1
|
Zeitler L, Parisod C, Gilbert KJ. Purging due to self-fertilization does not prevent accumulation of expansion load. PLoS Genet 2023; 19:e1010883. [PMID: 37656747 PMCID: PMC10501686 DOI: 10.1371/journal.pgen.1010883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/14/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] Open
Abstract
As species expand their geographic ranges, colonizing populations face novel ecological conditions, such as new environments and limited mates, and suffer from evolutionary consequences of demographic change through bottlenecks and mutation load accumulation. Self-fertilization is often observed at species range edges and, in addition to countering the lack of mates, is hypothesized as an evolutionary advantage against load accumulation through increased homozygosity and purging. We study how selfing impacts the accumulation of genetic load during range expansion via purging and/or speed of colonization. Using simulations, we disentangle inbreeding effects due to demography versus due to selfing and find that selfers expand faster, but still accumulate load, regardless of mating system. The severity of variants contributing to this load, however, differs across mating system: higher selfing rates purge large-effect recessive variants leaving a burden of smaller-effect alleles. We compare these predictions to the mixed-mating plant Arabis alpina, using whole-genome sequences from refugial outcrossing populations versus expanded selfing populations. Empirical results indicate accumulation of expansion load along with evidence of purging in selfing populations, concordant with our simulations, suggesting that while purging is a benefit of selfing evolving during range expansions, it is not sufficient to prevent load accumulation due to range expansion.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Christian Parisod
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
2
|
Yang YZ, Luo MX, Pang LD, Gao RH, Chang JT, Liao PC. Parallel adaptation prompted core-periphery divergence of Ammopiptanthus mongolicus. FRONTIERS IN PLANT SCIENCE 2022; 13:956374. [PMID: 36092420 PMCID: PMC9449729 DOI: 10.3389/fpls.2022.956374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Range expansion requires peripheral populations to shift adaptive optima to breach range boundaries. Opportunities for range expansion can be assessed by investigating the associations of core-periphery environmental and genetic differences. This study investigates differences in the core-periphery adaptation of Ammopiptanthus mongolicus, a broad-leaved evergreen shrub species in a relatively homogeneous temperate Asian desert environment, to explore the environmental factors that limit the expansion of desert plants. Temperate deserts are characterized by severe drought, a large diurnal temperature range, and seasonality. Long-standing adaptation to the harsh desert environment may confine the genetic diversity of A. mongolicus, despite its distribution over a wide range of longitude, latitude, and altitude. Since range edges defined by climate niches may have different genetic responses to environmental extremes, we compared genome-wide polymorphisms between nine environmental core populations and ten fragmented peripheral populations to determine the "adaptive peripheral" populations. At least four adaptive peripheral populations had similar genetic-environmental association patterns. High elevations, summer drought, and winter cold were the three main determinants of converging these four adaptive peripheral populations. Elevation mainly caused similar local climates among different geographic regions. Altitudinal adaptation resulting from integrated environmental-genetic responses was a breakthrough in breaching niche boundaries. These peripheral populations are also located in relatively humid and warmer environments. Relaxation of the drought and cold constraints facilitated the genetic divergence of these peripheral populations from the core population's adaptive legacy. We conclude that pleiotropic selection synchronized adaptative divergence to cold and drought vs. warm and humid environments between the core and peripheral populations. Such parallel adaptation of peripheral populations relies on selection under a background of abundant new variants derived from the core population's standing genetic variation, i.e., integration of genetic surfing and local adaptation.
Collapse
Affiliation(s)
- Yong-Zhi Yang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Min-Xin Luo
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Dong Pang
- College Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Huhhot, China
| | - Run-Hong Gao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| | - Jui-Tse Chang
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- School of Life Sciences, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Baselga-Cervera B, Gettle N, Travisano M. Loss-of-heterozygosity facilitates a fitness valley crossing in experimentally evolved multicellular yeast. Proc Biol Sci 2022; 289:20212722. [PMID: 36547392 PMCID: PMC9185828 DOI: 10.1098/rspb.2021.2722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining how adaptive possibilities do or do not become evolutionary realities is central to understanding the tempo and mode of evolutionary change. Some of the simplest evolutionary landscapes arise from underdominance at a single locus where the fitness valley consists of only one less-fit genotype. Despite their potential for rapid evolutionary change, few such examples have been investigated. We capitalized on an experimental system in which a significant evolutionary shift, the transition from uni-to-multicellularity, was observed in asexual diploid populations of Saccharomyces cerevisiae experimentally selected for increased settling rates. The multicellular phenotype results from recessive single-locus mutations that undergo loss-of-heterozygosity (LOH) events. By reconstructing the necessary heterozygous intermediate steps, we found that the evolution of multicellularity involves a decrease in size during the first steps. Heterozygous genotypes are 20% smaller in size than genotypes with functional alleles. Nevertheless, populations of heterozygotes give rise to multicellular genotypes more readily than unicellular genotypes with two functional alleles, by rapid LOH events. LOH drives adaptation that may enable rapid evolution in diploid yeast. Together these results show discordance between the phenotypic and genotypic multicellular transition. The evolutionary path to multicellularity, and the adaptive benefits of increased size, requires initial size reductions.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA,Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Noah Gettle
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA,The BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA,Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Farleigh K, Vladimirova SA, Blair C, Bracken JT, Koochekian N, Schield DR, Card DC, Finger N, Henault J, Leaché AD, Castoe TA, Jezkova T. The effects of climate and demographic history in shaping genomic variation across populations of the Desert Horned Lizard (Phrynosoma platyrhinos). Mol Ecol 2021; 30:4481-4496. [PMID: 34245067 DOI: 10.1111/mec.16070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large-scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post-glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.
