1
|
Larnerd C, Nolazco M, Valdez A, Sanchez V, Wolf FW. Memory-like states created by the first ethanol experience are encoded into the Drosophila mushroom body learning and memory circuitry in an ethanol-specific manner. PLoS Genet 2025; 21:e1011582. [PMID: 39899623 PMCID: PMC11801723 DOI: 10.1371/journal.pgen.1011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
A first ethanol exposure creates three memory-like states in Drosophila. Ethanol memory-like states appear genetically and behaviorally paralleled to the canonical learning and memory traces anesthesia-sensitive, anesthesia-resistant, and long-term memory ASM, ARM, and LTM. It is unknown if these ethanol memory-like states are also encoded by the canonical learning and memory circuitry that is centered on the mushroom bodies. We show that the three ethanol memory-like states, anesthesia-sensitive tolerance (AST) and anesthesia resistant tolerance (ART) created by ethanol sedation to a moderately high ethanol exposure, and chronic tolerance created by a longer low concentration ethanol exposure, each engage the mushroom body circuitry differently. Moreover, critical encoding steps for ethanol memory-like states reside outside the mushroom body circuitry, and within the mushroom body circuitry they are markedly distinct from classical memory traces. Thus, the first ethanol exposure creates distinct memory-like states in ethanol-specific circuits and impacts the function of learning and memory circuitry in ways that might influence the formation and retention of other memories.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Maria Nolazco
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Ashley Valdez
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Vanessa Sanchez
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| |
Collapse
|
2
|
Sleep Modulates Alcohol Toxicity in Drosophila. Int J Mol Sci 2022; 23:ijms232012091. [PMID: 36292943 PMCID: PMC9603330 DOI: 10.3390/ijms232012091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol abuse is a significant public health problem. While considerable research has shown that alcohol use affects sleep, little is known about the role of sleep deprivation in alcohol toxicity. We investigated sleep as a factor modulating alcohol toxicity using Drosophila melanogaster, a model for studies of sleep, alcohol, and aging. Following 24 h of sleep deprivation using a paradigm that similarly affects males and females and induces rebound sleep, flies were given binge-like alcohol exposures. Sleep deprivation increased mortality, with no sex-dependent differences. Sleep deprivation also abolished functional tolerance measured at 24 h after the initial alcohol exposure, although there was no effect on alcohol absorbance or clearance. We investigated the effect of chronic sleep deprivation using mutants with decreased sleep, insomniac and insulin-like peptide 2, finding increased alcohol mortality. Furthermore, we investigated whether pharmacologically inducing sleep prior to alcohol exposure using the GABAA-receptor agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) mitigated the effects of alcohol toxicity on middle-aged flies, flies with environmentally disrupted circadian clocks, and flies with short sleep. Pharmacologically increasing sleep prior to alcohol exposure decreased alcohol-induced mortality. Thus, sleep prior to binge-like alcohol exposure affects alcohol-induced mortality, even in vulnerable groups such as aging flies and those with circadian dysfunction.
