1
|
Zhang S, Pointer B, Kelleher ES. Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations. Genome Res 2020; 30:566-575. [PMID: 32238416 PMCID: PMC7197473 DOI: 10.1101/gr.251546.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/24/2020] [Indexed: 11/24/2022]
Abstract
The regulation of transposable element (TE) activity by small RNAs is a ubiquitous feature of germlines. However, despite the obvious benefits to the host in terms of ensuring the production of viable gametes and maintaining the integrity of the genomes they carry, it remains controversial whether TE regulation evolves adaptively. We examined the emergence and evolutionary dynamics of repressor alleles after P-elements invaded the Drosophila melanogaster genome in the mid-twentieth century. In many animals including Drosophila, repressor alleles are produced by transpositional insertions into piRNA clusters, genomic regions encoding the Piwi-interacting RNAs (piRNAs) that regulate TEs. We discovered that ∼94% of recently collected isofemale lines in the Drosophila melanogaster Genetic Reference Panel (DGRP) contain at least one P-element insertion in a piRNA cluster, indicating that repressor alleles are produced by de novo insertion at an exceptional rate. Furthermore, in our sample of approximately 200 genomes, we uncovered no fewer than 80 unique P-element insertion alleles in at least 15 different piRNA clusters. Finally, we observe no footprint of positive selection on P-element insertions in piRNA clusters, suggesting that the rapid evolution of piRNA-mediated repression in D. melanogaster was driven primarily by mutation. Our results reveal for the first time how the unique genetic architecture of piRNA production, in which numerous piRNA clusters can encode regulatory small RNAs upon transpositional insertion, facilitates the nonadaptive rapid evolution of repression.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Beverly Pointer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
2
|
Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics 2017; 203:1513-31. [PMID: 27516614 DOI: 10.1534/genetics.115.184119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression.
Collapse
|
3
|
Paternal Induction of Hybrid Dysgenesis in Drosophila melanogaster Is Weakly Correlated with Both P-Element and hobo Element Dosage. G3-GENES GENOMES GENETICS 2017; 7:1487-1497. [PMID: 28315830 PMCID: PMC5427502 DOI: 10.1534/g3.117.040634] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposable elements (TEs) are virtually ubiquitous components of genomes, yet they often impose significant fitness consequences on their hosts. In addition to producing specific deleterious mutations by insertional inactivation, TEs also impose general fitness costs by inducing DNA damage and participating in ectopic recombination. These latter fitness costs are often assumed to be dosage-dependent, with stronger effects occurring in the presence of higher TE copy numbers. We test this assumption in Drosophila melanogaster by considering the relationship between the copy number of two active DNA transposons, P-element and hobo element, and the incidence of hybrid dysgenesis, a sterility syndrome associated with transposon activity in the germline. By harnessing a subset of the Drosophila Genetic Reference Panel (DGRP), a group of fully-sequenced D. melanogaster strains, we describe quantitative and structural variation in P-elements and hobo elements among wild-derived genomes and associate these factors with hybrid dysgenesis. We find that the incidence of hybrid dysgenesis is associated with both P-element and hobo element copy number in a dosage-dependent manner. However, the relationship is weak for both TEs, suggesting that dosage alone explains only a small part of TE-associated fitness costs.