Collapse
Affiliation(s)
- Keaka Farleigh
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, New York, USA.,Biology PhD Program, CUNY Graduate Center, New York, New York, USA
| | | | | | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas Finger
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, New York, USA
| | | | - Adam D Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, Ohio, USA
| |
Collapse
|
5
|
Taylor-Cox ED, Macgregor CJ, Corthine A, Hill JK, Hodgson JA, Saccheri IJ. Wing morphological responses to latitude and colonisation in a range expanding butterfly. PeerJ 2020; 8:e10352. [PMID: 33240660 PMCID: PMC7680626 DOI: 10.7717/peerj.10352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
Populations undergoing rapid climate-driven range expansion experience distinct selection regimes dominated both by increased dispersal at the leading edges and steep environmental gradients. Characterisation of traits associated with such expansions provides insight into the selection pressures and evolutionary constraints that shape demographic and evolutionary responses. Here we investigate patterns in three components of wing morphology (size, shape, colour) often linked to dispersal ability and thermoregulation, along latitudinal gradients of range expansion in the Speckled Wood butterfly (Pararge aegeria) in Britain (two regions of expansion in England and Scotland). We measured 774 males from 54 sites spanning 799 km with a 10-year mean average temperature gradient of 4 °C. A geometric morphometric method was used to investigate variation in size and shape of forewings and hindwings; colour, pattern, and contrast of the wings were examined using a measure of lightness (inverse degree of melanism). Overall, wing size increased with latitude by ∼2% per 100 km, consistent with Bergmann’s rule. Forewings became more rounded and hindwings more elongated with history of colonisation, possibly reflecting selection for increased dispersal ability. Contrary to thermal melanism expectations, wing colour was lighter where larvae developed at cooler temperatures and unrelated to long-term temperature. Changes in wing spot pattern were also detected. High heterogeneity in variance among sites for all of the traits studied may reflect evolutionary time-lags and genetic drift due to colonisation of new habitats. Our study suggests that temperature-sensitive plastic responses for size and colour interact with selection for dispersal traits (wing size and shape). Whilst the plastic and evolutionary responses may in some cases act antagonistically, the rapid expansion of P. aegeria implies an overall reinforcing effect between these two mechanisms.
Collapse
Affiliation(s)
- Evelyn D Taylor-Cox
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Callum J Macgregor
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, United Kingdom.,Energy and Environment Institute, University of Hull, Hull, United Kingdom
| | - Amy Corthine
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Jane K Hill
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, United Kingdom
| | - Jenny A Hodgson
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Ilik J Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Scott R, Gras R. A simulation study shows impacts of genetic diversity on establishment success of digital invaders in heterogeneous environments. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Mayrand P, Filotas É, Wittische J, James PMA. The role of dispersal, selection, and timing of sampling on the false discovery rate of loci under selection during geographic range expansion. Genome 2019; 62:715-727. [PMID: 31344331 DOI: 10.1139/gen-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identifying adaptive loci is important to understand the evolutionary potential of species undergoing range expansion. However, in expanding populations, spatial demographic processes such as allele surfing can create spatial patterns of neutral genetic variation that appear similar to those generated through adaptive processes. As a result, the false discovery rate of adaptive loci may be inflated in landscape genomic analyses. Here, we take a simulation modelling approach to investigate how range expansion affects our ability to correctly distinguish between neutral and adaptive genetic variation, using the mountain pine beetle outbreak system as a motivating example. We simulated the demographic and population genetic dynamics of populations undergoing range expansion using an individual-based genetic model CDMetaPOP. We investigated how the false discovery rate of adaptive loci is affected by (i) dispersal capacity, (ii) timing of sampling, and (iii) the strength of selection on an adaptive reference locus. We found that a combination of weak dispersal, weak selection, and early sampling presents the greatest risk of misidentifying loci under selection. Expanding populations present unique challenges to the reliable identification of adaptive loci. We demonstrate that there is a need for further methodological development to account for directional demographic processes in landscape genomics.
