1
|
Barro-Trastoy D, Köhler C. Helitrons: genomic parasites that generate developmental novelties. Trends Genet 2024; 40:437-448. [PMID: 38429198 DOI: 10.1016/j.tig.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Helitrons, classified as DNA transposons, employ rolling-circle intermediates for transposition. Distinguishing themselves from other DNA transposons, they leave the original template element unaltered during transposition, which has led to their characterization as 'peel-and-paste elements'. Helitrons possess the ability to capture and mobilize host genome fragments, with enormous consequences for host genomes. This review discusses the current understanding of Helitrons, exploring their origins, transposition mechanism, and the extensive repercussions of their activity on genome structure and function. We also explore the evolutionary conflicts stemming from Helitron-transposed gene fragments and elucidate their domestication for regulating responses to environmental challenges. Looking ahead, further research in this evolving field promises to bring interesting discoveries on the role of Helitrons in shaping genomic landscapes.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
2
|
Cuello C, Jansen HJ, Abdallah C, Zamar Mbadinga DL, Birer Williams C, Durand M, Oudin A, Papon N, Giglioli-Guivarc'h N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism. Heliyon 2024; 10:e28078. [PMID: 38533072 PMCID: PMC10963385 DOI: 10.1016/j.heliyon.2024.e28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Hans J. Jansen
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Cécile Abdallah
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | | | - Ron P. Dirks
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
3
|
Li C, Cong C, Liu F, Yu Q, Zhan Y, Zhu L, Li Y. Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. Int J Mol Sci 2023; 24:ijms24076574. [PMID: 37047545 PMCID: PMC10095026 DOI: 10.3390/ijms24076574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Helitrons, a novel type of mysterious DNA transposons discovered computationally prior to bench work confirmation, are components ubiquitous in most sequenced genomes of various eukaryotes, including plants, animals, and fungi. There is a paucity of empirical evidence to elucidate the mechanism of Helitrons transposition in plants. Here, by constructing several artificial defective Helitron (dHel) reporter systems, we aim to identify the autonomous Helitrons (aHel) in maize genetically and to demonstrate the transposition and repair mechanisms of Helitrons upon the dHel-GFP excision in maize. When crossing with various inbred lines, several transgenic lines produced progeny of segregated, purple-blotched kernels, resulting from a leaky expression of the C1 gene driven by the dHel-interrupted promoter. Transcription analysis indicated that the insertion of different dHels into the C1 promoter or exon would lead to multiple distinct mRNA transcripts corresponding to transgenes in the host genome. Simple excision products and circular intermediates of dHel-GFP transposition have been detected from the leaf tissue of the seedlings in F1 hybrids of transgenic lines with corresponding c1 tester, although they failed to be detected in all primary transgenic lines. These results revealed the transposition and repair mechanism of Helitrons in maize. It is strongly suggested that this reporter system can detect the genetic activity of autonomic Helitron at the molecular level. Sequence features of dHel itself, together with the flanking regions, impact the excision activity of dHel and the regulation of the dHel on the transcription level of the host gene.
Collapse
Affiliation(s)
- Chuxi Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunsheng Cong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyuan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Lee BY, Kim J, Lee J. Intraspecific de novo gene birth revealed by presence-absence variant genes in Caenorhabditis elegans. NAR Genom Bioinform 2022; 4:lqac031. [PMID: 35464238 PMCID: PMC9022459 DOI: 10.1093/nargab/lqac031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Genes embed their evolutionary history in the form of various alleles. Presence-absence variants (PAVs) are extreme cases of such alleles, where a gene present in one haplotype does not exist in another. Because PAVs may result from either birth or death of a gene, PAV genes and their alternative alleles, if available, can represent a basis for rapid intraspecific gene evolution. Using long-read sequencing technologies, this study traced the possible evolution of PAV genes in the PD1074 and CB4856 C. elegans strains as well as their alternative alleles in 14 other wild strains. We updated the CB4856 genome by filling 18 gaps and identified 46 genes and 7,460 isoforms from both strains not annotated previously. We verified 328 PAV genes, out of which 46 were C. elegans-specific. Among these possible newly born genes, 12 had alternative alleles in other wild strains; in particular, the alternative alleles of three genes showed signatures of active transposons. Alternative alleles of three other genes showed another type of signature reflected in accumulation of small insertions or deletions. Research on gene evolution using both species-specific PAV genes and their alternative alleles may provide new insights into the process of gene evolution.