Collapse
|
4
|
Simmons MJ, Grimes CD, Czora CS. Cytotype Regulation Facilitates Repression of Hybrid Dysgenesis by Naturally Occurring KP Elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:1891-7. [PMID: 27172198 PMCID: PMC4938643 DOI: 10.1534/g3.116.028597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022]
Abstract
P elements inserted in the Telomere Associated Sequences (TAS) at the left end of the X chromosome are determiners of cytotype regulation of the entire P family of transposons. This regulation is mediated by Piwi-interacting (pi) RNAs derived from the telomeric P elements (TPs). Because these piRNAs are transmitted maternally, cytotype regulation is manifested as a maternal effect of the TPs. When a TP is combined with a transgenic P element inserted at another locus, this maternal effect is strengthened. However, when certain TPs are combined with transgenes that contain the small P element known as KP, stronger regulation arises from a zygotic effect of the KP element. This zygotic effect is observed with transgenic KP elements that are structurally intact, as well as with KP elements that are fused to an ancillary promoter from the hsp70 gene. Zygotic regulation by a KP element occurs only when a TP was present in the maternal germ line, and it is more pronounced when the TP was also present in the grand-maternal germ line. However, this regulation does not require zygotic expression of the TP These observations can be explained if maternally transmitted piRNAs from TPs enable a polypeptide encoded by KP elements to repress P element transposition in zygotes that contain a KP element. In nature, repression by the KP polypeptide may therefore be facilitated by cytotype-mediating piRNAs.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Craig D Grimes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Cody S Czora
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
5
|
The cellular basis of hybrid dysgenesis and Stellate regulation in Drosophila. Curr Opin Genet Dev 2015; 34:88-94. [PMID: 26451497 PMCID: PMC4674331 DOI: 10.1016/j.gde.2015.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022]
Abstract
During normal tissue development, the accumulation of unrepaired cellular and genomic damage can impair growth and ultimately leads to death. To preserve cellular integrity, cells employ a number of defense mechanisms including molecular checkpoints, during which development is halted while dedicated pathways attempt repair. This process is most critical in germline tissues where cellular damage directly threatens an organism's reproductive capacity and offspring viability. In the fruit fly, Drosophila melanogaster, germline development has been extensively studied for over a century and the breadth of our knowledge has flourished in the genomics age. Intriguingly, several peculiar phenomena that trigger catastrophic germline damage described decades ago, still endure only a partial understanding of the underlying molecular causes. A deeper reexamination using new molecular and genetic tools may greatly benefit our understanding of host system biology. Among these, and the focus of this concise review, are hybrid dysgenesis and an intragenomic conflict that pits the X and Y sex chromosomes against each other.
Collapse
|
6
|
Simmons MJ, Peterson MP, Thorp MW, Buschette JT, DiPrima SN, Harter CL, Skolnick MJ. piRNA-mediated transposon regulation and the germ-line mutation rate in Drosophila melanogaster males. Mutat Res 2015; 773:16-21. [PMID: 25769182 DOI: 10.1016/j.mrfmmm.2015.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/02/2015] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA.
| | - Mark P Peterson
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Michael W Thorp
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Jared T Buschette
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Stephanie N DiPrima
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Christine L Harter
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| | - Matthew J Skolnick
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108-1095, USA
| |
Collapse
|
7
|
Simmons MJ, Thorp MW, Buschette JT, Becker JR. Transposon regulation in Drosophila: piRNA-producing P elements facilitate repression of hybrid dysgenesis by a P element that encodes a repressor polypeptide. Mol Genet Genomics 2014; 290:127-40. [DOI: 10.1007/s00438-014-0902-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
|
8
|
Simmons MJ, Meeks MW, Jessen E, Becker JR, Buschette JT, Thorp MW. Genetic interactions between P elements involved in piRNA-mediated repression of hybrid dysgenesis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2014; 4:1417-27. [PMID: 24902606 PMCID: PMC4132173 DOI: 10.1534/g3.114.011221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that telomeric P elements inserted at the left end of the X chromosome are anchors of the P cytotype, the maternally inherited state that regulates P-element activity in the germ line of Drosophila melanogaster. This regulation is mediated by small RNAs that associate with the Piwi family of proteins (piRNAs). We extend the analysis of cytotype regulation by studying new combinations of telomeric and nontelomeric P elements (TPs and non-TPs). TPs interact with each other to enhance cytotype regulation. This synergism involves a strictly maternal effect, called presetting, which is apparently mediated by piRNAs transmitted through the egg. Presetting by a maternal TP can elicit regulation by an inactive paternally inherited TP, possibly by stimulating its production of primary piRNAs. When one TP has come from a stock heterozygous for a mutation in the aubergine, piwi, or Suppressor of variegation 205 genes, the synergism between two TPs is impaired. TPs also interact with non-TPs to enhance cytotype regulation, even though the non-TPs lack regulatory ability on their own. Non-TPs are not susceptible to presetting by a TP, nor is a TP susceptible to presetting by a non-TP. The synergism between TPs and non-TPs is stronger when the TP was inherited maternally. This synergism may be due to the accumulation of secondary piRNAs created by ping-pong cycling between primary piRNAs from the TPs and mRNAs from the non-TPs. Maternal transmission of P-element piRNAs plays an important role in the maintenance of strong cytotype regulation over generations.