Collapse
Affiliation(s)
- Paul Mayrand
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| | - Élise Filotas
- TÉLUQ (Université du Québec), Département Science et Technologie, 5800 rue Saint-Denis, Montréal, QC H2S 3L5, Canada
| | - Julian Wittische
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| | - Patrick M A James
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| |
Collapse
|
8
|
Gralka M, Hallatschek O. Environmental heterogeneity can tip the population genetics of range expansions. eLife 2019; 8:e44359. [PMID: 30977724 PMCID: PMC6513619 DOI: 10.7554/elife.44359] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
The population genetics of most range expansions is thought to be shaped by the competition between Darwinian selection and random genetic drift at the range margins. Here, we show that the evolutionary dynamics during range expansions is highly sensitive to additional fluctuations induced by environmental heterogeneities. Tracking mutant clones with a tunable fitness effect in bacterial colonies grown on randomly patterned surfaces we found that environmental heterogeneity can dramatically reduce the efficacy of selection. Time-lapse microscopy and computer simulations suggest that this effect arises generically from a local 'pinning' of the expansion front, whereby stretches of the front are slowed down on a length scale that depends on the structure of the environmental heterogeneity. This pinning focuses the range expansion into a small number of 'lucky' individuals with access to expansion paths, altering the neutral evolutionary dynamics and increasing the importance of chance relative to selection.
Collapse
Affiliation(s)
- Matti Gralka
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Oskar Hallatschek
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
How Often Do Protein Genes Navigate Valleys of Low Fitness? Genes (Basel) 2019; 10:genes10040283. [PMID: 30965625 PMCID: PMC6523826 DOI: 10.3390/genes10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
To escape from local fitness peaks, a population must navigate across valleys of low fitness. How these transitions occur, and what role they play in adaptation, have been subjects of active interest in evolutionary genetics for almost a century. However, to our knowledge, this problem has never been addressed directly by considering the evolution of a gene, or group of genes, as a whole, including the complex effects of fitness interactions among multiple loci. Here, we use a precise model of protein fitness to compute the probability P ( s , Δ t ) that an allele, randomly sampled from a population at time t, has crossed a fitness valley of depth s during an interval t - Δ t , t in the immediate past. We study populations of model genes evolving under equilibrium conditions consistent with those in mammalian mitochondria. From this data, we estimate that genes encoding small protein motifs navigate fitness valleys of depth 2 N s ≳ 30 with probability P ≳ 0 . 1 on a time scale of human evolution, where N is the (mitochondrial) effective population size. The results are consistent with recent findings for Watson⁻Crick switching in mammalian mitochondrial tRNA molecules.
Collapse
|
10
|
Mueller UG, Ishak HD, Bruschi SM, Smith CC, Herman JJ, Solomon SE, Mikheyev AS, Rabeling C, Scott JJ, Cooper M, Rodrigues A, Ortiz A, Brandão CRF, Lattke JE, Pagnocca FC, Rehner SA, Schultz TR, Vasconcelos HL, Adams RMM, Bollazzi M, Clark RM, Himler AG, LaPolla JS, Leal IR, Johnson RA, Roces F, Sosa-Calvo J, Wirth R, Bacci M. Biogeography of mutualistic fungi cultivated by leafcutter ants. Mol Ecol 2017; 26:6921-6937. [PMID: 29134724 DOI: 10.1111/mec.14431] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Abstract
Leafcutter ants propagate co-evolving fungi for food. The nearly 50 species of leafcutter ants (Atta, Acromyrmex) range from Argentina to the United States, with the greatest species diversity in southern South America. We elucidate the biogeography of fungi cultivated by leafcutter ants using DNA sequence and microsatellite-marker analyses of 474 cultivars collected across the leafcutter range. Fungal cultivars belong to two clades (Clade-A and Clade-B). The dominant and widespread Clade-A cultivars form three genotype clusters, with their relative prevalence corresponding to southern South America, northern South America, Central and North America. Admixture between Clade-A populations supports genetic exchange within a single species, Leucocoprinus gongylophorus. Some leafcutter species that cut grass as fungicultural substrate are specialized to cultivate Clade-B fungi, whereas leafcutters preferring dicot plants appear specialized on Clade-A fungi. Cultivar sharing between sympatric leafcutter species occurs frequently such that cultivars of Atta are not distinct from those of Acromyrmex. Leafcutters specialized on Clade-B fungi occur only in South America. Diversity of Clade-A fungi is greatest in South America, but minimal in Central and North America. Maximum cultivar diversity in South America is predicted by the Kusnezov-Fowler hypothesis that leafcutter ants originated in subtropical South America and only dicot-specialized leafcutter ants migrated out of South America, but the cultivar diversity becomes also compatible with a recently proposed hypothesis of a Central American origin by postulating that leafcutter ants acquired novel cultivars many times from other nonleafcutter fungus-growing ants during their migrations from Central America across South America. We evaluate these biogeographic hypotheses in the light of estimated dates for the origins of leafcutter ants and their cultivars.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Heather D Ishak
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Sofia M Bruschi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Chad C Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jacob J Herman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Scott E Solomon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil.,Department of Ecology & Evolutionary Biology, Rice University, Houston, TX, USA
