1
|
Everitt T, Wallberg A, Christmas MJ, Olsson A, Hoffmann W, Neumann P, Webster MT. The Genomic Basis of Adaptation to High Elevations in Africanized Honey Bees. Genome Biol Evol 2023; 15:evad157. [PMID: 37625795 PMCID: PMC10484329 DOI: 10.1093/gbe/evad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
A range of different genetic architectures underpin local adaptation in nature. Honey bees (Apis mellifera) in the Eastern African Mountains harbor high frequencies of two chromosomal inversions that likely govern adaptation to this high-elevation habitat. In the Americas, honey bees are hybrids of European and African ancestries and adaptation to latitudinal variation in climate correlates with the proportion of these ancestries across the genome. It is unknown which, if either, of these forms of genetic variation governs adaptation in honey bees living at high elevations in the Americas. Here, we performed whole-genome sequencing of 29 honey bees from both high- and low-elevation populations in Colombia. Analysis of genetic ancestry indicated that both populations were predominantly of African ancestry, but the East African inversions were not detected. However, individuals in the higher elevation population had significantly higher proportions of European ancestry, likely reflecting local adaptation. Several genomic regions exhibited particularly high differentiation between highland and lowland bees, containing candidate loci for local adaptation. Genes that were highly differentiated between highland and lowland populations were enriched for functions related to reproduction and sperm competition. Furthermore, variation in levels of European ancestry across the genome was correlated between populations of honey bees in the highland population and populations at higher latitudes in South America. The results are consistent with the hypothesis that adaptation to both latitude and elevation in these hybrid honey bees are mediated by variation in ancestry at many loci across the genome.
Collapse
Affiliation(s)
- Turid Everitt
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang Hoffmann
- Grupo de Biocalorimetría, Universidad de Pamplona, Pamplona, Colombia
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Matthew T Webster
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Bresnahan ST, Lee E, Clark L, Ma R, Markey M, Rangel J, Grozinger CM, Li-Byarlay H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). BMC Genomics 2023; 24:315. [PMID: 37308882 PMCID: PMC10258952 DOI: 10.1186/s12864-023-09411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors - such as aggression - have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA.
| | - Ellen Lee
- Agricultural Research and Development Program, Central State University, Wilberforce, USA
- Department of Biological Sciences, Wright State University, Dayton, USA
| | - Lindsay Clark
- HPCBio, University of Illinois at Urbana-Champaign, Champaign, USA
- Research Scientific Computing Group, Seattle Children's Research Institute, Seattle, USA
| | - Rong Ma
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Michael Markey
- Department of Biological Sciences, Wright State University, Dayton, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, USA
| | - Christina M Grozinger
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, USA.
- Department of Agricultural and Life Science, Central State University, Wilberforce, USA.
| |
Collapse
|
3
|
Lago DC, Nora LC, Hasselmann M, Hartfelder K. Positive selection in cytochrome P450 genes is associated with gonad phenotype and mating strategy in social bees. Sci Rep 2023; 13:5921. [PMID: 37041178 PMCID: PMC10090045 DOI: 10.1038/s41598-023-32898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The honey bee, Apis mellifera differs from all other social bees in its gonad phenotype and mating strategy. Honey bee queens and drones have tremendously enlarged gonads, and virgin queens mate with several males. In contrast, in all the other bees, the male and female gonads are small, and the females mate with only one or very few males, thus, suggesting an evolutionary and developmental link between gonad phenotype and mating strategy. RNA-seq comparisons of A. mellifera larval gonads revealed 870 genes as differentially expressed in queens versus workers and drones. Based on Gene Ontology enrichment we selected 45 genes for comparing the expression levels of their orthologs in the larval gonads of the bumble bee Bombus terrestris and the stingless bee, Melipona quadrifasciata, which revealed 24 genes as differentially represented. An evolutionary analysis of their orthologs in 13 solitary and social bee genomes revealed four genes with evidence of positive selection. Two of these encode cytochrome P450 proteins, and their gene trees indicated a lineage-specific evolution in the genus Apis, indicating that cytochrome P450 genes may be involved in the evolutionary association of polyandry and the exaggerated gonad phenotype in social bees.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Department of Genetics, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luísa Czamanski Nora
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Klaus Hartfelder
- Department of Genetics, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine (FMRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Patterson Rosa L, Eimanifar A, Kimes AG, Brooks SA, Ellis JD. Attack of the dark clones the genetics of reproductive and color traits of South African honey bees (Apis mellifera spp.). PLoS One 2021; 16:e0260833. [PMID: 34905583 PMCID: PMC8670704 DOI: 10.1371/journal.pone.0260833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
The traits of two subspecies of western honey bees, Apis mellifera scutellata and A.m. capensis, endemic to the Republic of South Africa (RSA), are of biological and commercial relevance. Nevertheless, the genetic basis of important phenotypes found in these subspecies remains poorly understood. We performed a genome wide association study on three traits of biological relevance in 234 A.m. capensis, 73 A.m. scutellata and 158 hybrid individuals. Thirteen markers were significantly associated to at least one trait (P ≤ 4.28 × 10−6): one for ovariole number, four for scutellar plate and eight for tergite color. We discovered two possible causative variants associated to the respective phenotypes: a deletion in GB46429 or Ebony (NC_007070.3:g.14101325G>del) (R69Efs*85) and a nonsense on GB54634 (NC_007076.3:g.4492792A>G;p.Tyr128*) causing a premature stop, substantially shortening the predicted protein. The mutant genotypes are significantly associated to phenotypes in A.m. capensis. Loss-of-function of Ebony can cause accumulation of circulating dopamine, and increased dopamine levels correlate to ovary development in queenless workers and pheromone production. Allelic association (P = 1.824 x 10−5) of NC_007076.3:g.4492792A>G;p.Tyr128* to ovariole number warrants further investigation into function and expression of the GB54634 gene. Our results highlight genetic components of relevant production/conservation behavioral phenotypes in honey bees.