Collapse
|
3
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Martínez-Hernández F, Burokas A, Coll C, Moreno-Navarrete JM, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió-Torrentà L, Ricart W, Moya A, Martínez-García M, Maldonado R, Fernández-Real JM. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 2022; 30:340-356.e8. [PMID: 35176247 DOI: 10.1016/j.chom.2022.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow. Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research, (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina-IDIAPJGol), Girona Biomedical Research Institute, (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | | | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation research group. Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
4
|
Control of Cell Growth and Proliferation by the Tribbles Pseudokinase: Lessons from Drosophila. Cancers (Basel) 2021; 13:cancers13040883. [PMID: 33672471 PMCID: PMC7923445 DOI: 10.3390/cancers13040883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Tribbles pseudokinases represent a sub-branch of the CAMK (Ca2+/calmodulin-dependent protein kinase) subfamily and are associated with disease-associated signaling pathways associated with various cancers, including melanoma, lung, liver, and acute leukemia. The ability of this class of molecules to regulate cell proliferation was first recognized in the model organism Drosophila and the fruit fly genetic model and continues to provide insight into the molecular mechanism by which this family of adapter molecules regulates both normal development and disease associated with corruption of their proper regulation and function. Abstract The Tribbles (Trib) family of pseudokinase proteins regulate cell growth, proliferation, and differentiation during normal development and in response to environmental stress. Mutations in human Trib isoforms (Trib1, 2, and 3) have been associated with metabolic disease and linked to leukemia and the formation of solid tumors, including melanomas, hepatomas, and lung cancers. Drosophila Tribbles (Trbl) was the first identified member of this sub-family of pseudokinases and shares a conserved structure and similar functions to bind and direct the degradation of key mediators of cell growth and proliferation. Common Trib targets include Akt kinase (also known as protein kinase B), C/EBP (CAAT/enhancer binding protein) transcription factors, and Cdc25 phosphatases, leading to the notion that Trib family members stand athwart multiple pathways modulating their growth-promoting activities. Recent work using the Drosophila model has provided important insights into novel facets of conserved Tribbles functions in stem cell quiescence, tissue regeneration, metabolism connected to insulin signaling, and tumor formation linked to the Hippo signaling pathway. Here we highlight some of these recent studies and discuss their implications for understanding the complex roles Tribs play in cancers and disease pathologies.
Collapse
|
5
|
Dhillon A, Chowdhury T, Morbey YE, Moehring AJ. Reproductive consequences of an extra long-term sperm storage organ. BMC Evol Biol 2020; 20:159. [PMID: 33256600 PMCID: PMC7706275 DOI: 10.1186/s12862-020-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
Background Sperm storage plays a key role in the reproductive success of many sexually-reproducing organisms, and the capacity of long-term sperm storage varies across species. While there are theoretical explanations for why such variation exists, to date there are no controlled empirical tests of the reproductive consequences of additional long-term sperm storage. While Dipterans ancestrally have three long-term sperm organs, known as the spermathecae, Drosophila contain only two. Results We identified a candidate gene, which we call spermathreecae (sp3), in which a disruption cause the development of three functional spermathecae rather than the usual two in Drosophila. We used this disruption to test the reproductive consequences of having an additional long-term sperm storage organ. Compared to females with two spermathecae, females with three spermathecae store a greater total number of sperm and can produce offspring a greater length of time. However, they did not produce a greater total number of offspring. Conclusions Thus, additional long-term sperm storage in insects may increase female fitness through extending the range of conditions where she produces offspring, or through increasing the quality of offspring via enhanced local sperm competition at fertilization.
Collapse
Affiliation(s)
- Akashdeep Dhillon
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | - Yolanda E Morbey
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| |
Collapse
|
6
|
Williams-Simon PA, Ganesan M, King EG. Learning to collaborate: bringing together behavior and quantitative genomics. J Neurogenet 2020; 34:28-35. [PMID: 31920134 DOI: 10.1080/01677063.2019.1710145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The genetic basis of complex trait like learning and memory have been well studied over the decades. Through those groundbreaking findings, we now have a better understanding about some of the genes and pathways that are involved in learning and/or memory. However, few of these findings identified the naturally segregating variants that are influencing learning and/or memory within populations. In this special issue honoring the legacy of Troy Zars, we review some of the traditional approaches that have been used to elucidate the genetic basis of learning and/or memory, specifically in fruit flies. We highlight some of his contributions to the field, and specifically describe his vision to bring together behavior and quantitative genomics with the aim of expanding our knowledge of the genetic basis of both learning and memory. Finally, we present some of our recent work in this area using a multiparental population (MPP) as a case study and describe the potential of this approach to advance our understanding of neurogenetics.