| | - Alexander S Mikheyev
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Okinawa Institute of Science & Technology, Kunigami, Okinawa, Japan
| | - Christian Rabeling
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jarrod J Scott
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael Cooper
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Andre Rodrigues
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Adriana Ortiz
- Universidad Nacional de Colombia, Medellin, Colombia
| | | | - John E Lattke
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fernando C Pagnocca
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Stephen A Rehner
- Mycology and Nematology Genomic Diversity and Biology Laboratory, Beltsville, MD, USA
| | - Ted R Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Rachelle M M Adams
- Department of Evolution, Ecology & Organismal Biology, Museum of Biological Diversity, Columbus, OH, USA
| | - Martin Bollazzi
- Section of Entomology, Universidad de la República, Montevideo, Uruguay
| | - Rebecca M Clark
- Integrative Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Anna G Himler
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Biology, College of Idaho, Caldwell, ID, USA
| | - John S LaPolla
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Inara R Leal
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Robert A Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Rainer Wirth
- Department of Plant Ecology and Systematics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
11
|
Li K, Kohn MH, Zhang S, Wan X, Shi D, Wang D. The colonization and divergence patterns of Brandt's vole (Lasiopodomys brandtii) populations reveal evidence of genetic surfing. BMC Evol Biol 2017. [PMID: 28637425 PMCID: PMC5480173 DOI: 10.1186/s12862-017-0995-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The colonial habit of Brandt’s vole (Lasiopodomys brandtii) differs from that of most other species of the genus Microtus. The demographic history of this species and the patterns shaping its current genetic structure remain unknown. Here, we explored patterns of genetic differentiation and infered the demographic history of Brandt’s vole populations through analyses of nuclear microsatellite and D-loop sequences. Results Phylogenetic analyses divided the sampled populations into three main clusters, which represent the southeastern, northeastern and western parts of the total range in Mongolia and China. Molecular data revealed an ancestral area located in the southeast of the extant range, in the Xilinguole District, Inner Mongolia, China, from where Brandt’s vole populations began expanding. A gene flow analysis suggested that the most likely colonization route was from the ancestral area and was followed by subsequent northeastward and westward range expansions. We identified decreases in genetic diversity with increasing distance from the founder population within the newly occupied regions (northeastern and western regions), clinal patterns in the allele frequencies, alleles that were rare in the original area that have become common in the newly occupied regions, and higher genetic differentiation in the expanded range compared with the original one. Conclusion Our results indicate that L. brandtii most likely originated from the southeastern part of its current geographic range, and subsequently colonized into the northeastern and western parts by expansion. The genetic patterns among the derived populations and with respect to the original population are consistent with that expected under genetic surfing models, which indicated that genetic drift, rather than gene flow, is the predominant factor underlying the genetic structure of expanding Brandt’s vole populations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0995-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke Li
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Michael H Kohn
- Institute of Biosciences and Bioengineering, Rice University, 130 Anderson Biology, P.O. Box 1892, Houston, 77251-1892, USA
| | - Songmei Zhang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xinrong Wan
- State Key Laboratory for Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Dazhao Shi
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Deng Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
12
|
Peischl S, Kirkpatrick M, Excoffier L. Expansion load and the evolutionary dynamics of a species range. Am Nat 2016; 185:E81-93. [PMID: 25811091 DOI: 10.1086/680220] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Expanding populations incur a mutation burden, the so-called expansion load. Using a mixture of individual-based simulations and analytical modeling, we study the expansion load process in models where population growth depends on the population's fitness (i.e., hard selection). We show that expansion load can severely slow down expansions and limit a species' range, even in the absence of environmental variation. We also study the effect of recombination on the dynamics of a species range and on the evolution of mean fitness on the wave front. If recombination is strong, mean fitness on front approaches an equilibrium value at which the effects of fixed mutations cancel each other out. The equilibrium rate at which new demes are colonized is similar to the rate at which beneficial mutations spread through the core. Without recombination, the dynamics is more complex, and beneficial mutations from the core of the range can invade the front of the expansion, which results in irregular and episodic expansion. Although the rate of adaptation is generally higher in recombining organisms, the mean fitness on the front may be larger in the absence of recombination because high-fitness individuals from the core have a higher chance to invade the front. Our findings have important consequences for the evolutionary dynamics of species ranges as well as on the role and the evolution of recombination during range expansions.