Collapse
Affiliation(s)
- Laura Patterson Rosa
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Amin Eimanifar
- Independent Senior Research Scientist, Industrial District, Easton, Maryland, United States of America
| | - Abigail G. Kimes
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Samantha A. Brooks
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - James D. Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
5
|
Page RE. Societies to genes: can we get there from here? Genetics 2021; 219:iyab104. [PMID: 34849914 PMCID: PMC8633090 DOI: 10.1093/genetics/iyab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the organization and evolution of social complexity is a major task because it requires building an understanding of mechanisms operating at different levels of biological organization from genes to social interactions. I discuss here, a unique forward genetic approach spanning more than 30 years beginning with human-assisted colony-level selection for a single social trait, the amount of pollen honey bees (Apis mellifera L.) store. The goal was to understand a complex social trait from the social phenotype to genes responsible for observed trait variation. The approach combined the results of colony-level selection with detailed studies of individual behavior and physiology resulting in a mapped, integrated phenotypic architecture composed of correlative relationships between traits spanning anatomy, physiology, sensory response systems, and individual behavior that affect individual foraging decisions. Colony-level selection reverse engineered the architecture of an integrated phenotype of individuals resulting in changes in the social trait. Quantitative trait locus (QTL) studies combined with an exceptionally high recombination rate (60 kb/cM), and a phenotypic map, provided a genotype-phenotype map of high complexity demonstrating broad QTL pleiotropy, epistasis, and epistatic pleiotropy suggesting that gene pleiotropy or tight linkage of genes within QTL integrated the phenotype. Gene expression and knockdown of identified positional candidates revealed genes affecting foraging behavior and confirmed one pleiotropic gene, a tyramine receptor, as a target for colony-level selection that was under selection in two different tissues in two different life stages. The approach presented here has resulted in a comprehensive understanding of the structure and evolution of honey bee social organization.
Collapse
Affiliation(s)
- Robert E Page
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Oldroyd BP, Yagound B. Parent-of-origin effects, allele-specific expression, genomic imprinting and paternal manipulation in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200425. [PMID: 33866807 DOI: 10.1098/rstb.2020.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.,BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| | - Boris Yagound
- BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Galbraith DA, Ma R, Grozinger CM. Tissue-specific transcription patterns support the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Mol Ecol 2021; 30:1029-1041. [PMID: 33326651 DOI: 10.1111/mec.15778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Kin selection may act differently on genes inherited from parents (matrigenes and patrigenes), resulting in intragenomic conflict. This conflict can be observed as differential expression of matrigenes and patrigenes, or parent-specific gene expression (PSGE). In honey bees (Apis mellifera), intragenomic conflict is hypothesized to occur in multiple social contexts. Previously, we found that patrigene-biased expression in reproductive tissues was associated with increased reproductive potential in worker honey bees, consistent with the prediction that patrigenes are selected to promote selfish behaviour in this context. Here, we examined brain gene expression patterns to determine if PSGE is also found in other tissues. As before, the number of transcripts showing patrigene expression bias was significantly greater in the brains of reproductive vs. sterile workers, while the number of matrigene-biased transcripts was not significantly different. Twelve transcripts out of the 374 showing PSGE in either tissue showed PSGE in both brain and reproductive tissues; this overlap was significantly greater than expected by chance. However, the majority of transcripts show PSGE only in one tissue, suggesting the epigenetic mechanisms mediating PSGE exhibit plasticity between tissues. There was no significant overlap between transcripts that showed PSGE and transcripts that were significantly differentially expressed. Weighted gene correlation network analysis identified modules which were significantly enriched in both types of transcripts, suggesting that these genes may influence each other through gene networks. Our results provide further support for the kin selection theory of intragenomic conflict, and provide valuable insights into the mechanisms which may mediate this process.
Collapse
Affiliation(s)
- David A Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Wang Y, Amdam GV, Daniels BC, Page RE. Tyramine and its receptor TYR1 linked behavior QTL to reproductive physiology in honey bee workers (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104093. [PMID: 32763247 DOI: 10.1016/j.jinsphys.2020.104093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Honey bees (Apis mellifera) provide an excellent model for studying how complex social behavior evolves and is regulated. Social behavioral traits such as the division of labor have been mapped to specific genomic regions in quantitative trait locus (QTL) studies. However, relating genomic mapping to gene function and regulatory mechanism remains a big challenge for geneticists. In honey bee workers, division of labor is known to be regulated by reproductive physiology, but the genetic basis of this regulation remains unknown. In this case, QTL studies have identified tyramine receptor 1 (TYR1) as a candidate gene in region pln2, which is associated with multiple worker social traits and reproductive anatomy. Tyramine (TA), a neurotransmitter, regulates physiology and behavior in diverse insect species including honey bees. Here, we examine directly the effects of TYR1 and TA on worker reproductive physiology, including ovariole number, ovary function and the production of vitellogenin (VG, an egg yolk precursor). First, we used a pharmacology approach to demonstrate that TA affects ovariole number during worker larval development and increases ovary maturation during the adult stage. Second, we used a gene knockdown approach to show that TYR1 regulates vg transcription in adult workers. Finally, we estimated correlations in gene expression and propose that TYR1 may regulate vg transcription by coordinating hormonal and nutritional signals. Taken together, our results suggest TYR1 and TA play important roles in regulating worker reproductive physiology, which in turn regulates social behavior. Our study exemplifies a successful forward-genetic strategy going from QTL mapping to gene function.
Collapse
Affiliation(s)
- Ying Wang
- Banner Health Corporation, PO Box 16423, Phoenix, AZ 85012, USA
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA; Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1430 Aas, Norway
| | - Bryan C Daniels
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, PO Box 872701, Tempe, AZ 85287, USA
| | - Robert E Page
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA; Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
9
|
Inbar S, Cohen P, Yahav T, Privman E. Comparative study of population genomic approaches for mapping colony-level traits. PLoS Comput Biol 2020; 16:e1007653. [PMID: 32218566 PMCID: PMC7141688 DOI: 10.1371/journal.pcbi.1007653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/08/2020] [Accepted: 01/13/2020] [Indexed: 12/05/2022] Open
Abstract
Social insect colonies exhibit colony-level phenotypes such as social immunity and task coordination, which are produced by the individual phenotypes. Mapping the genetic basis of such phenotypes requires associating the colony-level phenotype with the genotypes in the colony. In this paper, we examine alternative approaches to DNA extraction, library construction, and sequencing for genome wide association studies (GWAS) of colony-level traits using a population sample of Cataglyphis niger ants. We evaluate the accuracy of allele frequency estimation from sequencing a pool of individuals (pool-seq) from each colony using either whole-genome sequencing or reduced representation genomic sequencing. Based on empirical measurement of the experimental noise in sequenced DNA pools, we show that reduced representation pool-seq is drastically less accurate than whole-genome pool-seq. Surprisingly, normalized pooling of samples did not result in greater accuracy than un-normalized pooling. Subsequently, we evaluate the power of the alternative approaches for detecting quantitative trait loci (QTL) of colony-level traits by using simulations that account for an environmental effect on the phenotype. Our results can inform experimental designs and enable optimizing the power of GWAS depending on budget, availability of samples and research goals. We conclude that for a given budget, sequencing un-normalized pools of individuals from each colony provides optimal QTL detection power. Genomic mapping techniques are used to map phenotypes to genotypes. Mapping is of general interest in any biological system, including fundamental studies of biological traits, clinical studies of genetic predisposition to disease, and agro- and bio-technological studies of domesticated plants and animals. Typically, such studies associate phenotypic measurements of individuals with their genotypes. Here we evaluate methodological approaches for genomic mapping of phenotypes that are expressed at the level of a group rather than that of individuals. We demonstrate that genomic sequencing of a DNA pool from multiple samples provides increased statistical power within a limited budget. Our results facilitate more efficient use of resources in genomic mapping studies that investigate group-level phenotypes.
