1
|
Sulaiman AA, Ali R, Ramotar D. The histone H2B Arg95 residue efficiently recruits the transcription factor Spt16 to mediate Ste5 expression of the pheromone response pathway. Sci Rep 2023; 13:10189. [PMID: 37349401 PMCID: PMC10287706 DOI: 10.1038/s41598-023-37339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
In yeast Saccharomyces cerevisiae, the immunosuppressant rapamycin inhibits the TORC1 kinase causing rapid alteration in gene expression and leading to G1 arrest. We recently reported the isolation and characterization from the histone mutant collection of a histone H2B R95A mutant that displays resistance to rapamycin. This mutant is defective in the expression of several genes belonging to the pheromone response pathway including STE5 encoding a scaffold protein that promotes the activation of downstream MAP kinases. Cells lacking Ste5 cannot arrest the cell cycle in response to rapamycin and as a consequence exhibit similar resistance to rapamycin as the H2B R95A mutant. Herein, we show that the H2B R95A mutation weakens the association of H2B with Spt16 a component of the FACT complex (FAcilitates Chromatin Transcription), and an essential factor that interacts with the histone H2A-H2B dimer to promote transcription and preserve chromatin integrity. From a collection of spt16 mutants, spt16 E857K and spt16-11 showed striking sensitivity to rapamycin as compared to the parent strain. spt16 E857K and spt16-11 expressed distinct forms of Ste5, while a suppressor mutation H2B A84D of the spt16-11 mutant prevents the expression of Ste5 and confers marked resistance to rapamycin. We interpret these findings to suggest that the Arg95 residue of histone H2B is required to recruit Spt16 to maintain the expression of STE5, which performs a role to arrest cells in the G1 phase in response to rapamycin.
Collapse
Affiliation(s)
- Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, P.O. Box: 34110, Doha, Qatar
| | - Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, P.O. Box: 34110, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, P.O. Box: 34110, Doha, Qatar.
| |
Collapse
|
2
|
Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biomolecules 2023; 13:biom13020288. [PMID: 36830657 PMCID: PMC9952952 DOI: 10.3390/biom13020288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Restricting ribosome biosynthesis and assembly in response to nutrient starvation is a universal phenomenon that enables cells to survive with limited intracellular resources. When cells experience starvation, nutrient signaling pathways, such as the target of rapamycin (TOR) and protein kinase A (PKA), become quiescent, leading to several transcription factors and histone modification enzymes cooperatively and rapidly repressing ribosomal genes. Fission yeast has factors for heterochromatin formation similar to mammalian cells, such as H3K9 methyltransferase and HP1 protein, which are absent in budding yeast. However, limited studies on heterochromatinization in ribosomal genes have been conducted on fission yeast. Herein, we shed light on and compare the regulatory mechanisms of ribosomal gene transcription in two species with the latest insights.
Collapse
|
3
|
Malinina DK, Sivkina AL, Korovina AN, McCullough LL, Formosa T, Kirpichnikov MP, Studitsky VM, Feofanov AV. Hmo1 Protein Affects the Nucleosome Structure and Supports the Nucleosome Reorganization Activity of Yeast FACT. Cells 2022; 11:cells11192931. [PMID: 36230893 PMCID: PMC9564320 DOI: 10.3390/cells11192931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Yeast Hmo1 is a high mobility group B (HMGB) protein that participates in the transcription of ribosomal protein genes and rDNA, and also stimulates the activities of some ATP-dependent remodelers. Hmo1 binds both DNA and nucleosomes and has been proposed to be a functional yeast analog of mammalian linker histones. We used EMSA and single particle Förster resonance energy transfer (spFRET) microscopy to characterize the effects of Hmo1 on nucleosomes alone and with the histone chaperone FACT. Hmo1 induced a significant increase in the distance between the DNA gyres across the nucleosomal core, and also caused the separation of linker segments. This was opposite to the effect of the linker histone H1, which enhanced the proximity of linkers. Similar to Nhp6, another HMGB factor, Hmo1, was able to support large-scale, ATP-independent, reversible unfolding of nucleosomes by FACT in the spFRET assay and partially support FACT function in vivo. However, unlike Hmo1, Nhp6 alone does not affect nucleosome structure. These results suggest physiological roles for Hmo1 that are distinct from Nhp6 and possibly from other HMGB factors and linker histones, such as H1.