Collapse
Affiliation(s)
- Stephan Peischl
- Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland; and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
13
|
How Obstacles Perturb Population Fronts and Alter Their Genetic Structure. PLoS Comput Biol 2015; 11:e1004615. [PMID: 26696601 PMCID: PMC4690605 DOI: 10.1371/journal.pcbi.1004615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022] Open
Abstract
As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles.
Collapse
|
14
|
Hudson CM, Phillips BL, Brown GP, Shine R. Virgins in the vanguard: low reproductive frequency in invasion-front cane toads. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12618] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron M. Hudson
- School of Biological Sciences A08; University of Sydney; Sydney NSW 2006 Australia
| | | | - Gregory P. Brown
- School of Biological Sciences A08; University of Sydney; Sydney NSW 2006 Australia
| | - Richard Shine
- School of Biological Sciences A08; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
15
|
Peischl S, Excoffier L. Expansion load: recessive mutations and the role of standing genetic variation. Mol Ecol 2015; 24:2084-94. [DOI: 10.1111/mec.13154] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan Peischl
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution; University of Berne; Berne 3012 Switzerland
- Swiss Institute of Bioinformatics; Lausanne 1015 Switzerland
| |
Collapse
|
16
|
Peter BM, Slatkin M. The effective founder effect in a spatially expanding population. Evolution 2015; 69:721-34. [PMID: 25656983 DOI: 10.1111/evo.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/01/2015] [Indexed: 11/28/2022]
Abstract
The gradual loss of diversity and the establishment of clines in allele frequencies associated with range expansions are patterns observed in many species, including humans. These patterns can result from a series of founder events occurring as populations colonize previously unoccupied areas. We develop a model of an expanding population and, using a branching process approximation, show that spatial gradients reflect different amounts of genetic drift experienced by different subpopulations. We then use this model to measure the net average strength of the founder effect, and we demonstrate that the predictions from the branching process model fit simulation results well. We further show that estimates of the effective founder size are robust to potential confounding factors such as migration between subpopulations. We apply our method to data from Arabidopsis thaliana. We find that the average founder effect is approximately three times larger in the Americas than in Europe, possibly indicating that a more recent, rapid expansion occurred.
Collapse
Affiliation(s)
- Benjamin M Peter
- Department of Integrative Biology, University of California, Berkeley, California, 94720; Current address: Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637.
| | | |
Collapse
|
17
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
When a neutral mutation arises in an invading population, it quickly either dies out or ‘surfs’, i.e. it comes to occupy almost all the habitat available at its time of origin. Beneficial mutations can also surf, as can deleterious mutations over finite time spans. We develop descriptive statistical models that quantify the relationship between the probability that a mutation will surf and demographic parameters for a cellular automaton model of surfing. We also provide a simple analytic model that performs well at predicting the probability of surfing for neutral and beneficial mutations in one dimension. The results suggest that factors – possibly including even abiotic factors – that promote invasion success may also increase the probability of surfing and associated adaptive genetic change, conditioned on such success.
Collapse
Affiliation(s)
- Judith R Miller
- Department of Mathematics, Georgetown University Washington, DC, USA
| |
Collapse
|
19
|
Trotter MV, Weissman DB, Peterson GI, Peck KM, Masel J. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution 2014; 68:3357-67. [PMID: 25178652 DOI: 10.1111/evo.12517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 08/25/2014] [Indexed: 12/15/2022]
Abstract
The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.
Collapse
Affiliation(s)
- Meredith V Trotter
- Department of Biology, Stanford University, Stanford, California, 95306; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | | | | | | | | |
Collapse
|
20
|
Impact of range expansions on current human genomic diversity. Curr Opin Genet Dev 2014; 29:22-30. [PMID: 25156518 DOI: 10.1016/j.gde.2014.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 12/19/2022]
Abstract
The patterns of population genetic diversity depend to a large extent on past demographic history. Most human populations are known to have gone recently through a series of range expansions within and out of Africa, but these spatial expansions are rarely taken into account when interpreting observed genomic diversity, possibly because they are difficult to model. Here we review available evidence in favour of range expansions out of Africa, and we discuss several of their consequences on neutral and selected diversity, including some recent observations on an excess of rare neutral and selected variants in large samples. We further show that in spatially subdivided populations, the sampling strategy can severely impact the resulting genetic diversity and be confounded by past demography. We conclude that ignoring the spatial structure of human population can lead to some misinterpretations of extant genetic diversity.