Collapse
Affiliation(s)
- Shani Inbar
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Pnina Cohen
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Tal Yahav
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
11
|
Harpur BA. Adaptive maintenance of European alleles in the Brazilian Africanized honeybee. Mol Ecol 2019; 26:3591-3593. [PMID: 28675652 DOI: 10.1111/mec.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/26/2022]
Abstract
The Anthropocene is an epoch hallmarked by intensified human intrusion across ecosystems. One such intrusion is the movement and re-introduction of long-separated populations. By facilitating introgression - intraspecific genetic admixture - secondary contact can facilitate range expansion and the establishment of invasive species. The proximate mechanisms through which introgression facilitates expansion are rarely known (Bock et al., ; Rius & Darling, ), but managed species provide a useful avenue for exploration. Bee-keepers have been interbreeding highly diverged honeybee clades for centuries, often to introduce "useful" phenotypic variation to their stocks. Across the Western honeybee's (Apis mellifera) European range, this practice has not resulted in range expansion (Moritz, Härtel, & Neumann, ). In the Americas, however, introgression of European with African subspecies resulted in a widely publicized invasive population: The Africanized honeybee (AHB). In this issue of Molecular Ecology, Nelson, Wallberg, Simões, Lawson, and Webster () have made the first step towards understanding how this invasive species successfully spread across the Americas.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Dogantzis KA, Zayed A. Recent advances in population and quantitative genomics of honey bees. CURRENT OPINION IN INSECT SCIENCE 2019; 31:93-98. [PMID: 31109680 DOI: 10.1016/j.cois.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The increase in the availability of individual Apis mellifera genomes has resulted in significant progress toward understanding the evolution and adaptation of the honey bee. These efforts have identified new subspecies, evolutionary lineages, and a significant number of genes involved with adaptations and colony-level quantitative traits. Many studies have also developed genetic assays that are being used to monitor the movement and admixture of honey bee populations. These resources are valuable for conservation and breeding programs that seek to improve the economic value of colonies or preserve locally adapted populations and subspecies. This review provides a brief discussion on how population and quantitative genomic studies has improved our understanding of the honey bee.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Luna-Lucena D, Rabico F, Simoes ZL. Reproductive capacity and castes in eusocial stingless bees (Hymenoptera: Apidae). CURRENT OPINION IN INSECT SCIENCE 2019; 31:20-28. [PMID: 31109669 DOI: 10.1016/j.cois.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Eusocial lifestyle is one of the most important transitions in the evolutionary history of some groups of organisms. In bees, there are only two eusocial groups: the honey bees (Apini) and the stingless bees (Meliponini). Despite similarities on the eusocial lifestyles of these taxa, they present profound differences related to caste determination, development, behavior, and reproductive capacity of their members. In most of them the queen has a monopoly on reproduction. However, even though workers are tipically sterile, they can contribute to producing haploid eggs that generate males, or trophic eggs, used as an additional nutrition by the queen.
Collapse
Affiliation(s)
- Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Franciene Rabico
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá Lp Simoes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
14
|
Wragg D, Techer MA, Canale-Tabet K, Basso B, Bidanel JP, Labarthe E, Bouchez O, Le Conte Y, Clémencet J, Delatte H, Vignal A. Autosomal and Mitochondrial Adaptation Following Admixture: A Case Study on the Honeybees of Reunion Island. Genome Biol Evol 2018; 10:220-238. [PMID: 29202174 PMCID: PMC5814903 DOI: 10.1093/gbe/evx247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion, compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee population to be composed on an average of 53.2 ± 5.9% A. m. unicolor nuclear genomic background, the rest being mainly composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations.
Collapse
Affiliation(s)
- David Wragg
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France.,The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Maéva Angélique Techer
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France.,UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France.,Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Benjamin Basso
- Institut de l'abeille (ITSAP), UMT PrADE, Avignon, France
| | | | - Emmanuelle Labarthe
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, UMT PrADE, Avignon, France
| | - Johanna Clémencet
- UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France
| | | | - Alain Vignal
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| |
Collapse
|
15
|
Pegoraro M, Marshall H, Lonsdale ZN, Mallon EB. Do social insects support Haig's kin theory for the evolution of genomic imprinting? Epigenetics 2018; 12:725-742. [PMID: 28703654 PMCID: PMC5739101 DOI: 10.1080/15592294.2017.1348445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.
Collapse
Affiliation(s)
- Mirko Pegoraro
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Hollie Marshall
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Zoë N Lonsdale
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Eamonn B Mallon
- a Department of Genetics and Genome Biology , University of Leicester , UK
| |
Collapse
|
16
|
Yagound B, Duncan M, Chapman NC, Oldroyd BP. Subfamily-dependent alternative reproductive strategies in worker honeybees. Mol Ecol 2017; 26:6938-6947. [PMID: 29113015 DOI: 10.1111/mec.14417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023]
Abstract
Functional worker sterility is the defining feature of insect societies. Yet, workers are sometimes found reproducing in their own or foreign colonies. The proximate mechanisms underlying these alternative reproductive phenotypes are keys to understanding how reproductive altruism and selfishness are balanced in eusocial insects. In this study, we show that in honeybee (Apis mellifera) colonies, the social environment of a worker, that is, the presence and relatedness of the queens in a worker's natal colony and in surrounding colonies, significantly influences her fertility and drifting behaviour. Furthermore, subfamilies vary in the frequency of worker ovarian activation, propensity to drift and the kind of host colony that is targeted for reproductive parasitism. Our results show that there is an interplay between a worker's subfamily, reproductive state and social environment that substantially affects her reproductive phenotype. Our study further indicates that honeybee populations show substantial genetic variance for worker reproductive strategies, suggesting that no one strategy is optimal under all the circumstances that a typical worker may encounter.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Duncan
- School of Science and Health, Western Sydney University, Richmond, NSW, Australia
| | - Nadine C Chapman