Collapse
Affiliation(s)
| | - Mathangi Ganesan
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Abstract
Preference for spatial locations to maximize favorable outcomes and minimize aversive experiences helps animals survive and adapt to the changing environment. Both visual and non-visual cues play a critical role in spatial navigation and memory of a place supports and guides these strategies. Here we present the neural, genetic and behavioral processes involved in place memory formation using Drosophila melanogaster with a focus on non-visual cue based spatial memories. The work presented here highlights the work done by Dr. Troy Zars and his colleagues with an emphasis on role of biogenic amines in learning, cell biological mechanisms of neural systems and behavioral plasticity of place conditioning.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University-East Bay, Hayward, CA, USA
| | - Holly LaFerriere
- Department of Biology, Bemidji State University, Bemidji, MN, USA
| |
Collapse
|
8
|
Mustard JA, Oquita R, Garza P, Stoker A. Honey Bees (Apis mellifera) Show a Preference for the Consumption of Ethanol. Alcohol Clin Exp Res 2018; 43:26-35. [PMID: 30347437 DOI: 10.1111/acer.13908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse and alcoholism are significant global issues. Honey bees are excellent models for learning and other complex behaviors; furthermore, they share many behavioral responses to ethanol (EtOH) with humans and animal models. We develop a 2-feeder choice assay to determine whether honey bees will self-administer and preferentially consume solutions containing EtOH. METHODS Gustatory responsiveness to EtOH is determined using the proboscis extension reflex and consumption assays. A 2-feeder choice assay is used to examine preference for the consumption of EtOH. Survival assays assess the metabolic and toxic effects of EtOH consumption. RESULTS Honey bees find the taste of EtOH to be aversive when in water, but addition of sucrose masks the aversive taste. Even though the taste of EtOH is not appetitive, honey bees preferentially consume sucrose solutions containing 1.25 to 2.5% EtOH in a dose-dependent manner. Based on survival assays, honey bees may not be able to derive caloric value from EtOH, and EtOH concentrations of 2.5% or higher lead to significant increases in mortality. CONCLUSIONS Honey bees will self-administer EtOH and show a preference for consuming solutions containing EtOH. Bees may not be able to efficiently utilize EtOH as an energy source, but EtOH-dependent increases in mortality complicate separating the effects of caloric value and toxicity.
Collapse
Affiliation(s)
- Julie A Mustard
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Ramiro Oquita
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Paulina Garza
- Biology Department, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Alexander Stoker
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
9
|
Tumkaya T, Ott S, Claridge-Chang A. A systematic review of Drosophila short-term-memory genetics: Meta-analysis reveals robust reproducibility. Neurosci Biobehav Rev 2018; 95:361-382. [PMID: 30077573 DOI: 10.1016/j.neubiorev.2018.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Geneticists use olfactory conditioning in Drosophila to identify learning genes; however, little is known about how these genes are integrated into short-term memory (STM) pathways. Here, we investigated the hypothesis that the STM evidence base is weak. We performed systematic review and meta-analysis of the field. Using metrics to quantify variation between discovery articles and follow-up studies, we found that seven genes were both highly replicated, and highly reproducible. However, ∼80% of STM genes have never been replicated. While only a few studies investigated interactions, the reviewed genes could account for >1000% memory. This large summed effect size could indicate irreproducibility, many shared pathways, or that current assay protocols lack the specificity needed to identify core plasticity genes. Mechanistic theories of memory will require the convergence of evidence from system, circuit, cellular, molecular, and genetic experiments; systematic data synthesis is an essential tool for integrated neuroscience.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A(⁎)STAR, Singapore; Department of Physiology, National University of Singapore, Singapore
| | - Stanislav Ott
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A(⁎)STAR, Singapore; Department of Physiology, National University of Singapore, Singapore; Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
10
|
LaFerriere H, Zars T. The Drosophila melanogaster tribbles pseudokinase is necessary for proper memory formation. Neurobiol Learn Mem 2017; 144:68-76. [PMID: 28669782 DOI: 10.1016/j.nlm.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The tribbles (trbl) pseudokinases play important roles in signaling and physiology in multiple contexts, ranging from innate immunity to cancer, suggesting fundamental cellular functions for the trbls' gene products. Despite expression of the trbl pseudokinases in the nervous systems of invertebrate and vertebrate animals, and evidence that they have a function within mouse and human dopamine neurons, there is no clear case for a function of a Trbl protein that influences behavior. Indeed, the first and only evidence for this type of function comes from Drosophila melanogaster, where a mutation of the single trbl gene was identified in a genetic screen for short-term memory mutant flies. The current study tested flies containing multiple trbl mutant alleles and potential transgenic rescue in both operant place memory and classical olfactory memory paradigms. Genetic complementation tests and transgenic rescue of memory phenotypes in both paradigms show that the D. melanogaster trbl pseudokinase is essential for proper memory formation. Expression analysis with a polyclonal antiserum against Trbl shows that the protein is expressed widely in the fly brain, with higher expression in the cellular rind than the neuropil. Rescue of the behavioral phenotype with transgenic expression indicates the trbl function can be localized to a subset of the nervous system. Thus, we provide the first compelling case for the function of a trbl pseudokinase in the regulation of behavior.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