Collapse
|
21
|
Development of genetic structure in a heterogeneous landscape over a short time frame: the reintroduced Asiatic wild ass. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0614-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L. On the accumulation of deleterious mutations during range expansions. Mol Ecol 2013; 22:5972-82. [PMID: 24102784 DOI: 10.1111/mec.12524] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
We investigate the effect of spatial range expansions on the evolution of fitness when beneficial and deleterious mutations cosegregate. We perform individual-based simulations of 1D and 2D range expansions and complement them with analytical approximations for the evolution of mean fitness at the edge of the expansion. We find that deleterious mutations accumulate steadily on the wave front during range expansions, thus creating an expansion load. Reduced fitness due to the expansion load is not restricted to the wave front, but occurs over a large proportion of newly colonized habitats. The expansion load can persist and represent a major fraction of the total mutation load for thousands of generations after the expansion. The phenomenon of expansion load may explain growing evidence that populations that have recently expanded, including humans, show an excess of deleterious mutations. To test the predictions of our model, we analyse functional genetic diversity in humans and find patterns that are consistent with our model.
Collapse
Affiliation(s)
- S Peischl
- Institute of Ecology and Evolution, University of Berne, 3012, Berne, Switzerland; Section of Integrative Biology, University of Texas, Austin, TX, 78712, USA; Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
23
|
Velenich A, Gore J. Synthetic approaches to understanding biological constraints. Curr Opin Chem Biol 2012; 16:323-8. [PMID: 22682889 DOI: 10.1016/j.cbpa.2012.05.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Microbes can be readily cultured and their genomes can be easily manipulated. For these reasons, laboratory systems of unicellular organisms are increasingly used to develop and test theories about biological constraints, which manifest themselves at different levels of biological organization, from optimal gene-expression levels to complex individual and social behaviors. The quantitative description of biological constraints has recently advanced in several areas, such as the formulation of global laws governing the entire economy of a cell, the direct experimental measurement of the trade-offs leading to optimal gene expression, the description of naturally occurring fitness landscapes, and the appreciation of the requirements for a stable bacterial ecosystem.
Collapse
Affiliation(s)
- Andrea Velenich
- Massachusetts Institute of Technology, Department of Physics, Cambridge, MA, USA
| | | |
Collapse
|
24
|
Short KH, Petren K. Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS One 2011; 6:e26258. [PMID: 22053186 PMCID: PMC3203895 DOI: 10.1371/journal.pone.0026258] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.
Collapse
Affiliation(s)
- Kristen Harfmann Short
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America.
| | | |
Collapse
|
25
|
Haag ES, Lenski RE. L'enfant terrible at 30: the maturation of evolutionary developmental biology. Development 2011; 138:2633-7. [PMID: 21652645 DOI: 10.1242/dev.066928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The recent Keystone Symposium on Evolutionary Developmental Biology at Tahoe City in February 2011 provided an opportunity to take stock of where the past three decades have brought this interdisciplinary field. It revealed maturation on several fronts, including increased experimental rigor, the softening of dichotomies that were crucial to its founding and growth, and its growing relevance to both basic and biomedical biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
26
|
Abstract
Invasive species receive attention as manifestations of global ecological change and because of the effects that they may have on other organisms. They are commonly discussed in the context of the ecological perturbations or the human activities that permitted the invasion. There is also evidence, that there is an intrinsic component to biological invasions in that evolutionary changes of the invaders themselves can facilitate or limit invasions (Lee 2002; Urban et al. 2007; Van Bocxlaer et al. 2010). Hence, teasing apart whether environmental change or changes of the organism foster invasions is an interesting field of research. Ample evidence for plants and animals documents that ecological change and human activities trigger range expansions and invasions, but questions regarding evolutionary change of invaders remain less explored although there are several reasons to believe it matters. Firstly, rapid evolutionary change is possible in time-frames relevant for contemporary biological invasions(Hendry et al. 2007). Furthermore, population genetic modelling suggests that there are circumstances where the range expansion and colonization of empty spaces in the course of an invasion can induce evolutionary change in a way that is specific to invaders: the process of repeated founding out of marginal populations in the course of a range expansion can shift allele frequencies and has been referred to as allele surfing, which not only affects neutral genetic variance, but also fitness relevant traits (Klopfstein et al. 2006; Travis et al. 2007; Burton & Travis 2008). Importantly, this process poses a null model for evolutionary inference in invasive populations. It predicts conspicuous allele frequency changes in an expanding metapopulation unless migration homogenizes the gene pool. Despite this relevance, ideas about allele surfing rely heavily on modelling although some experimental evidence comes from studies that document the segregation of genetic variants in growing plaques of bacteria (Hallatschek et al. 2007). To date, little empirical data is available that would reveal the migration processes that affect the establishment of gene pools at invasion fronts in natural systems. This aspect sets the study of Bronnenhuber et al. (2011) apart. They quantify migration behind the expansion front of an invading fish and thus provide important baseline data for the interpretation of the emerging patterns of genetic differentiation.