Collapse
Affiliation(s)
- Bo Yun Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Jun Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| | - Junho Lee
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
- Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
5
|
Palazzo A, Marsano RM. Transposable elements: a jump toward the future of expression vectors. Crit Rev Biotechnol 2021; 41:792-808. [PMID: 33622117 DOI: 10.1080/07388551.2021.1888067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expression vectors (EVs) are artificial nucleic acid molecules with a modular structure that allows for the transcription of DNA sequences of interest in either cellular or cell-free environments. These vectors have emerged as cross-disciplinary tools with multiple applications in an expanding Life Sciences market. The cis-regulatory sequences (CRSs) that control the transcription in EVs are typically sourced from either viruses or from characterized genes. However, the recent advancement in transposable elements (TEs) technology provides attractive alternatives that may enable a significant improvement in the design of EVs. Commonly known as "jumping genes," due to their ability to move between genetic loci, TEs are constitutive components of both eukaryotic and prokaryotic genomes. TEs harbor native CRSs that allow the regulated transcription of transposition-related genes. However, some TE-related CRSs display striking characteristics, which provides the opportunity to reconsider TEs as lead actors in the design of EVs. In this article, we provide a synopsis of the transcriptional control elements commonly found in EVs together with an extensive discussion of their advantages and limitations. We also highlight the latest findings that may allow for the implementation of TE-derived sequences in the EVs feasible, possibly improving existing vectors. By introducing this new concept of TEs as a source of regulatory sequences, we aim to stimulate a profitable discussion of the potential advantages and benefits of developing a new generation of EVs based on the use of TE-derived control sequences.
Collapse
Affiliation(s)
- Antonio Palazzo
- Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S, Bari, Italy
| | | |
Collapse
|
6
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that propagate within genomes. Through diverse invasion strategies, TEs have come to occupy a substantial fraction of nearly all eukaryotic genomes, and they represent a major source of genetic variation and novelty. Here we review the defining features of each major group of eukaryotic TEs and explore their evolutionary origins and relationships. We discuss how the unique biology of different TEs influences their propagation and distribution within and across genomes. Environmental and genetic factors acting at the level of the host species further modulate the activity, diversification, and fate of TEs, producing the dramatic variation in TE content observed across eukaryotes. We argue that cataloging TE diversity and dissecting the idiosyncratic behavior of individual elements are crucial to expanding our comprehension of their impact on the biology of genomes and the evolution of species.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850; ,
| |
Collapse
|
7
|
Hu K, Xu K, Wen J, Yi B, Shen J, Ma C, Fu T, Ouyang Y, Tu J. Helitron distribution in Brassicaceae and whole Genome Helitron density as a character for distinguishing plant species. BMC Bioinformatics 2019; 20:354. [PMID: 31234777 PMCID: PMC6591975 DOI: 10.1186/s12859-019-2945-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Helitron is a rolling-circle DNA transposon; it plays an important role in plant evolution. However, Helitron distribution and contribution to evolution at the family level have not been previously investigated. RESULTS We developed the software easy-to-annotate Helitron (EAHelitron), a Unix-like command line, and used it to identify Helitrons in a wide range of 53 plant genomes (including 13 Brassicaceae species). We determined Helitron density (abundance/Mb) and visualized and examined Helitron distribution patterns. We identified more than 104,653 Helitrons, including many new Helitrons not predicted by other software. Whole genome Helitron density is independent from genome size and shows stability at the species level. Using linear discriminant analysis, de novo genomes (next-generation sequencing) were successfully classified into Arabidopsis thaliana groups. For most Brassicaceae species, Helitron density negatively correlated with gene density, and Helitron distribution patterns were similar to those of A. thaliana. They preferentially inserted into sequence around the centromere and intergenic region. We also associated 13 Helitron polymorphism loci with flowering-time phenotypes in 18 A. thaliana ecotypes. CONCLUSION EAHelitron is a fast and efficient tool to identify new Helitrons. Whole genome Helitron density can be an informative character for plant classification. Helitron insertion polymorphism could be used in association analysis.