12
|
Dunne CR, Cillo AR, Glick DR, John K, Johnson C, Kanwal J, Malik BT, Mammano K, Petrovic S, Pfister W, Rascoe AS, Schrom D, Shapiro S, Simkins JW, Strauss D, Talai R, Tomtishen JP, Vargas J, Veloz T, Vogler TO, Clenshaw ME, Gordon-Hamm DT, Lee KL, Marin EC. Structured inquiry-based learning: Drosophila GAL4 enhancer trap characterization in an undergraduate laboratory course. PLoS Biol 2014; 12:e1002030. [PMID: 25549104 PMCID: PMC4280103 DOI: 10.1371/journal.pbio.1002030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This education article describes a modular laboratory exercise in which undergraduates use fruit flies to generate novel experimental data while learning to perform advanced molecular techniques. We have developed and tested two linked but separable structured inquiry exercises using a set of Drosophila melanogaster GAL4 enhancer trap strains for an upper-level undergraduate laboratory methods course at Bucknell University. In the first, students learn to perform inverse PCR to identify the genomic location of the GAL4 insertion, using FlyBase to identify flanking sequences and the primary literature to synthesize current knowledge regarding the nearest gene. In the second, we cross each GAL4 strain to a UAS-CD8-GFP reporter strain, and students perform whole mount CNS dissection, immunohistochemistry, confocal imaging, and analysis of developmental expression patterns. We have found these exercises to be very effective in teaching the uses and limitations of PCR and antibody-based techniques as well as critical reading of the primary literature and scientific writing. Students appreciate the opportunity to apply what they learn by generating novel data of use to the wider research community.
Collapse
Affiliation(s)
- Christopher R. Dunne
- Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Anthony R. Cillo
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Danielle R. Glick
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Katherine John
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Cody Johnson
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Jaspinder Kanwal
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Brian T. Malik
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Kristina Mammano
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Stefan Petrovic
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - William Pfister
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Alexander S. Rascoe
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Diane Schrom
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Scott Shapiro
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Jeffrey W. Simkins
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - David Strauss
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Rene Talai
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - John P. Tomtishen
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Josephine Vargas
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Tony Veloz
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Thomas O. Vogler
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Michael E. Clenshaw
- Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Devin T. Gordon-Hamm
- Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Kathryn L. Lee
- Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Elizabeth C. Marin
- Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
- Cell Biology/Biochemistry Program, Bucknell University, Lewisburg, Pennsylvania, United States of America
- Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Drosophila Memory Research through Four Eras. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Cunard R. Mammalian tribbles homologs at the crossroads of endoplasmic reticulum stress and Mammalian target of rapamycin pathways. SCIENTIFICA 2013; 2013:750871. [PMID: 24490110 PMCID: PMC3892554 DOI: 10.1155/2013/750871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/20/2013] [Indexed: 05/03/2023]
Abstract
In 2000, investigators discovered Tribbles, a Drosophila protein that coordinates morphogenesis by inhibiting mitosis. Further work has delineated Xenopus (Xtrb2), Nematode (Nipi-3), and mammalian homologs of Drosophila tribbles, which include TRB1, TRB2, and TRB3. The sequences of tribbles homologs are highly conserved, and despite their protein kinase structure, to date they have not been shown to have kinase activity. TRB family members play a role in the differentiation of macrophages, lymphocytes, muscle cells, adipocytes, and osteoblasts. TRB isoforms also coordinate a number of critical cellular processes including glucose and lipid metabolism, inflammation, cellular stress, survival, apoptosis, and tumorigenesis. TRB family members modulate multiple complex signaling networks including mitogen activated protein kinase cascades, protein kinase B/AKT signaling, mammalian target of rapamycin, and inflammatory pathways. The following review will discuss metazoan homologs of Drosophila tribbles, their structure, expression patterns, and functions. In particular, we will focus on TRB3 function in the kidney in podocytes. This review will also discuss the key signaling pathways with which tribbles proteins interact and provide a rationale for developing novel therapeutics that exploit these interactions to provide better treatment options for both acute and chronic kidney disease.