Collapse
Affiliation(s)
- Michael J Simmons
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Marshall W Meeks
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Erik Jessen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jordan R Becker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Jared T Buschette
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| | - Michael W Thorp
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108-1095
| |
Collapse
|
9
|
Maternal enhancement of cytotype regulation in Drosophila melanogaster by genetic interactions between telomeric P elements and non-telomeric transgenic P elements. Genet Res (Camb) 2013; 94:339-51. [PMID: 23374243 DOI: 10.1017/s0016672312000523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The X-linked telomeric P elements (TPs) TP5 and TP6 regulate the activity of the entire P element family because they are inserted in a major locus for the production of Piwi-interacting RNAs (piRNAs). The potential for this cytotype regulation is significantly strengthened when either TP5 or TP6 is combined with a non-telomeric X-linked or autosomal transgene that contains a P element. By themselves, none of the transgenic P elements have any regulatory ability. Synergism between the telomeric and transgenic P elements is much greater when the TP is derived from a female. Once an enhanced regulatory state is established in a female, it is transmitted to her offspring independently of either the telomeric or transgenic P elements - that is, it works through a strictly maternal effect. Synergistic regulation collapses when either the telomeric or the transgenic P element is removed from the maternal genotype, and it is significantly impaired when the TPs come from stocks heterozygous for mutations in the genes aubergine, piwi or Su(var)205. The synergism between telomeric and transgenic P elements is consistent with a model in which P piRNAs are amplified by alternating, or ping-pong, targeting of primary piRNAs to sense and antisense P transcripts, with the sense transcripts being derived from the transgenic P element and the antisense transcripts being derived from the TP.
Collapse
|
10
|
Wright JA, Smith RC, Xie K, Craig NL, Atkinson PW. IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:899-906. [PMID: 23835045 PMCID: PMC3888874 DOI: 10.1016/j.ibmb.2013.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Transposons are used in insect science as genetic tools that enable the transformation of insects and the identification and isolation of genes though their ability to insert in or near to them. Four transposons, piggyBac, Mos1, Hermes and Minos are commonly used in insects beyond Drosophila melanogaster with piggyBac, due to its wide host range and frequency of transposition, being the most commonly chosen. The utility of these transposons as genetic tools is directly proportional to their activity since higher transposition rates would be expected to lead to higher transformation frequencies and higher frequencies of insertion throughout the genome. As a consequence there is an ongoing need for hyperactive transposases for use in insect genetics, however these have proven difficult to obtain. IPB7 is a hyperactive mutant of the piggyBac transposase that was identified by a genetic screen performed in yeast, a mammalian codon optimized version of which was then found to be highly active in rodent embryonic stem cells with no apparent deleterious effects. Here we report the activity of IPB7 in D. melanogaster and the mosquito, Aedes aegypti. Somatic transposition assays revealed an increase in IPB7's transposition rate from wild-type piggyBac transposase in D. melanogaster but not Ae. aegypti. However the use of IPB7 in D. melanogaster genetic transformations produced a high rate of sterility and a low transformation rate compared to wild-type transposase. This high rate of sterility was accompanied by significant gonadal atrophy that was also observed in the absence of the piggyBac vector transposon. We conclude that IPB7 has increased activity in the D. melanogaster germ-line but that a component of the sterility associated with its activity is independent of the presence of the piggyBac transposon.
Collapse
Affiliation(s)
- Jennifer A. Wright
- Department of Entomology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Ryan C. Smith
- Cell Molecular and Developmental Biology Graduate Program, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Kefong Xie
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Nancy L. Craig
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Peter W. Atkinson
- Department of Entomology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
- Cell Molecular and Developmental Biology Graduate Program, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
- Center for Disease Vector Research, Institute for Integrative Genome Biology, University California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Merriman PJ, Simmons MJ. A test for enhancement of cytotype regulation in Drosophila melanogaster by the transposase-encoding P element ∆2-3. Mol Genet Genomics 2013; 288:535-47. [PMID: 23925475 DOI: 10.1007/s00438-013-0772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
Transposable P elements are regulated in the germ line by piRNAs, which are small RNAs that associate with the Piwi class of proteins. This regulation, called the P cytotype, is enhanced by genetic interactions between P elements that are primary sources of these RNAs and other P elements. The enhanced regulation is thought to reflect amplification of the primary piRNAs by cleavage of mRNAs derived from the other P elements through a mechanism called the ping-pong cycle. We tested the transposase-encoding P element known as ∆2-3 for its ability to enhance cytotype regulation anchored in P elements inserted at the telomere of the left arm of the X chromosome (TP elements). The ∆2-3 P element lacks the intron between exons 2 and 3 in the structurally complete P element (CP). Unlike the CP element, it does not markedly enhance cytotype regulation anchored in TP elements, nor does it transmit transposase activity through the egg cytoplasm. However, mRNAs from both the CP and ∆2-3 elements are maternally deposited in embryos. These observations suggest that maternally transmitted CP mRNA enhances cytotype regulation by participating in the ping-pong cycle and that it encodes the P transposase in the embryonic germ line, whereas maternally transmitted ∆2-3 mRNA does not, possibly because it is not efficiently directed into the primordial embryonic germ line. Strong transposon regulation may, therefore, require ping-pong cycling with maternally inherited mRNAs in the embryo.