Collapse
Affiliation(s)
- Arne W Nolte
- Max-Planck-Institute for Evolutionary Biology, August Thienemann Strasse 2, 24306 Plön, Germany.
| |
Collapse
|
27
|
Travis JMJ, Harris CM, Park KJ, Bullock JM. Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches. Methods Ecol Evol 2011. [DOI: 10.1111/j.2041-210x.2011.00104.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Harris EE. Nonadaptive processes in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143 Suppl 51:13-45. [PMID: 21086525 DOI: 10.1002/ajpa.21439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Evolutionary biology has tended to focus on adaptive evolution by positive selection as the primum mobile of evolutionary trajectories in species while underestimating the importance of nonadaptive evolutionary processes. In this review, I describe evidence that suggests that primate and human evolution has been strongly influenced by nonadaptive processes, particularly random genetic drift and mutation. This is evidenced by three fundamental effects: a relative relaxation of selective constraints (i.e., purifying selection), a relative increase in the fixation of slightly deleterious mutations, and a general reduction in the efficacy of positive selection. These effects are observed in protein-coding, regulatory regions, and in gene expression data, as well as in an augmentation of fixation of large-scale mutations, including duplicated genes, mobile genetic elements, and nuclear mitochondrial DNA. The evidence suggests a general population-level explanation such as a reduction in effective population size (N(e)). This would have tipped the balance between the evolutionary forces of natural selection and random genetic drift toward genetic drift for variants having small selective effects. After describing these proximate effects, I describe the potential consequences of these effects for primate and human evolution. For example, an increase in the fixation of slightly deleterious mutations could potentially have led to an increase in the fixation rate of compensatory mutations that act to suppress the effects of slightly deleterious substitutions. The potential consequences of compensatory evolution for the evolution of novel gene functions and in potentially confounding the detection of positively selected genes are explored. The consequences of the passive accumulation of large-scale genomic mutations by genetic drift are unclear, though evidence suggests that new gene copies as well as insertions of transposable elements into genes can potentially lead to adaptive phenotypes. Finally, because a decrease in selective constraint at the genetic level is expected to have effects at the morphological level, I review studies that compare rates of morphological change in various mammalian and island populations where N(e) is reduced. Furthermore, I discuss evidence that suggests that craniofacial morphology in the Homo lineage has shifted from an evolutionary rate constrained by purifying selection toward a neutral evolutionary rate.
Collapse
Affiliation(s)
- Eugene E Harris
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, NY 10364, USA.
| |
Collapse
|
29
|
TRAVIS JMJ, MÜNKEMÜLLER T, BURTON OJ. Mutation surfing and the evolution of dispersal during range expansions. J Evol Biol 2010; 23:2656-67. [DOI: 10.1111/j.1420-9101.2010.02123.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Münkemüller T, Travis MJ, Burton OJ, Schiffers K, Johst K. Density-regulated population dynamics and conditional dispersal alter the fate of mutations occurring at the front of an expanding population. Heredity (Edinb) 2010; 106:678-89. [PMID: 20717158 DOI: 10.1038/hdy.2010.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
There is an increasing recognition that the interplay between ecological and evolutionary processes shapes the genetic footprint of populations during and after range expansions. However, more complex ecological processes regularly considered within spatial ecology remain unexplored in models describing the population genetics of range expansion. In this study we integrate flexible descriptions of population growth and competition as well as conditional dispersal into a model that simulates the fate of mutations occurring at the wave front of an expanding population. Our results show that the survival and distribution of a mutation is not only affected by its bias (that is, whether it is deleterious, neutral or beneficial) but also by the mode of local density regulation and conditional dispersal of the simulated populations. It is in particular the chance of a mutation to establish at the front of advance and 'surf' to high frequencies that critically depends on the investigated ecological processes. This is because of the influence of these processes on demographic stochasticity in the system and the differential responses of deleterious, neutral and beneficial mutations to this stochasticity. Generally, deleterious mutations rely more on chance and thus profit the most from ecological processes that enhance demographic stochasticity during the period of establishment. Our study emphasizes the importance of incorporating more ecological realism into evolutionary models to better understand the consequences of shifting geographic ranges for the genetic structure of populations and to find efficient adaptation strategies to mitigate these effects.