Collapse
Affiliation(s)
- Robyn Cunard
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, Mail Code 151, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- *Robyn Cunard:
| |
Collapse
|
15
|
Quantitative trait loci for response to ethanol in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. Alcohol 2012; 46:737-45. [PMID: 22925826 DOI: 10.1016/j.alcohol.2012.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
Abstract
Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed.
Collapse
|
16
|
Dobens LL, Bouyain S. Developmental roles of tribbles protein family members. Dev Dyn 2012; 241:1239-48. [PMID: 22711497 DOI: 10.1002/dvdy.23822] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 12/15/2022] Open
Abstract
The gene tribbles (trbl), identified 12 years ago in genetic screens for mutations that control both cell division and cell migration during embryonic Drosophila development, is the founding member of the Tribbles (Trib) family of kinase-like proteins that have diverse roles in cell signaling, tissue homeostasis, and cancer. Trib proteins share three motifs: (1) a divergent kinase region (Trib domain) with undetermined catalytic activity, (2) a COP1 site used to direct key target proteins to the proteosome for degradation, and (3) a MEK1 site that binds and modulates MAPKK kinase activity. The notion that Tribs act as scaffolding proteins to balance signaling levels in multiple pathways retains an attractive simplicity, but given recent data showing that divergent kinases act by means of novel catalytic mechanisms, the enzymatic activity of Tribs remains untested. Here, we focus on the role of Tribs during development. Developmental analysis of Drosophila trbl phenotypes reveals tissue-specific, sometimes contradictory roles. In mammals, multiple Trib isoforms exhibit overlapping and tissue-specific functions. Recent data indicate the mechanism of Trib activity is conserved and requires the Trib domain. Finally, we discuss the connections between Tribs in disease and cancer that have implications for their normal roles during organogenesis.
Collapse
Affiliation(s)
- Leonard L Dobens
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| | | |
Collapse
|
17
|
Sitaraman D, LaFerriere H, Birman S, Zars T. Serotonin is Critical for Rewarded Olfactory Short-Term Memory in Drosophila. J Neurogenet 2012; 26:238-44. [DOI: 10.3109/01677063.2012.666298] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012; 131:959-75. [PMID: 22350798 PMCID: PMC3351628 DOI: 10.1007/s00439-012-1146-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
Abstract
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophilamelanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California-San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
19
|
Wang Y, Tang L, Feng X, Du W, Liu BF. Ethanol interferes with gustatory plasticity in Caenorhabditis elegans. Neurosci Res 2011; 71:341-7. [DOI: 10.1016/j.neures.2011.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 12/01/2022]
|
20
|
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011; 72:202-30. [PMID: 22017985 PMCID: PMC3232021 DOI: 10.1016/j.neuron.2011.09.021] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
Abstract
Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
| | - Julie H. Simpson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
- Program in Developmental Biology, Department of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
21
|
LaFerriere H, Speichinger K, Stromhaug A, Zars T. The radish gene reveals a memory component with variable temporal properties. PLoS One 2011; 6:e24557. [PMID: 21912703 PMCID: PMC3166323 DOI: 10.1371/journal.pone.0024557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 08/14/2011] [Indexed: 11/23/2022] Open
Abstract
Memory phases, dependent on different neural and molecular mechanisms, strongly influence memory performance. Our understanding, however, of how memory phases interact is far from complete. In Drosophila, aversive olfactory learning is thought to progress from short-term through long-term memory phases. Another memory phase termed anesthesia resistant memory, dependent on the radish gene, influences memory hours after aversive olfactory learning. How does the radish-dependent phase influence memory performance in different tasks? It is found that the radish memory component does not scale with the stability of several memory traces, indicating a specific recruitment of this component to influence different memories, even within minutes of learning.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Katherine Speichinger
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Astrid Stromhaug
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Eddison M, Guarnieri DJ, Cheng L, Liu CH, Moffat KG, Davis G, Heberlein U. arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 2011; 70:979-90. [PMID: 21658589 DOI: 10.1016/j.neuron.2011.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2011] [Indexed: 01/16/2023]
Abstract
