, they induce a spontaneous colocalization transition of chromosomes, otherwise independently diffusing.
Collapse
Affiliation(s)
- Mario Nicodemi
- Department of Physics and Complexity Science, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|