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Chen X, Ma C, Chen C, Lu Q, Shi W, Liu Z, Wang H, Guo H. Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honey bees. PeerJ 2017; 5:e3881. [PMID: 29018616 PMCID: PMC5632538 DOI: 10.7717/peerj.3881] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The honey bee (Apis mellifera) is a highly diverse species commonly used for honey production and pollination services. The oviposition of the honey bee queen affects the development and overall performance of the colony. To investigate the ovary activation and oviposition processes on a molecular level, a genome-wide analysis of lncRNAs, miRNAs and mRNA expression in the ovaries of the queens was performed to screen for differentially expressed coding and noncoding RNAs. Further analysis identified relevant candidate genes or RNAs. RESULTS The analysis of the RNA profiles in different oviposition phase of the queens revealed that 740 lncRNAs, 81 miRNAs and 5,481 mRNAs were differently expressed during the ovary activation; 88 lncRNAs, 13 miRNAs and 338 mRNAs were differently expressed during the oviposition inhibition process; and finally, 100 lncRNAs, four miRNAs and 497 mRNAs were differently expressed during the oviposition recovery process. In addition, functional annotation of differentially expressed RNAs revealed several pathways that are closely related to oviposition, including hippo, MAPK, notch, Wnt, mTOR, TGF-beta and FoxO signaling pathways. Furthermore, in the QTL region for ovary size, 73 differentially expressed genes and 14 differentially expressed lncRNAs were located, which are considered as candidate genes affecting ovary size and oviposition. Moreover, a core set of genes served as bridges among different miRNAs were identified through the integrated analysis of lncRNA-miRNA-mRNA network. CONCLUSION The observed dramatic expression changes of coding and noncoding RNAs suggest that they may play a critical role in honey bee queens' oviposition. The identified candidate genes for oviposition activation and regulation could serve as a resource for further studies of genetic markers of oviposition in honey bees.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ce Ma
- Novogene Co., LTD, Tianjin, China
| | - Chao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Lu
- Novogene Co., LTD, Tianjin, China
| | - Wei Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguang Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haikun Guo
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Nelson RM, Wallberg A, Simões ZLP, Lawson DJ, Webster MT. Genomewide analysis of admixture and adaptation in the Africanized honeybee. Mol Ecol 2017; 26:3603-3617. [PMID: 28378497 DOI: 10.1111/mec.14122] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/08/2016] [Accepted: 03/20/2017] [Indexed: 02/03/2023]
Abstract
Genetic exchange by hybridization or admixture can make an important contribution to evolution, and introgression of favourable alleles can facilitate adaptation to new environments. A small number of honeybees (Apis mellifera) with African ancestry were introduced to Brazil ~60 years ago, which dispersed and hybridized with existing managed populations of European origin, quickly spreading across much of the Americas in an example of a massive biological invasion. Here, we analyse whole-genome sequences of 32 Africanized honeybees sampled from throughout Brazil to study the effect of this process on genome diversity. By comparison with ancestral populations from Europe and Africa, we infer that these samples have 84% African ancestry, with the remainder from western European populations. However, this proportion varies across the genome and we identify signals of positive selection in regions with high European ancestry proportions. These observations are largely driven by one large gene-rich 1.4-Mbp segment on chromosome 11 where European haplotypes are present at a significantly elevated frequency and likely confer an adaptive advantage in the Africanized honeybee population. This region has previously been implicated in reproductive traits and foraging behaviour in worker bees. Finally, by analysing the distribution of ancestry tract lengths in the context of the known time of the admixture event, we are able to infer an average generation time of 2.0 years. Our analysis highlights the processes by which populations of mixed genetic ancestry form and adapt to new environments.
Collapse
Affiliation(s)
- Ronald M Nelson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Zilá Luz Paulino Simões
- Department of Biology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, FMRP, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel J Lawson
- Department of Mathematics, University of Bristol, Bristol, UK
| | - Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Lago DC, Humann FC, Barchuk AR, Abraham KJ, Hartfelder K. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:1-12. [PMID: 27720811 DOI: 10.1016/j.ibmb.2016.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log2FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays.
Collapse
Affiliation(s)
- Denyse Cavalcante Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Fernanda Carvalho Humann
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Matão, Rua Estéfano D'avassi, 625, 15991-502 Matão, SP, Brazil.
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva 700, 37130-000 Alfenas, MG, Brazil.
| | - Kuruvilla Joseph Abraham
- Departamento de Puericultura e Pediatria Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Universidade Estácio-Uniseb, Rua Abrahão Issa Halach 980, 14096-160 Ribeirão Preto, SP, Brazil.
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
|
21
|
Remnant EJ, Ashe A, Young PE, Buchmann G, Beekman M, Allsopp MH, Suter CM, Drewell RA, Oldroyd BP. Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation. BMC Genomics 2016; 17:226. [PMID: 26969617 PMCID: PMC4788913 DOI: 10.1186/s12864-016-2506-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Intersexual genomic conflict sometimes leads to unequal expression of paternal and maternal alleles in offspring, resulting in parent-of-origin effects. In honey bees reciprocal crosses can show strong parent-of-origin effects, supporting theoretical predictions that genomic imprinting occurs in this species. Mechanisms behind imprinting in honey bees are unclear but differential DNA methylation in eggs and sperm suggests that DNA methylation could be involved. Nonetheless, because DNA methylation is multifunctional, it is difficult to separate imprinting from other roles of methylation. Here we use a novel approach to investigate parent-of-origin DNA methylation in honey bees. In the subspecies Apis mellifera capensis, reproduction of females occurs either sexually by fertilization of eggs with sperm, or via thelytokous parthenogenesis, producing female embryos derived from two maternal genomes. RESULTS We compared genome-wide methylation patterns of sexually-produced, diploid embryos laid by a queen, with parthenogenetically-produced diploid embryos laid by her daughters. Thelytokous embryos inheriting two maternal genomes had fewer hypermethylated genes compared to fertilized embryos, supporting the prediction that fertilized embryos have increased methylation due to inheritance of a paternal genome. However, bisulfite PCR and sequencing of a differentially methylated gene, Stan (GB18207) showed strong allele-specific methylation that was maintained in both fertilized and thelytokous embryos. For this gene, methylation was associated with haplotype, not parent of origin. CONCLUSIONS The results of our study are consistent with predictions from the kin theory of genomic imprinting. However, our demonstration of allele-specific methylation based on sequence shows that genome-wide differential methylation studies can potentially confound imprinting and allele-specific methylation. It further suggests that methylation patterns are heritable or that specific sequence motifs are targets for methylation in some genes.