Collapse
Affiliation(s)
- Daria K. Malinina
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | - Anna N. Korovina
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Laura L. McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Correspondence: (V.M.S.); (A.V.F.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (V.M.S.); (A.V.F.)
| |
Collapse
|
4
|
Mawer JSP, Massen J, Reichert C, Grabenhorst N, Mylonas C, Tessarz P. Nhp2 is a reader of H2AQ105me and part of a network integrating metabolism with rRNA synthesis. EMBO Rep 2021; 22:e52435. [PMID: 34409714 PMCID: PMC8490984 DOI: 10.15252/embr.202152435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023] Open
Abstract
Ribosome biogenesis is an essential cellular process that requires integration of extracellular cues, such as metabolic state, with intracellular signalling, transcriptional regulation and chromatin accessibility at the ribosomal DNA. Here, we demonstrate that the recently identified histone modification, methylation of H2AQ105 (H2AQ105me), is an integral part of a dynamic chromatin network at the rDNA locus. Its deposition depends on a functional mTor signalling pathway and acetylation of histone H3 at position K56, thus integrating metabolic and proliferative signals. Furthermore, we identify a first epigenetic reader of this modification, the ribonucleoprotein Nhp2, which specifically recognizes H2AQ105me. Based on functional and proteomic data, we suggest that Nhp2 functions as an adapter to bridge rDNA chromatin with components of the small subunit processome to efficiently coordinate transcription of rRNA with its post‐transcriptional processing. We support this by showing that an H2AQ105A mutant has a mild defect in early processing of rRNA.
Collapse
Affiliation(s)
- Julia S P Mawer
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jennifer Massen
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christina Reichert
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Niklas Grabenhorst
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Constantine Mylonas
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Stress Responses in ageing-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
5
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
McCullough LL, Pham TH, Parnell TJ, Connell Z, Chandrasekharan MB, Stillman DJ, Formosa T. Establishment and Maintenance of Chromatin Architecture Are Promoted Independently of Transcription by the Histone Chaperone FACT and H3-K56 Acetylation in Saccharomyces cerevisiae. Genetics 2019; 211:877-892. [PMID: 30679261 PMCID: PMC6404263 DOI: 10.1534/genetics.118.301853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.
Collapse
Affiliation(s)
- Laura L McCullough
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Trang H Pham
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Timothy J Parnell
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Zaily Connell
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
7
|
Nune M, Morgan MT, Connell Z, McCullough L, Jbara M, Sun H, Brik A, Formosa T, Wolberger C. FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. eLife 2019; 8:40988. [PMID: 30681413 PMCID: PMC6372288 DOI: 10.7554/elife.40988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.
Collapse
Affiliation(s)
- Melesse Nune
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Morgan
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zaily Connell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Cynthia Wolberger
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
8
|
Serra-Cardona A, Zhang Z. Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity. Trends Biochem Sci 2017; 43:136-148. [PMID: 29292063 DOI: 10.1016/j.tibs.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
Abstract
During S phase, replicated DNA must be assembled into nucleosomes using both newly synthesized and parental histones in a process that is tightly coupled to DNA replication. This DNA replication-coupled process is regulated by multitude of histone chaperones as well as by histone-modifying enzymes. In recent years novel insights into nucleosome assembly of new H3-H4 tetramers have been gained through studies on the classical histone chaperone CAF-1 and the identification of novel factors involved in this process. Moreover, in vitro reconstitution of chromatin replication has shed light on nucleosome assembly of parental H3-H4, a process that remains elusive. Finally, recent studies have revealed that the replication-coupled nucleosome assembly is important for the determination and maintenance of cell fate in multicellular organisms.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Ramachandran S, Ahmad K, Henikoff S. Capitalizing on disaster: Establishing chromatin specificity behind the replication fork. Bioessays 2017; 39. [PMID: 28133760 PMCID: PMC5513704 DOI: 10.1002/bies.201600150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes are packaged into nucleosomal chromatin, and genomic activity requires the precise localization of transcription factors, histone modifications and nucleosomes. Classic work described the progressive reassembly and maturation of bulk chromatin behind replication forks. More recent proteomics has detailed the molecular machines that accompany the replicative polymerase to promote rapid histone deposition onto the newly replicated DNA. However, localized chromatin features are transiently obliterated by DNA replication every S phase of the cell cycle. Genomic strategies now observe the rebuilding of locus-specific chromatin features, and reveal surprising delays in transcription factor binding behind replication forks. This implies that transient chromatin disorganization during replication is a central juncture for targeted transcription factor binding within genomes. We propose that transient occlusion of regulatory elements by disorganized nucleosomes during chromatin maturation enforces specificity of factor binding.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
10
|
Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 2016; 23:1111-1116. [PMID: 27820806 DOI: 10.1038/nsmb.3321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.