Collapse
Affiliation(s)
- Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kai Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Borgognone A, Castanera R, Muguerza E, Pisabarro AG, Ramírez L. Somatic transposition and meiotically driven elimination of an active helitron family in Pleurotus ostreatus. DNA Res 2017; 24:103-115. [PMID: 28431016 PMCID: PMC5397611 DOI: 10.1093/dnares/dsw060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/14/2016] [Indexed: 01/31/2023] Open
Abstract
Helitrons constitute a superfamily of DNA transposons that were discovered in silico and are widespread in most eukaryotic genomes. They are postulated to mobilize through a "rolling-circle" mechanism, but the experimental evidence of their transposition has been described only recently. Here, we present the inheritance patterns of HELPO1 and HELPO2 helitron families in meiotically derived progeny of the basidiomycete Pleurotus ostreatus. We found distorted segregation patterns of HELPO2 helitrons that led to a strong under-representation of these elements in the progeny. Further investigation of HELPO2 flanking sites showed that gene conversion may contribute to the elimination of such repetitive elements in meiosis, favouring the presence of HELPO2 vacant loci. In addition, the analysis of HELPO2 content in a reconstructed pedigree of subclones maintained under different culture conditions revealed an event of helitron somatic transposition. Additional analyses of genome and transcriptome data indicated that P. ostreatus carries active RNAi machinery that could be involved in the control of transposable element proliferation. Our results provide the first evidence of helitron mobilization in the fungal kingdom and highlight the interaction between genome defence mechanisms and invasive DNA.
Collapse
Affiliation(s)
| | | | | | | | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
| |
Collapse
|
9
|
|
10
|
Xiong W, Dooner HK, Du C. Rolling-circle amplification of centromeric Helitrons in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:1038-1045. [PMID: 27553634 DOI: 10.1111/tpj.13314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling-circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present-day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5' ends, but a single 3' end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres.
Collapse
Affiliation(s)
- Wenwei Xiong
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Hugo K Dooner
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08801, USA
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
11
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
12
|
Wang K, Huang G, Zhu Y. Transposable elements play an important role during cotton genome evolution and fiber cell development. SCIENCE CHINA-LIFE SCIENCES 2015; 59:112-21. [PMID: 26687725 DOI: 10.1007/s11427-015-4928-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022]
Abstract
Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities.
Collapse
Affiliation(s)
- Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Roffler S, Menardo F, Wicker T. The making of a genomic parasite - the Mothra family sheds light on the evolution of Helitrons in plants. Mob DNA 2015; 6:23. [PMID: 26688693 PMCID: PMC4683698 DOI: 10.1186/s13100-015-0054-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
Background Helitrons are Class II transposons which are highly abundant in almost all eukaryotes. However, most Helitrons lack protein coding sequence. These non-autonomous elements are thought to hijack recombinase/helicase (RepHel) and possibly further enzymes from related, autonomous elements. Interestingly, many plant Helitrons contain an additional gene encoding a single-strand binding protein homologous to Replication Factor A (RPA), a highly conserved, single-copy gene found in all eukaryotes. Results Here, we describe the analysis of DHH_Mothra, a high-copy non-autonomous Helitron in the genome of rice (Oryza sativa). Mothra has a low GC-content and consists of two distinct blocs of tandem repeats. Based on homology between their termini, we identified a putative mother element which encodes an RPA-like protein but has no RepHel gene. Additionally, we found a putative autonomous sister-family with strong homology to the Mothra mother element in the RPA protein and terminal sequences, which we propose provides the RepHel domain for the Mothra family. Furthermore, we phylogenetically analyzed the evolutionary history of RPA-like proteins. Interestingly, plant Helitron RPAs (PHRPAs) are only found in monocotyledonous and dicotyledonous plants and they form a monophyletic group which branched off before the eukaryotic “core” RPAs. Conclusions Our data show how erosion of autonomous Helitrons can lead to different “levels” of autonomy within Helitron families and can create highly successful subfamilies of non-autonomous elements. Most importantly, our phylogenetic analysis showed that the PHRPA gene was most likely acquired via horizontal gene transfer from an unknown eukaryotic donor at least 145–300 million years ago in the common ancestor of monocotyledonous and dicotyledonous plants. This might have led to the evolution of a separate branch of the Helitron superfamily in plants. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Roffler
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| | - Fabrizio Menardo
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zürich, CH-8008 Switzerland
| |
Collapse
|
14
|
Differential pre-mRNA Splicing Alters the Transcript Diversity of Helitrons Between the Maize Inbred Lines. G3-GENES GENOMES GENETICS 2015; 5:1703-11. [PMID: 26070844 PMCID: PMC4528327 DOI: 10.1534/g3.115.018630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The propensity to capture and mobilize gene fragments by the highly abundant Helitron family of transposable elements likely impacts the evolution of genes in Zea mays. These elements provide a substrate for natural selection by giving birth to chimeric transcripts by intertwining exons of disparate genes. They also capture flanking exons by read-through transcription. Here, we describe the expression of selected Helitrons in different maize inbred lines. We recently reported that these Helitrons produce multiple isoforms of transcripts in inbred B73 via alternative splicing. Despite sharing high degrees of sequence similarity, the splicing profile of Helitrons differed among various maize inbred lines. The comparison of Helitron sequences identified unique polymorphisms in inbred B73, which potentially give rise to the alternatively spliced sites utilized by transcript isoforms. Some alterations in splicing, however, do not have obvious explanations. These observations not only add another level to the creation of transcript diversity by Helitrons among inbred lines but also provide novel insights into the cis-acting elements governing splice-site selection during pre-mRNA processing.