Collapse
Affiliation(s)
- Peter J Merriman
- Department of Genetics, Cell Biology and Development, 250 BioScience Center, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN, 55108-1095, USA
| | | |
Collapse
|
12
|
Claeys Bouuaert C, Lipkow K, Andrews SS, Liu D, Chalmers R. The autoregulation of a eukaryotic DNA transposon. eLife 2013; 2:e00668. [PMID: 23795293 PMCID: PMC3687335 DOI: 10.7554/elife.00668] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/13/2013] [Indexed: 01/03/2023] Open
Abstract
How do DNA transposons live in harmony with their hosts? Bacteria provide the only documented mechanisms for autoregulation, but these are incompatible with eukaryotic cell biology. Here we show that autoregulation of Hsmar1 operates during assembly of the transpososome and arises from the multimeric state of the transposase, mediated by a competition for binding sites. We explore the dynamics of a genomic invasion using a computer model, supported by in vitro and in vivo experiments, and show that amplification accelerates at first but then achieves a constant rate. The rate is proportional to the genome size and inversely proportional to transposase expression and its affinity for the transposon ends. Mariner transposons may therefore resist post-transcriptional silencing. Because regulation is an emergent property of the reaction it is resistant to selfish exploitation. The behavior of distantly related eukaryotic transposons is consistent with the same mechanism, which may therefore be widely applicable. DOI:http://dx.doi.org/10.7554/eLife.00668.001 Transposons are regions of mobile DNA that can jump from one location in the genome to another. This represents a genetic burden to the host because there is always the risk that the transposon will inactivate a cellular gene. However, a greater problem is that transposition is accompanied by an increase in the number of copies of the transposon. Since each new copy will be a source of further new copies, amplification of transposons is necessarily exponential. The fact that eukaryotic cells are able to tolerate DNA transposons suggests the existence of regulatory mechanisms to defuse the inevitable genomic melt-down. Host-mediated epigenetic modifications and RNA interference will provide some level of protection. However, they are by no means completely effective and a well-adapted genomic parasite, such as a transposon, might be expected to have its own mechanism of regulation. Now, Claeys Bouuaert, Lipkow and colleagues have used a computer model in combination with in vivo and in vitro experiments to search for this mechanism. Their experiments reveal how a DNA transposon is down-regulated by its own transposase. The transposase is the enzyme that catalyzes the ‘jump’ or transposition. It binds to specific sites at either end of the transposon and brings these together to make up a nucleoprotein complex called the transpososome. It is within this complex that the chemical steps of the reaction take place. When the number of transposons increases, so does the concentration of transposase. Claeys Bouuaert et al. show that the binding sites become saturated at a relatively low transposase concentration and that negative regulation arises from the resulting competition. Thus, the rate of transposition decreases as the number of transposons increases. They further use the computer model to explore how the amplification of the transposon is affected by transposon-specific and cellular-specific factors. Claeys Bouuaert, Lipkow and colleagues based their study predominantly on a resurrected copy of the Hsmar1 transposon, which was active in the human genome 50 million years ago. However, they also tested two distantly related eukaryotic transposons and observed that their behavior was similar, which suggests that this could be a general mechanism that controls the activity of jumping genes. They also note that their competition mechanism is conceptually similar to the immunological ‘prozone effect’. This is a recurrent theme in protein chemistry and demonstrates once again that less is in fact sometimes more. DOI:http://dx.doi.org/10.7554/eLife.00668.002
Collapse
|
13
|
Reciprocal cross differences in Drosophila melanogaster longevity: an evidence for non-genomic effects in heterosis phenomenon? Biogerontology 2013; 14:153-63. [PMID: 23529279 DOI: 10.1007/s10522-013-9419-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
Abstract