Collapse
Affiliation(s)
- Emily J. Remnant
- />Behavior and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Room 248, Macleay Building (A12), Sydney, NSW 2006 Australia
| | - Alyson Ashe
- />School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006 Australia
| | - Paul E. Young
- />Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010 Australia
- />University of New South Wales, Kensington, NSW 2033 Australia
| | - Gabriele Buchmann
- />Behavior and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Room 248, Macleay Building (A12), Sydney, NSW 2006 Australia
| | - Madeleine Beekman
- />Behavior and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Room 248, Macleay Building (A12), Sydney, NSW 2006 Australia
| | - Michael H. Allsopp
- />Honey Bee Research Section, ARC-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, South Africa
| | - Catherine M. Suter
- />Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010 Australia
- />University of New South Wales, Kensington, NSW 2033 Australia
| | - Robert A. Drewell
- />Biology Department, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - Benjamin P. Oldroyd
- />Behavior and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences A12, University of Sydney, Room 248, Macleay Building (A12), Sydney, NSW 2006 Australia
| |
Collapse
|
22
|
Testing the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Proc Natl Acad Sci U S A 2016; 113:1020-5. [PMID: 26755583 DOI: 10.1073/pnas.1516636113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sexual reproduction brings genes from two parents (matrigenes and patrigenes) together into one individual. These genes, despite being unrelated, should show nearly perfect cooperation because each gains equally through the production of offspring. However, an individual's matrigenes and patrigenes can have different probabilities of being present in other relatives, so kin selection could act on them differently. Such intragenomic conflict could be implemented by partial or complete silencing (imprinting) of an allele by one of the parents. Evidence supporting this theory is seen in offspring-mother interactions, with patrigenes favoring acquisition of more of the mother's resources if some of the costs fall on half-siblings who do not share the patrigene. The kinship theory of intragenomic conflict is little tested in other contexts, but it predicts that matrigene-patrigene conflict may be rife in social insects. We tested the hypothesis that honey bee worker reproduction is promoted more by patrigenes than matrigenes by comparing across nine reciprocal crosses of two distinct genetic stocks. As predicted, hybrid workers show reproductive trait characteristics of their paternal stock, (indicating enhanced activity of the patrigenes on these traits), greater patrigenic than matrigenic expression, and significantly increased patrigenic-biased expression in reproductive workers. These results support both the general prediction that matrigene-patrigene conflict occurs in social insects and the specific prediction that honey bee worker reproduction is driven more by patrigenes. The success of these predictions suggests that intragenomic conflict may occur in many contexts where matrigenes and patrigenes have different relatednesses to affected kin.
Collapse
|
23
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Epistasis between adults and larvae underlies caste fate and fitness in a clonal ant. Nat Commun 2015; 5:3363. [PMID: 24561920 DOI: 10.1038/ncomms4363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022] Open
Abstract
In social species, the phenotype and fitness of an individual depend in part on the genotype of its social partners. However, how these indirect genetic effects affect genotype fitness in competitive situations is poorly understood in animal societies. We therefore studied phenotypic plasticity and fitness of two clones of the ant Cerapachys biroi in monoclonal and chimeric colonies. Here we show that, while clone B has lower fitness in isolation, surprisingly, it consistently outcompetes clone A in chimeras. The reason is that, in chimeras, clone B produces more individuals specializing in reproduction rather than cooperative tasks, behaving like a facultative social parasite. A cross-fostering experiment shows that the proportion of these individuals depends on intergenomic epistasis between larvae and nursing adults, explaining the flexible allocation strategy of clone B. Our results suggest that intergenomic epistasis can be the proximate mechanism for social parasitism in ants, revealing striking analogies between social insects and social microbes.
Collapse
|
25
|
Gibson JD, Arechavaleta-Velasco ME, Tsuruda JM, Hunt GJ. Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling. Front Genet 2015; 6:343. [PMID: 26648977 PMCID: PMC4664729 DOI: 10.3389/fgene.2015.00343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022] Open
Abstract
Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent’s allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation.
Collapse
Affiliation(s)
- Joshua D Gibson
- Department of Entomology, Purdue University, West Lafayette IN, USA
| | - Miguel E Arechavaleta-Velasco
- CENID-Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias México, Mexico
| | | | - Greg J Hunt
- Department of Entomology, Purdue University, West Lafayette IN, USA
| |
Collapse
|
26
|
Vojvodic S, Johnson BR, Harpur BA, Kent CF, Zayed A, Anderson KE, Linksvayer TA. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. Ecol Evol 2015; 5:4795-807. [PMID: 26640660 PMCID: PMC4662310 DOI: 10.1002/ece3.1720] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 11/07/2022] Open
Abstract
The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.
Collapse
Affiliation(s)
- Svjetlana Vojvodic
- Center for Insect Science University of Arizona Tucson Arizona ; Department of Biological Sciences Rowan University Glassboro New Jersey
| | - Brian R Johnson
- Department of Entomology University of California Davis California
| | - Brock A Harpur
- Department of Biology York University Toronto Ontario Canada
| | - Clement F Kent
- Department of Biology York University Toronto Ontario Canada
| | - Amro Zayed
- Department of Biology York University Toronto Ontario Canada
| | - Kirk E Anderson
- Carl Hayden Bee Research Center USDA Tucson Arizona ; Department of Entomology University of Arizona Tucson Arizona
| | | |
Collapse
|
27
|
Ihle KE, Rueppell O, Huang ZY, Wang Y, Fondrk MK, Page RE, Amdam GV. Genetic architecture of a hormonal response to gene knockdown in honey bees. J Hered 2015; 106:155-65. [PMID: 25596612 PMCID: PMC4323067 DOI: 10.1093/jhered/esu086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general.
Collapse
Affiliation(s)
- Kate E Ihle
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam).
| | - Olav Rueppell
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Zachary Y Huang
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Ying Wang
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - M Kim Fondrk
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Robert E Page
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| | - Gro V Amdam
- From the School of Life Sciences, Arizona State University, Tempe, AZ 85287 (Ihle, Wang, Fondrk, Page, and Amdam); Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá (Ihle); the Department of Biology, North Carolina State University at Greensboro, Greensboro, NC 27402 (Rueppell); the Department of Entomology, Michigan State University, East Lansing, MI 48824 (Huang); the Department of Entomology, University of California, Davis, CA 95616 (Fondrk); and the Department of Biochemistry and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway (Amdam)
| |
Collapse
|
28
|
Chapman NC, Beekman M, Allsopp MH, Rinderer TE, Lim J, Oxley PR, Oldroyd BP. Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity (Edinb) 2015; 114:584-92. [PMID: 25585920 DOI: 10.1038/hdy.2014.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 01/31/2023] Open
Abstract
Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 p deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.