Collapse
|
15
|
Castanera R, Pérez G, López L, Sancho R, Santoyo F, Alfaro M, Gabaldón T, Pisabarro AG, Oguiza JA, Ramírez L. Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi. BMC Genomics 2014; 15:1071. [PMID: 25480150 PMCID: PMC4289320 DOI: 10.1186/1471-2164-15-1071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. RESULTS Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron's boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. CONCLUSION P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lucía Ramírez
- Department of Agrarian Production, Genetics and Microbiology Research Group, Public University of Navarre, 31006 Pamplona, Navarre, Spain.
| |
Collapse
|
16
|
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:505-30. [PMID: 24579996 DOI: 10.1146/annurev-arplant-050213-035811] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Transposable elements (TEs) are the key players in generating genomic novelty by a combination of the chromosome rearrangements they cause and the genes that come under their regulatory sway. Genome size, gene content, gene order, centromere function, and numerous other aspects of nuclear biology are driven by TE activity. Although the origins and attitudes of TEs have the hallmarks of selfish DNA, there are numerous cases where TE components have been co-opted by the host to create new genes or modify gene regulation. In particular, epigenetic regulation has been transformed from a process to silence invading TEs and viruses into a key strategy for regulating plant genes. Most, perhaps all, of this epigenetic regulation is derived from TE insertions near genes or TE-encoded factors that act in trans. Enormous pools of genome data and new technologies for reverse genetics will lead to a powerful new era of TE analysis in plants.
Collapse
Affiliation(s)
- Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | |
Collapse
|
17
|
New insights into helitron transposable elements in the mesopolyploid species Brassica rapa. Gene 2013; 532:236-45. [DOI: 10.1016/j.gene.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022]
|
18
|
Li Y, Harris L, Dooner HK. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency. THE PLANT CELL 2013; 25:3251-65. [PMID: 24038653 PMCID: PMC3809530 DOI: 10.1105/tpc.113.116517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.
Collapse
Affiliation(s)
- Yubin Li
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Linda Harris
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6
| | - Hugo K. Dooner
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901
- Address correspondence to
| |
Collapse
|
19
|
|
20
|
Dong Y, Lu X, Song W, Shi L, Zhang M, Zhao H, Jiao Y, Lai J. Structural characterization of helitrons and their stepwise capturing of gene fragments in the maize genome. BMC Genomics 2011; 12:609. [PMID: 22177531 PMCID: PMC3288121 DOI: 10.1186/1471-2164-12-609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/17/2011] [Indexed: 12/30/2022] Open
Abstract
Background As a newly identified category of DNA transposon, helitrons have been found in a large number of eukaryotes genomes. Helitrons have contributed significantly to the intra-specific genome diversity in maize. Although many characteristics of helitrons in the maize genome have been well documented, the sequence of an intact autonomous helitrons has not been identified in maize. In addition, the process of gene fragment capturing during the transposition of helitrons has not been characterized. Results The whole genome sequences of maize inbred line B73 were analyzed, 1,649 helitron-like transposons including 1,515 helAs and 134 helBs were identified. ZmhelA1, ZmhelB1 and ZmhelB2 all encode an open reading frame (ORF) with intact replication initiator (Rep) motif and a DNA helicase (Hel) domain, which are similar to previously reported autonomous helitrons in other organisms. The putative autonomous ZmhelB1 and ZmhelB2 contain an extra replication factor-a protein1 (RPA1) transposase (RPA-TPase) including three single strand DNA-binding domains (DBD)-A/-B/-C in the ORF. Over ninety percent of maize helitrons identified have captured gene fragments. HelAs and helBs carry 4,645 and 249 gene fragments, which yield 2,507 and 187 different genes respectively. Many helitrons contain mutilple terminal sequences, but only one 3'-terminal sequence had an intact "CTAG" motif. There were no significant differences in the 5'-termini sequence between the veritas terminal sequence and the pseudo sequence. Helitrons not only can capture fragments, but were also shown to lose internal sequences during the course of transposing. Conclusions Three putative autonomous elements were identified, which encoded an intact Rep motif and a DNA helicase domain, suggesting that autonomous helitrons may exist in modern maize. The results indicate that gene fragments captured during the transposition of many helitrons happen in a stepwise way, with multiple gene fragments within one helitron resulting from several sequential transpositions. In addition, we have proposed a potential mechanism regarding how helitrons with multiple termini are generated.