Reciprocal cross effects (i.e., differences between reciprocal hybrids that are developed by reversing the strains from which the dam and the sire are taken) are commonly used as a measure of sex-linkage or maternal effects. However, the papers reporting parental effects on life span of experimental animals are scarce. In order to investigate the potential of parent-of-origin effects for the longevity of hybrids, we determined the life spans of the inbred lines of Drosophila melanogaster [Oregon-R (OR), Canton-S (CS) and Uman (Um)] that differ significantly in longevity, as well as the life span of the progeny from the reciprocal crosses among them. The hybridization caused the increase in both flies' mean and maximum life span mainly shifting the survival curves upward proportionally at all ages. This resulted in the reduction in the Gompertz intercept (frailty) whereas the Gompertz slope (the rate of aging) was predominantly unchanged. Better-parent heterosis was observed in hybrids between OR and Um inbred lines and the extent of heterosis was more pronounced in hybrids between CS and Um inbred lines if long-lived parent was used as the female parent, and short-lived parent was used as the male parent in the crossing scheme. Such discrepancy in life span between reciprocal crosses may indicate that non-chromosomal factors are significantly contributing to a heterotic response. Our data are in line with the previous reports suggesting the involvement of non-genomic factors, particularly epigenetic events attributed to hybridization, in the manifestation of heterosis.
Collapse
|
14
|
Hodgetts RB, O'Keefe SL, Anderson KJ. An intact RNA interference pathway is required for expression of the mutant wing phenotype of vg(21-3), a P-element-induced allele of the vestigial gene in Drosophila. Genome 2012; 55:312-26. [PMID: 22452576 DOI: 10.1139/g2012-016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have determined that two P elements, P[21-3] and P[21r36], residing in the 5'-UTR of the vestigial wing gene, encode functional repressors in eye tissue. However, neither element fits a previous categorization of repressor-making elements as Type I or II. Both elements encode polypeptides that are shorter than the canonical elements they most closely resemble. DNA sequencing reveals that P[21r36] encodes an intact THAP domain that is missing in the P[21] element, which does not encode a functional repressor. Recovery of P[21-3] at sites other than vestigial (where it causes the wing mutant, vg(21-3)) reveals that the element can make repressor in wing tissue of sufficient activity to repress the mutant phenotype of vg(21-3). Why the P[21-3] element fails to produce repressor when located at vestigial may be explained by our observation that three different mutants in the RNA interference pathway cause a partial reversion of vg(21-3). We speculate that the vg and P-initiated transcripts that arise at the vg locus in the vg(21-3) mutant trigger an RNA interference response that results in the mutual degradation of both transcripts.
Collapse
Affiliation(s)
- Ross B Hodgetts
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
15
|
Arensburger P, Hice RH, Wright JA, Craig NL, Atkinson PW. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. BMC Genomics 2011; 12:606. [PMID: 22171608 PMCID: PMC3259105 DOI: 10.1186/1471-2164-12-606] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES) and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. RESULTS Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. CONCLUSIONS Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D. melanogaster.
Collapse
Affiliation(s)
- Peter Arensburger
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Robert H Hice
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jennifer A Wright
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Nancy L Craig
- Department of Molecular Biology & Genetics and Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 20742,USA
| | - Peter W Atkinson
- Center for Disease Vector Research, Institute for Integrative Genome Biology, and Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Sameny A, La A, Hanna S, Locke J. Point mutations in a Drosophila P element abolish both P element-dependent silencing (PDS) of a transgene and repressor functions. Chromosoma 2011; 120:573-85. [PMID: 22009629 DOI: 10.1007/s00412-011-0332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 06/17/2011] [Accepted: 07/08/2011] [Indexed: 10/16/2022]
Abstract
The P elements of Drosophila melanogaster are well-studied transposons with both mobilizing and repressor functions. P elements can also variably silence the expression of certain other transgenes through a phenomenon known as P element-dependent silencing (PDS). To examine the role of the P repressor in PDS, we have induced, isolated, and characterized 22 point mutations in an archetype P element called P[SalI]89D. All mutations showed a loss in the ability to silence one or more assays for the PDS phenotype. These mutants also lost the ability to induce the suppression of variegation in P[hsp26-pt-T]39C-12, another P element-dependent phenotype. A subgroup of 11 mutations was further assayed for their ability to act as a P repressor and silence the P element promoter transcribing a lacZ ( + ) gene, and this function was lost as well. Taken together, this study supports a model of PDS acting through protein interactions, not RNA, with heterochromatic proteins to modify the extent of variegation seen in PDS. Furthermore, the common loss of functions for PDS and P repressor silencing (from another P promoter) argues for a common role of the repressor. This makes the PDS model a good system for examining P repressor functions and how they relate to transposon-mediated gene silencing in general.