Collapse
Affiliation(s)
- N C Chapman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M H Allsopp
- ARC-Plant Protection Research Institute, Stellenbosch, South Africa
| | - T E Rinderer
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, USDA-ARS, Baton Rouge, LA, USA
| | - J Lim
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - P R Oxley
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| |
Collapse
|
29
|
Traynor KS, Le Conte Y, Page RE. Queen and young larval pheromones impact nursing and reproductive physiology of honey bee ( Apis mellifera) workers. Behav Ecol Sociobiol 2014; 68:2059-2073. [PMID: 25395721 PMCID: PMC4220115 DOI: 10.1007/s00265-014-1811-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023]
Abstract
Several insect pheromones are multifunctional and have both releaser and primer effects. In honey bees (Apis mellifera), the queen mandibular pheromone (QMP) and e-beta-ocimene (eβ), emitted by young worker larvae, have such dual effects. There is increasing evidence that these multifunctional pheromones profoundly shape honey bee colony dynamics by influencing cooperative brood care, a fundamental aspect of eusocial insect behavior. Both QMP and eβ have been shown to affect worker physiology and behavior, but it has not yet been determined if these two key pheromones have interactive effects on hypopharyngeal gland (HPG) development, actively used in caring of larvae, and ovary activation, a component of worker reproductive physiology. Experimental results demonstrate that both QMP and eβ significantly suppress ovary activation compared to controls but that the larval pheromone is more effective than QMP. The underlying reproductive anatomy (total ovarioles) of workers influenced HPG development and ovary activation, so that worker bees with more ovarioles were less responsive to suppression of ovary activation by QMP. These bees were more likely to develop their HPG and have activated ovaries in the presence of eβ, providing additional links between nursing and reproductive physiology in support of the reproductive ground plan hypothesis.
Collapse
Affiliation(s)
| | - Yves Le Conte
- INRA, UR 406, Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| |
Collapse
|
30
|
|
31
|
Dimorphic ovary differentiation in honeybee (Apis mellifera) larvae involves caste-specific expression of homologs of ark and buffy cell death genes. PLoS One 2014; 9:e98088. [PMID: 24844304 PMCID: PMC4028266 DOI: 10.1371/journal.pone.0098088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/28/2014] [Indexed: 01/25/2023] Open
Abstract
The establishment of the number of repeated structural units, the ovarioles, in the ovaries is one of the critical events that shape caste polyphenism in social insects. In early postembryonic development, honeybee (Apis mellifera) larvae have a pair of ovaries, each one consisting of almost two hundred ovariole primordia. While practically all these ovarioles continue developing in queen-destined larvae, they undergo massive programmed cell death (PCD) in worker-destined larvae. So as to gain insight into the molecular basis of this fundamental process in caste differentiation we used quantitative PCR (qPCR) and fluorescent in situ hybridization (FISH) to investigate the expression of the Amark and Ambuffy genes in the ovaries of the two honeybee castes throughout the fifth larval instar. These are the homologs of ark and buffy Drosophila melanogaster genes, respectively, involved in activating and inhibiting PCD. Caste-specific expression patterns were found during this time-window defining ovariole number. Amark transcript levels were increased when ovariole resorption was intensified in workers, but remained at low levels in queen ovaries. The transcripts were mainly localized at the apical end of all the worker ovarioles, but appeared in only a few queen ovarioles, thus strongly suggesting a function in mediating massive ovariolar cell death in worker larvae. Ambuffy was mainly expressed in the peritoneal sheath cells covering each ovariole. The levels of Ambuffy transcripts increased earlier in the developing ovaries of queens than in workers. Consistent with a protective role against cell death, Ambuffy transcripts were localized in practically all queen ovarioles, but only in few worker ovarioles. The results are indicative of a functional relationship between the expression of evolutionary conserved cell death genes and the morphological events leading to caste-specific ovary differentiation in a social insect.
Collapse
|
32
|
Rueppell O. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding. APIDOLOGIE 2014; 45:364-374. [PMID: 25506100 PMCID: PMC4264964 DOI: 10.1007/s13592-013-0244-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, The University of North Carolina at Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, North Carolina, 27403, USA
| |
Collapse
|
33
|
Roth KM, Beekman M, Allsopp MH, Goudie F, Wossler TC, Oldroyd BP. Cheating workers with large activated ovaries avoid risky foraging. Behav Ecol 2014. [DOI: 10.1093/beheco/aru043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Formesyn EM, Cardoen D, Ernst UR, Danneels EL, Van Vaerenbergh M, De Koker D, Verleyen P, Wenseleers T, Schoofs L, de Graaf DC. Reproduction of honeybee workers is regulated by epidermal growth factor receptor signaling. Gen Comp Endocrinol 2014; 197:1-4. [PMID: 24333651 DOI: 10.1016/j.ygcen.2013.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
Abstract
Eusocial insect societies display a remarkable reproductive division of labor between a single fertile queen and thousands of largely sterile workers. In most species, however, the workers retain the capacity to reproduce, particularly in queenless colonies where typically many workers lay eggs. As yet, the molecular determinants that initiate this shift in worker fertility are still poorly documented. By using RNA interference we here demonstrate that the knockdown of epidermal growth factor receptor, a gene which was previously shown to be involved in queen-worker caste differentiation, also induces reproduction in worker honeybees (Apis mellifera). These data show that worker fertility and queen-worker caste determination partly rely on the same gene regulatory networks, thereby providing a major breakthrough in our understanding of the molecular determinants of the social insects' spectacular reproductive division of labor.
Collapse
Affiliation(s)
- Ellen M Formesyn
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium
| | - Dries Cardoen
- Laboratory of Socio-ecology and Social Evolution, KU Leuven, B-3000 Leuven, Belgium
| | - Ulrich R Ernst
- Research Group of Functional Genomics and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Ellen L Danneels
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium
| | | | - Dieter De Koker
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium
| | - Peter Verleyen
- Research Group of Functional Genomics and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socio-ecology and Social Evolution, KU Leuven, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, KU Leuven, B-3000 Leuven, Belgium
| | - Dirk C de Graaf
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
35
|
Lattorff HMG, Moritz RF. Genetic underpinnings of division of labor in the honeybee (Apis mellifera). Trends Genet 2013; 29:641-8. [DOI: 10.1016/j.tig.2013.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 11/15/2022]
|
36
|
Humann FC, Tiberio GJ, Hartfelder K. Sequence and expression characteristics of long noncoding RNAs in honey bee caste development--potential novel regulators for transgressive ovary size. PLoS One 2013; 8:e78915. [PMID: 24205350 PMCID: PMC3814967 DOI: 10.1371/journal.pone.0078915] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Division of labor in social insect colonies relies on a strong reproductive bias that favors queens. Although the ecological and evolutionary success attained through caste systems is well sketched out in terms of ultimate causes, the molecular and cellular underpinnings driving the development of caste phenotypes are still far from understood. Recent genomics approaches on honey bee developmental biology revealed a set of genes that are differentially expressed genes in larval ovaries and associated with transgressive ovary size in queens and massive cell death in workers. Amongst these, two contigs called special attention, both being over 200 bp in size and lacking apparent coding potential. Herein, we obtained their full cDNA sequences. These and their secondary structure characteristics placed in evidence that they are bona fide long noncoding RNAs (lncRNA) differentially expressed in larval ovaries, thus named lncov1 and lncov2. Genomically, both map within a previously identified QTL on chromosome 11, associated with transgressive ovary size in honey bee workers. As lncov1 was over-expressed in worker ovaries we focused on this gene. Real-time qPCR analysis on larval worker ovaries evidenced an expression peak coinciding with the onset of autophagic cell death. Cellular localization analysis through fluorescence in situ hybridization revealed perinuclear spots resembling omega speckles known to regulate trafficking of RNA-binding proteins. With only four lncRNAs known so far in honey bees, two expressed in the ovaries, these findings open a novel perspective on regulatory factors acting in the fine tuning of developmental processes underlying phenotypic plasticity related to social life histories.