Collapse
Affiliation(s)
- T Münkemüller
- Institute of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
| | | | | | | | | |
Collapse
|
31
|
Burton OJ, Phillips BL, Travis JMJ. Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 2010; 13:1210-20. [DOI: 10.1111/j.1461-0248.2010.01505.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Atkins KE, Travis JMJ. Local adaptation and the evolution of species' ranges under climate change. J Theor Biol 2010; 266:449-57. [PMID: 20654630 DOI: 10.1016/j.jtbi.2010.07.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention.
Collapse
Affiliation(s)
- K E Atkins
- Centre for Infectious Diseases, University of Edinburgh, West Mains Road, EH93JT, UK.
| | | |
Collapse
|
33
|
Excoffier L, Foll M, Petit RJ. Genetic Consequences of Range Expansions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173414] [Citation(s) in RCA: 926] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Excoffier
- Computational and Molecular Population Genetics Lab (CMPG), Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
| | - Matthieu Foll
- Computational and Molecular Population Genetics Lab (CMPG), Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
| | - Rémy J. Petit
- INRA, UMR Biodiversity, Genes and Communities, F-33610 Cestas, France and Université de Bordeaux, UMR Biodiversity, Genes and Communities, F-33610 Cestas, France
| |
Collapse
|
34
|
Travis JMJ, Mustin K, Benton TG, Dytham C. Accelerating invasion rates result from the evolution of density-dependent dispersal. J Theor Biol 2009; 259:151-8. [PMID: 19289134 DOI: 10.1016/j.jtbi.2009.03.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/17/2022]
Abstract
Evolutionary processes play an important role in shaping the dynamics of range expansions, and selection on dispersal propensity has been demonstrated to accelerate rates of advance. Previous theory has considered only the evolution of unconditional dispersal rates, but dispersal is often more complex. For example, many species emigrate in response to crowding. Here, we use an individual-based model to investigate the evolution of density dependent dispersal into empty habitat, such as during an invasion. The landscape is represented as a lattice and dispersal between populations follows a stepping-stone pattern. Individuals carry three 'genes' that determine their dispersal strategy when experiencing different population densities. For a stationary range we obtain results consistent with previous theoretical studies: few individuals emigrate from patches that are below equilibrium density. However, during the range expansion of a previously stationary population, we observe evolution towards dispersal strategies where considerable emigration occurs well below equilibrium density. This is true even for moderate costs to dispersal, and always results in accelerating rates of range expansion. Importantly, the evolution we observe at an expanding front depends upon fitness integrated over several generations and cannot be predicted by a consideration of lifetime reproductive success alone. We argue that a better understanding of the role of density dependent dispersal, and its evolution, in driving population dynamics is required especially within the context of range expansions.
Collapse
Affiliation(s)
- Justin M J Travis
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | |
Collapse
|
35
|
McInerny GJ, Turner JRG, Wong HY, Travis JMJ, Benton TG. How range shifts induced by climate change affect neutral evolution. Proc Biol Sci 2009; 276:1527-34. [PMID: 19324824 PMCID: PMC2677231 DOI: 10.1098/rspb.2008.1567] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects ('mutation surfing'), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations 'wipe out'). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.
Collapse
Affiliation(s)
- G J McInerny
- Computational Ecology and Environmental Sciences, Microsoft Research Limited, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK.
| | | | | | | | | |
Collapse
|
36
|
Landscape structure and boundary effects determine the fate of mutations occurring during range expansions. Heredity (Edinb) 2008; 101:329-40. [PMID: 18594561 DOI: 10.1038/hdy.2008.56] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The interplay between the spatial dynamics of range expansion and evolutionary processes is receiving considerable attention. Recent theory has demonstrated that mutations occurring towards the front of a spatially expanding population can sometimes 'surf' to high frequency and spatial extent. Here, we extend this work to consider how the fate of a novel mutation is influenced by where and when it occurs. Specifically, we are interested in establishing how the origin of a mutation relative to a habitat edge influences its dynamics, and in understanding how this is mediated by the behaviour of individuals at those boundaries. Using a coupled-map lattice model, we demonstrate that the survival probability, abundance and spatial extent of surviving mutants can depend on their origin. An edge effect is often observed and can be quite different both qualitatively and quantitatively depending on the behavioural rules assumed. Mutations, especially those that are deleterious, that arise at a habitat edge with reflective boundary conditions can be many more times likely to survive for substantial periods of time than those that arise away from the edge. Conversely, with absorbing boundary conditions, their survival is greater when they arise well away from the edge. Our results clearly illustrate that landscape structure, habitat edges and boundary conditions have a considerable influence on the likely fate of mutations that occur during a period of range expansion.
Collapse
|