A reduced sensitivity to the sedating effects of alcohol is a characteristic associated with alcohol use disorders (AUDs). A genetic screen for ethanol sedation mutants in Drosophila identified arouser (aru), which functions in developing neurons to reduce ethanol sensitivity. Genetic evidence suggests that aru regulates ethanol sensitivity through its activation by Egfr/Erk signaling and its inhibition by PI3K/Akt signaling. The aru mutant also has an increased number of synaptic terminals in the larva and adult fly. Both the increased ethanol sensitivity and synapse number of the aru mutant are restored upon adult social isolation, suggesting a causal relationship between synapse number and ethanol sensitivity. We thus show that a developmental abnormality affecting synapse number and ethanol sensitivity is not permanent and can be reversed by manipulating the environment of the adult fly.
Collapse
Affiliation(s)
- Mark Eddison
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
LaFerriere H, Ostrowski D, Guarnieri DJ, Zars T. The arouser EPS8L3 gene is critical for normal memory in Drosophila. PLoS One 2011; 6:e22867. [PMID: 21818402 PMCID: PMC3144953 DOI: 10.1371/journal.pone.0022867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 07/07/2011] [Indexed: 11/21/2022] Open
Abstract
The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru8–128 insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Daniela Ostrowski
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Douglas J. Guarnieri
- Department of Anatomy, University of California, San Francisco, San Francisco, California, United States of America
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Devineni AV, McClure KD, Guarnieri DJ, Corl AB, Wolf FW, Eddison M, Heberlein U. The genetic relationships between ethanol preference, acute ethanol sensitivity, and ethanol tolerance in Drosophila melanogaster. Fly (Austin) 2011; 5:191-9. [PMID: 21750412 DOI: 10.4161/fly.5.3.16987] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.
Collapse
Affiliation(s)
- Anita V Devineni
- University of California, San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kaun KR, Azanchi R, Maung Z, Hirsh J, Heberlein U. A Drosophila model for alcohol reward. Nat Neurosci 2011; 14:612-9. [PMID: 21499254 PMCID: PMC4249630 DOI: 10.1038/nn.2805] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/09/2011] [Indexed: 11/09/2022]
Abstract
The rewarding properties of drugs contribute to the development of abuse and addiction. We developed a new assay for investigating the motivational properties of ethanol in the genetically tractable model Drosophila melanogaster. Flies learned to associate cues with ethanol intoxication and, although transiently aversive, the experience led to a long-lasting attraction for the ethanol-paired cue, implying that intoxication is rewarding. Temporally blocking transmission in dopaminergic neurons revealed that flies require activation of these neurons to express, but not develop, conditioned preference for ethanol-associated cues. Moreover, flies acquired, consolidated and retrieved these rewarding memories using distinct sets of neurons in the mushroom body. Finally, mutations in scabrous, encoding a fibrinogen-related peptide that regulates Notch signaling, disrupted the formation of memories for ethanol reward. Our results thus establish that Drosophila can be useful for understanding the molecular, genetic and neural mechanisms underling the rewarding properties of ethanol.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
26
|
Sitaraman D, Zars T. Lack of prediction for high-temperature exposures enhances Drosophila place learning. ACTA ACUST UNITED AC 2011; 213:4018-22. [PMID: 21075943 DOI: 10.1242/jeb.050344] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals receive rewards and punishments in different patterns. Sometimes stimuli or behaviors can become predictors of future good or bad events. Through learning, experienced animals can then avoid new but similar bad situations, or actively seek those conditions that give rise to good results. Not all good or bad events, however, can be accurately predicted. Interestingly, unpredicted exposure to presumed rewards or punishments can inhibit or enhance later learning, thus linking the two types of experiences. In Drosophila, place memories can be readily formed; indeed, memory was enhanced by exposing flies to high temperatures that are unpaired from place or behavioral contingencies. Whether it is the exposure to high temperatures per se or the lack of prediction about the exposure that is crucial for memory enhancement is unknown. Through yoking experiments, we show that the uncertainty about exposure to high temperatures positively biases later place memory. However, the unpredicted exposures to high temperature do not alter thermosensitivity. Thus, the uncertainty bias does not alter thermosensory processes. An unidentified system is proposed to buffer the high-temperature reinforcement information to influence place learning when accurate predictions can be identified.