Collapse
Affiliation(s)
- Alireza Sameny
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
17
|
Maternal impairment of transposon regulation in Drosophila melanogaster by mutations in the genes aubergine, piwi and Suppressor of variegation 205. Genet Res (Camb) 2011; 92:261-72. [PMID: 20943007 DOI: 10.1017/s0016672310000352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
TP5, a P element inserted in the telomere-associated sequences of the X chromosome, represses the excision of other P elements in the germ line through a combination of maternal and zygotic effects. The maternal component of this repression is impaired by heterozygous mutations in the aubergine and Suppressor of variegation 205 genes; one mutation in the piwi gene also appears to impair repression. In the female germ line, the level of TP5 mRNA is increased by these impairing mutations. The impairing aubergine and piwi mutations also increase the level of germ-line mRNA from CP, a transgene that encodes the P-element transposase; however, the Suppressor of variegation 205 mutation does not. These findings are discussed in terms of a model of P-element regulation that involves post-transcriptional and chromatin re-organizing events mediated by maternally transmitted small RNAs derived from the telomeric P element.
Collapse
|
18
|
Cytotype regulation by telomeric P elements in Drosophila melanogaster: variation in regulatory strength and maternal effects. Genet Res (Camb) 2010; 91:327-36. [PMID: 19922696 DOI: 10.1017/s001667230999022x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Strains carrying the X-linked telomeric P elements TP5 or TP6 varied in their ability to repress hybrid dysgenesis. The rank ordering of these strains was consistent across different genetic assays and was not related to the type of telomeric P element (TP5 or TP6) present. Strong repression of dysgenesis was associated with weak expression of mRNA from the telomeric P element and also with a reduced amount of mRNA from a transposase-producing P element contained within a transgene inserted on an autosome. A strictly maternal component of repression, transmitted independently of the telomeric P element, was detected in the daughters but not the sons of females from the strongest repressing strains. However, this effect was seen only when dysgenesis was induced by crossing these females to males from a P strain, not when it was induced by crossing them to males homozygous for a single transposase-producing P element contained within a transgene. These findings are consistent with the hypothesis that the P cytotype, the condition that regulates P elements, involves an RNA interference mechanism mediated by piRNAs produced by telomeric P elements such as TP5 and TP6 and amplified by RNAs produced by other P elements.
Collapse
|
19
|
Cytotype regulation inDrosophila melanogaster: synergism between telomeric and non-telomericPelements. Genet Res (Camb) 2010; 91:383-94. [PMID: 20122295 DOI: 10.1017/s0016672309990322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryThe X-linked telomericPelementsTP5andTP6interact synergistically with non-telomericPelements to repress hybrid dysgenesis. In this repression, the telomericPelements exert maternal effects, which, however, are not sufficient to establish synergism with the non-telomericPelements. Once synergism is established, the capacity to repress dysgenesis in the offspring of a cross persists for at least two generations after removing the telomericPelement from the genotype. At the molecular level, synergism between telomeric and non-telomericPelements is correlated with effective elimination ofP-element mRNA in the germ line. Maternally transmitted mutations in the genesaubergine,piwiandSuppressor of variegation 205[Su(var)205] block the establishment of synergism between telomeric and non-telomericPelements, and paternally transmitted mutations inpiwiandSu(var)205disrupt synergism that has already been established. These findings are discussed in terms of a model of cytotype regulation ofPelements based on Piwi-interacting RNAs (piRNAs) that are amplified by cycling between sense and antisense species.
Collapse
|
20
|
Telomeric trans-silencing in Drosophila melanogaster: tissue specificity, development and functional interactions between non-homologous telomeres. PLoS One 2008; 3:e3249. [PMID: 18813361 PMCID: PMC2547894 DOI: 10.1371/journal.pone.0003249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 09/02/2008] [Indexed: 12/03/2022] Open
Abstract
Background The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, “TAS”) has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. Principal Findings Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. Conclusions and Significance Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.
Collapse
|