Collapse
Affiliation(s)
- Fernanda C. Humann
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo J. Tiberio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
37
|
Page RE, Rueppell O, Amdam GV. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu Rev Genet 2012; 46:97-119. [PMID: 22934646 DOI: 10.1146/annurev-genet-110711-155610] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.
Collapse
Affiliation(s)
- Robert E Page
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | |
Collapse
|
38
|
Complex pleiotropy characterizes the pollen hoarding syndrome in honey bees (Apis mellifera L.). Behav Ecol Sociobiol 2012; 66:1459-1466. [PMID: 23226916 DOI: 10.1007/s00265-012-1400-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pollen hoarding syndrome consists of a large suite of correlated traits in honey bees that may have played an important role in colony organization and consequently the social evolution of honey bees. The syndrome was first discovered in two strains that have been artificially selected for high and low pollen hoarding. These selected strains are used here to further investigate the phenotypic and genetic links between two central aspects of the pollen hoarding syndrome, sucrose responsiveness and pollen hoarding. Sons of hybrid queen offspring of these two strains were tested for sucrose responsiveness and used to produce colonies with either a highly responsive or an unresponsive father. These two colony groups differed significantly in the amount of pollen stored on brood combs and with regards to their relationship between brood and pollen amounts. Additionally, four quantitative trait loci (QTL) for pollen hoarding behavior were assessed for their effect on sucrose responsiveness. Drone offspring of two hybrid queens were phenotyped for responsiveness and genotyped at marker loci for these QTL, identifying some pleiotropic effects of the QTL with significant QTL interactions. Both experiments thus provided corroborating evidence that the distinct traits of the pollen hoarding syndrome are mechanistically and genetically linked, and that these links are complex and dependent on background genotype. The study demonstrates genetic worker-drone correlations within the context of the pollen hoarding syndrome and establishes that an indirect selection response connects pollen hoarding and sucrose responsiveness, regardless of which trait is directly selected.
Collapse
|
39
|
Siegel AJ, Kaftanoglu O, Fondrk MK, Smith NR, Page RE. Ovarian regulation of foraging division of labour in Africanized backcross and pollen-hoarding honeybees. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2011.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Wang Y, Kocher SD, Linksvayer TA, Grozinger CM, Page RE, Amdam GV. Regulation of behaviorally associated gene networks in worker honey bee ovaries. J Exp Biol 2012; 215:124-34. [PMID: 22162860 PMCID: PMC3233392 DOI: 10.1242/jeb.060889] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 11/20/2022]
Abstract
Several lines of evidence support genetic links between ovary size and division of labor in worker honey bees. However, it is largely unknown how ovaries influence behavior. To address this question, we first performed transcriptional profiling on worker ovaries from two genotypes that differ in social behavior and ovary size. Then, we contrasted the differentially expressed ovarian genes with six sets of available brain transcriptomes. Finally, we probed behavior-related candidate gene networks in wild-type ovaries of different sizes. We found differential expression in 2151 ovarian transcripts in these artificially selected honey bee strains, corresponding to approximately 20.3% of the predicted gene set of honey bees. Differences in gene expression overlapped significantly with changes in the brain transcriptomes. Differentially expressed genes were associated with neural signal transmission (tyramine receptor, TYR) and ecdysteroid signaling; two independently tested nuclear hormone receptors (HR46 and ftz-f1) were also significantly correlated with ovary size in wild-type bees. We suggest that the correspondence between ovary and brain transcriptomes identified here indicates systemic regulatory networks among hormones (juvenile hormone and ecdysteroids), pheromones (queen mandibular pheromone), reproductive organs and nervous tissues in worker honey bees. Furthermore, robust correlations between ovary size and neuraland endocrine response genes are consistent with the hypothesized roles of the ovaries in honey bee behavioral regulation.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Cardoen D, Wenseleers T, Ernst UR, Danneels EL, Laget D, DE Graaf DC, Schoofs L, Verleyen P. Genome-wide analysis of alternative reproductive phenotypes in honeybee workers. Mol Ecol 2011; 20:4070-84. [PMID: 21902748 DOI: 10.1111/j.1365-294x.2011.05254.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A defining feature of social insects is the reproductive division of labour, in which workers usually forego all reproduction to help their mother queen to reproduce. However, little is known about the molecular basis of this spectacular form of altruism. Here, we compared gene expression patterns between nonreproductive, altruistic workers and reproductive, non-altruistic workers in queenless honeybee colonies using a whole-genome microarray analysis. Our results demonstrate massive differences in gene expression patterns between these two sets of workers, with a total of 1292 genes being differentially expressed. In nonreproductive workers, genes associated with energy metabolism and respiration, flight and foraging behaviour, detection of visible light, flight and heart muscle contraction and synaptic transmission were overexpressed relative to reproductive workers. This implies they probably had a higher whole-body energy metabolism and activity rate and were most likely actively foraging, whereas same-aged reproductive workers were not. This pattern is predicted from evolutionary theory, given that reproductive workers should be less willing to compromise their reproductive futures by carrying out high-risk tasks such as foraging or other energetically expensive tasks. By contrast, reproductive workers mainly overexpressed oogenesis-related genes compared to nonreproductive ones. With respect to key switches for ovary activation, several genes involved in steroid biosynthesis were upregulated in reproductive workers, as well as genes known to respond to queen and brood pheromones, genes involved in TOR and insulin signalling pathways and genes located within quantitative trait loci associated with reproductive capacity in honeybees. Overall, our results provide unique insight into the molecular mechanisms underlying alternative reproductive phenotypes in honeybee workers.