Collapse
Affiliation(s)
- Yongbin Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Helitrons are a family of mobile elements that were discovered in 2001 and are now known to exist in the entire eukaryotic kingdom. Helitrons, particularly those of maize, exhibit an intriguing property of capturing gene fragments and placing them into the mobile element. Helitron-captured genes are sometimes transcribed, giving birth to chimeric transcripts that intertwine coding regions of different captured genes. Here, we perused the B73 maize genome for high-quality, putative Helitrons that exhibit plus/minus polymorphisms and contain pieces of more than one captured gene. Selected Helitrons were monitored for expression via in silico EST analysis. Intriguingly, expression validation of selected elements by RT–PCR analysis revealed multiple transcripts not seen in the EST databases. The differing transcripts were generated by alternative selection of splice sites during pre-mRNA processing. Selection of splice sites was not random since different patterns of splicing were observed in the root and shoot tissues. In one case, an exon residing in close proximity but outside of the Helitron was found conjoined with Helitron-derived exons in the mature transcript. Hence, Helitrons have the ability to synthesize new genes not only by placing unrelated exons into common transcripts, but also by transcription readthrough and capture of nearby exons. Thus, Helitrons have a phenomenal ability to “display” new coding regions for possible selection in nature. A highly conservative, minimum estimate of the number of new transcripts expressed by Helitrons is ∼11,000 or ∼25% of the total number of genes in the maize genome.
Collapse
|
22
|
Coates BS, Hellmich RL, Grant DM, Abel CA. Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 Helitrons. DNA Res 2011; 19:11-21. [PMID: 22086996 PMCID: PMC3276263 DOI: 10.1093/dnares/dsr038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) can affect the structure of genomes through their acquisition and transposition of novel DNA sequences. The 134-bp repetitive elements, Lep1, are conserved non-autonomous Helitrons in lepidopteran genomes that have characteristic 5′-CT and 3′-CTAY nucleotide termini, a 3′-terminal hairpin structure, a 5′- and 3′-subterminal inverted repeat (SIR), and integrations that occur between AT or TT nucleotides. Lep1 Helitrons have acquired and propagated sequences downstream of their 3′-CTAY termini that are 57–344-bp in length and have termini composed of a 3′-CTRR preceded by a 3′-hairpin structure and a region complementary to the 5′-SIR (3′-SIRb). Features of both the Lep1 Helitron and multiple acquired sequences indicate that secondary structures at the 3′-terminus may have a role in rolling circle replication or genome integration mechanisms, and are a prerequisite for novel end creation by Helitron-like TEs. The preferential integration of Lep1 Helitrons in proximity to gene-coding regions results in the creation of genetic novelty that is shown to impact gene structure and function through the introduction of novel exon sequence (exon shuffling). These findings are important in understanding the structural requirements of genomic DNA sequences that are acquired and transposed by Helitron-like TEs.
Collapse
Affiliation(s)
- Brad S Coates
- 1USDA-ARS, Corn Insect and Crop Genetics Research Unit, 113 Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Maize Helitron transposons are intriguing because of their notable ability to capture gene fragments and move them around the genome. To document more extensively their variability and their contribution to the remarkable genome structure variation of present-day maize, we have analyzed their composition, copy number, timing of insertion, and chromosomal distribution. First, we searched 2.4 Gb of sequences generated by the Maize Genome Sequencing Project with our HelitronFinder program. We identified 2,791 putative nonautonomous Helitrons and manually curated a subset of 272. The predicted Helitrons measure 11.9 kb on average and carry from zero to nine gene fragments, captured from 376 different genes. Although the diversity of Helitron gene fragments in maize is greater than in other species, more than one-third of annotated Helitrons carry fragments derived from just one of two genes. Most members in these two subfamilies inserted in the genome less than one million years ago. Second, we conducted a BLASTN search of the maize sequence database with queries from two previously described agenic Helitrons not detected by HelitronFinder. Two large subfamilies of Helitrons or Helitron-related transposons were identified. One subfamily, termed Cornucopious, consists of thousands of copies of an approximately 1.0-kb agenic Helitron that may be the most abundant transposon in maize. The second subfamily consists of >150 copies of a transposon-like sequence, termed Heltir, that has terminal inverted repeats resembling Helitron 3' termini. Nonautonomous Helitrons make up at least 2% of the maize genome and most of those tested show +/- polymorphisms among modern inbred lines.
Collapse
|
24
|
|