Collapse
Affiliation(s)
- Divya Sitaraman
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
27
|
Kahsai L, Zars T. Learning and memory in Drosophila: behavior, genetics, and neural systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:139-67. [PMID: 21906539 DOI: 10.1016/b978-0-12-387003-2.00006-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The rich behavioral repertoire that Drosophila use to navigate in their natural environment suggests that flies can use memories to inform decisions. Development of paradigms to examine memories that restrict behavioral choice was essential in furthering our understanding of the genetics and neural systems of memory formation in the fly. Olfactory, visual, and place memory paradigms have proven influential in determining principles for the mechanisms of memory formation. Several parts of the nervous system have been shown to be important for different types of memories, including the mushroom bodies and the central complex. Thus far, about 40 genes have been linked to normal olfactory short-term memory. A subset of these genes have also been tested for a role in visual and place memory. Some genes have a common function in memory formation, specificity of action comes from where in the nervous system these genes act. Alternatively, some genes have a more restricted role in different types of memories.
Collapse
Affiliation(s)
- Lily Kahsai
- University of Missouri, Division of Biological Sciences, 114 Lefevre Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
28
|
Norum M, Tång E, Chavoshi T, Schwarz H, Linke D, Uv A, Moussian B. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS One 2010; 5:e10802. [PMID: 20520821 PMCID: PMC2875407 DOI: 10.1371/journal.pone.0010802] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/01/2010] [Indexed: 11/23/2022] Open
Abstract
Background The differentiation of an extracellular matrix (ECM) at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. Principal Findings We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. Conclusion Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.
Collapse
Affiliation(s)
- Michaela Norum
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Erika Tång
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Tina Chavoshi
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Heinz Schwarz
- Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dirk Linke
- Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anne Uv
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
29
|
Zars T. Short-term memories in Drosophila are governed by general and specific genetic systems. Learn Mem 2010; 17:246-51. [PMID: 20418404 DOI: 10.1101/lm.1706110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In a dynamic environment, there is an adaptive value in the ability of animals to acquire and express memories. That both simple and complex animals can learn is therefore not surprising. How animals have solved this problem genetically and anatomically probably lies somewhere in a range between a single molecular/anatomical mechanism that applies to all situations and a specialized mechanism for each learning situation. With an intermediate level of nervous system complexity, the fruit fly Drosophila has both general and specific resources to support different short-term memories. Some biochemical/cellular mechanisms are common between learning situations, indicating that flies do not have a dedicated system for each learning context. The opposite possible extreme does not apply to Drosophila either. Specialization in some biochemical and anatomical terms suggests that there is not a single learning mechanism that applies to all conditions. The distributed basis of learning in Drosophila implies that these systems were independently selected.