Collapse
Affiliation(s)
- Dries Cardoen
- Research Group of Functional Genomics and Proteomics, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Humann FC, Hartfelder K. Representational Difference Analysis (RDA) reveals differential expression of conserved as well as novel genes during caste-specific development of the honey bee (Apis mellifera L.) ovary. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:602-612. [PMID: 21477651 DOI: 10.1016/j.ibmb.2011.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/18/2011] [Accepted: 03/29/2011] [Indexed: 05/28/2023]
Abstract
In highly eusocial insects, such as the honey bee, Apis mellifera, the reproductive bias has become embedded in morphological caste differences. These are most expressively denoted in ovary size, with adult queens having large ovaries consisting of 150-200 ovarioles each, while workers typically have only 1-20 ovarioles per ovary. This morphological differentiation is a result of hormonal signals triggered by the diet change in the third larval instar, which eventually generate caste-specific gene expression patterns. To reveal these we produced differential gene expression libraries by Representational Difference Analysis (RDA) for queen and worker ovaries in a developmental stage when cell death is a prominent feature in the ovarioles of workers, whereas all ovarioles are maintained and extend in length in queens. In the queen library, 48% of the gene set represented homologs of known Drosophila genes, whereas in the worker ovary, the largest set (59%) were ESTs evidencing novel genes, not even computationally predicted in the honey bee genome. Differential expression was confirmed by quantitative RT-PCR for a selected gene set, denoting major differences for two queen and two worker library genes. These included two unpredicted genes located in chromosome 11 (Group11.35 and Group11.31, respectively) possibly representing long non-coding RNAs. Being candidates as modulators of ovary development, their expression and functional analysis should be a focal point for future studies.
Collapse
Affiliation(s)
- Fernanda C Humann
- Departamento de Biologia Celular e Molecular e de Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
43
|
Rueppell O, Phaincharoen M, Kuster R, Tingek S. Cross-species correlation between queen mating numbers and worker ovary sizes suggests kin conflict may influence ovary size evolution in honeybees. Naturwissenschaften 2011; 98:795-9. [PMID: 21732186 DOI: 10.1007/s00114-011-0822-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022]
Abstract
During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of Biology, University of North Carolina-Greensboro, NC 27403, USA.
| | | | | | | |
Collapse
|
44
|
Linksvayer TA, Kaftanoglu O, Akyol E, Blatch S, Amdam GV, Page RE. Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen-worker dimorphism. J Evol Biol 2011; 24:1939-48. [PMID: 21696476 DOI: 10.1111/j.1420-9101.2011.02331.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental programme includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary timescales. Our results indicate that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary size allometry may disrupt queen development and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.
Collapse
Affiliation(s)
- T A Linksvayer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Graham AM, Munday MD, Kaftanoglu O, Page RE, Amdam GV, Rueppell O. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol Biol 2011; 11:95. [PMID: 21489230 PMCID: PMC3100260 DOI: 10.1186/1471-2148-11-95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology. RESULTS Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed. CONCLUSIONS Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
Collapse
Affiliation(s)
- Allie M Graham
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27403, USA
| | | | | | | | | | | |
Collapse
|
46
|
McGlothlin JW, Moore AJ, Wolf JB, Brodie ED. Interacting phenotypes and the evolutionary process. III. Social evolution. Evolution 2011; 64:2558-74. [PMID: 20394666 DOI: 10.1111/j.1558-5646.2010.01012.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interactions among conspecifics influence social evolution through two distinct but intimately related paths. First, they provide the opportunity for indirect genetic effects (IGEs), where genes expressed in one individual influence the expression of traits in others. Second, interactions can generate social selection when traits expressed in one individual influence the fitness of others. Here, we present a quantitative genetic model of multivariate trait evolution that integrates the effects of both IGEs and social selection, which have previously been modeled independently. We show that social selection affects evolutionary change whenever the breeding value of one individual covaries with the phenotype of its social partners. This covariance can be created by both relatedness and IGEs, which are shown to have parallel roles in determining evolutionary response. We show that social selection is central to the estimation of inclusive fitness and derive a version of Hamilton's rule showing the symmetrical effects of relatedness and IGEs on the evolution of altruism. We illustrate the utility of our approach using altruism, greenbeards, aggression, and weapons as examples. Our model provides a general predictive equation for the evolution of social phenotypes that encompasses specific cases such as kin selection and reciprocity. The parameters can be measured empirically, and we emphasize the importance of considering both IGEs and social selection, in addition to relatedness, when testing hypotheses about social evolution.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
47
|
Jackson JT, Tarpy DR, Fahrbach SE. Histological estimates of ovariole number in honey bee queens, Apis mellifera, reveal lack of correlation with other queen quality measures. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:82. [PMID: 21870968 PMCID: PMC3398436 DOI: 10.1673/031.011.8201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/14/2010] [Indexed: 05/31/2023]
Abstract
Published estimates of the number of ovarioles found in the ovaries of honey bee, Apis mellifera L. (Hymenoptera: Apidae) queens range from 100 to 180 per ovary. Within the context of a large-scale study designed to assay the overall quality of queens obtained from various commercial sources, a simple histology-based method for accurate determination of ovariole number was developed and then applied to a sample of 75 queens. Although all 10 commercial sources evaluated provided queens with ovariole numbers within the expected range, ovariole number was found to vary significantly across sources. Overall, and within most of the individual samples, there was no correlation of ovariole number with other morphological attributes such as thoracic width, wing length, or wet weight. Queens from two of the sources, however, displayed a significant negative relationship between wet weight and ovariole number. This study provides baseline data on ovariole number in commercial honey bee queens in the United States at a time when honey bee populations are declining; the method described can be used in studies relating ovariole number in queens to egg production and behavior.
Collapse
Affiliation(s)
- Jeffrey T. Jackson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - David R. Tarpy
- Department of Entomology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Susan E. Fahrbach
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
48
|
Rueppell O, Metheny JD, Linksvayer T, Fondrk MK, Page RE, Amdam GV. Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity (Edinb) 2010; 106:894-903. [PMID: 21048673 DOI: 10.1038/hdy.2010.138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The molecular basis of complex traits is increasingly understood but a remaining challenge is to identify their co-regulation and inter-dependence. Pollen hoarding (pln) in honeybees is a complex trait associated with a well-characterized suite of linked behavioral and physiological traits. In European honeybee stocks bidirectionally selected for pln, worker (sterile helper) ovary size is pleiotropically affected by quantitative trait loci that were initially identified for their effect on foraging behavior. To gain a better understanding of the genetic architecture of worker ovary size in this model system, we analyzed a series of crosses between the selected strains. The crossing results were heterogeneous and suggested non-additive effects. Three significant and three suggestive quantitative trait loci of relatively large effect sizes were found in two reciprocal backcrosses. These loci are not located in genome regions of known effects on foraging behavior but contain several interesting candidate genes that may specifically affect worker-ovary size. Thus, the genetic architecture of this life history syndrome may be comprised of pleiotropic, central regulators that influence several linked traits and other genetic factors that may be downstream and trait specific.
Collapse
Affiliation(s)
- O Rueppell
- Department of Biology, University of North Carolina at Greensboro, 1000 Spring Garden Street, Greensboro, NC 27403, USA.
| | | | | | | | | | | |
Collapse
|