Collapse
Affiliation(s)
- Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
30
|
Place memory formation in Drosophila is independent of proper octopamine signaling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:299-305. [DOI: 10.1007/s00359-010-0517-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 12/20/2022]
|
31
|
Rodan AR, Rothenfluh A. The genetics of behavioral alcohol responses in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:25-51. [PMID: 20813239 DOI: 10.1016/s0074-7742(10)91002-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Drosophila melanogaster is commonly found near rotting or fermenting fruit, reflected in its name pomace, or vinegar fly. In such environments, flies often encounter significant levels of ethanol. Three observations have made Drosophila a very promising model organism to understand the genetic contributions to the behavioral responses to alcohol. First, similar to higher vertebrates, flies show hyperactivation upon exposure to a low to medium dose of alcohol, while high doses can lead to sedation. In addition, when given a choice, flies will actually prefer alcohol-containing food over regular food. Second, the genes and biochemical pathways implicated in controlling these behavioral responses in flies are also participating in determining alcohol responses, and drinking behavior in mammals. Third, the fact that flies have been studied genetically for over one hundred years means that an exceptional repertoire of genetic tools are at our disposal. Here, we will review some of these tools and experimental approaches, survey the methods for, and measures after Drosophila ethanol exposure, and discuss the different molecular components and functional pathways involved in these behavioral responses to alcohol.
Collapse
Affiliation(s)
- Aylin R Rodan
- Division of Nephrology, Department of Psychiatry and Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
32
|
Bhandari P, Kendler KS, Bettinger JC, Davies AG, Grotewiel M. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin Exp Res 2009; 33:1794-805. [PMID: 19645731 DOI: 10.1111/j.1530-0277.2009.01018.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. METHODS We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. RESULTS Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. CONCLUSIONS The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the function of alpha and beta integrins in flies.
Collapse
Affiliation(s)
- Poonam Bhandari
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23113, USA
| | | | | | | | | |
Collapse
|
33
|
Thermotolerance and place memory in adult Drosophila are independent of natural variation at the foraging locus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:777-82. [DOI: 10.1007/s00359-009-0455-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/27/2022]
|
34
|
Rapid matching in Drosophila place learning. Naturwissenschaften 2009; 96:927-31. [DOI: 10.1007/s00114-009-0550-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
35
|
Abstract
Alcohol abuse is a global problem due to the financial burden on society and the healthcare system. While the harmful health effects of chronic alcohol abuse are well established, more recent data suggest that acute alcohol consumption also affects human wellbeing. Thus, there is a need for research models in order to fully understand the effect of acute alcohol abuse on different body systems and organs. The present manuscript summarizes the interdisciplinary advantages and disadvantages of currently available human and non-human models of acute alcohol abuse, and identifies their suitability for biomedical research.
Collapse
|
36
|
Abstract
Spatial orientation is critical for many behaviors. Intrinsic to the oriented state is the knowledge of past, present, and future spatial location relative to one or more landmarks. How do animals so fluidly solve this problem? Determining mechanisms of orientation may benefit from investigation of relatively simple organisms. Two behaviors that presumably use path integration as a major input to orientation--place learning and persistent target selection--allow for the examination of cellular and neural circuit mechanisms in Drosophila. Although our understanding of these processes is still relatively immature, some recent findings provide insights into the mechanisms supporting orientation. First, place learning provides good access to the past, present, and future aspects of orientation, but currently is less open to understanding how a fly establishes a relationship to landmarks. The change in behavior after learning is orientation away from, and avoiding, a place predicted to punish a fly, incorporating all temporal aspects of orientation, and can last for minutes to hours. This conclusion is supported by several learning phenomena. Second, persistent target selection provides the best access to the processes determining relationships to landmarks. Using a disappearing visual-landmark paradigm, persistent target selection was shown to require parts of the central complex for a seconds-long "path integration memory." How the path integration memory, on this short time scale, is related to longer lasting place memories is, as yet, unknown. Nevertheless, studies of place learning and persistent target selection may provide insights into orientation mechanisms in a simple brain.
Collapse
Affiliation(s)
- Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
37
|
Mustard JA, Edgar EA, Mazade RE, Wu C, Lillvis JL, Wright GA. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol Learn Mem 2008; 90:633-43. [PMID: 18723103 PMCID: PMC2678174 DOI: 10.1016/j.nlm.2008.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
Abstract
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5%, 5%, 10%, or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|