Collapse
|
11
|
Marcianò G, Huang DT. Structure of the human histone chaperone FACT Spt16 N-terminal domain. Acta Crystallogr F Struct Biol Commun 2016; 72:121-8. [PMID: 26841762 PMCID: PMC4741192 DOI: 10.1107/s2053230x15024565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022] Open
Abstract
The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.
Collapse
Affiliation(s)
- G. Marcianò
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland
| | - D. T. Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland
| |
Collapse
|
12
|
Bondarenko MT, Maluchenko NV, Valieva ME, Gerasimova NS, Kulaeva OI, Georgiev PG, Studitsky VM. Structure and function of histone chaperone FACT. Mol Biol 2015. [DOI: 10.1134/s0026893315060023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. Mol Cell 2015; 60:294-306. [PMID: 26455391 DOI: 10.1016/j.molcel.2015.09.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/31/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
Abstract
FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.
Collapse
|
14
|
The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae. Genetics 2015; 201:1031-45. [PMID: 26416482 DOI: 10.1534/genetics.115.180794] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Spt6 protein is a conserved chromatin factor with several distinct functional domains, including a natively unstructured 30-residue N-terminal region that binds competitively with Spn1 or nucleosomes. To uncover physiological roles of these interactions, we isolated histone mutations that suppress defects caused by weakening Spt6:Spn1 binding with the spt6-F249K mutation. The strongest suppressor was H2A-N39K, which perturbs the point of contact between the two H2A-H2B dimers in an assembled nucleosome. Substantial suppression also was observed when the H2A-H2B interface with H3-H4 was altered, and many members of this class of mutations also suppressed a defect in another essential histone chaperone, FACT. Spt6 is best known as an H3-H4 chaperone, but we found that it binds with similar affinity to H2A-H2B or H3-H4. Like FACT, Spt6 is therefore capable of binding each of the individual components of a nucleosome, but unlike FACT, Spt6 did not produce endonuclease-sensitive reorganized nucleosomes and did not displace H2A-H2B dimers from nucleosomes. Spt6 and FACT therefore have distinct activities, but defects can be suppressed by overlapping histone mutations. We also found that Spt6 and FACT together are nearly as abundant as nucleosomes, with ∼24,000 Spt6 molecules, ∼42,000 FACT molecules, and ∼75,000 nucleosomes per cell. Histone mutations that destabilize interfaces within nucleosomes therefore reveal multiple spatial regions that have both common and distinct roles in the functions of these two essential and abundant histone chaperones. We discuss these observations in terms of different potential roles for chaperones in both promoting the assembly of nucleosomes and monitoring their quality.
Collapse
|
15
|
A systematic mutational analysis of a histone H3 residue in budding yeast provides insights into chromatin dynamics. G3-GENES GENOMES GENETICS 2015; 5:741-9. [PMID: 25711831 PMCID: PMC4426362 DOI: 10.1534/g3.115.017376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In previous work using the Saccharomyces cerevisiae model system, a mutant version of histone H3-H3-L61W-was found to confer a variety of abnormal growth phenotypes and defects in specific aspects of the transcription process, including a pronounced alteration in the distribution pattern of the transcription elongation factor Spt16 across transcribed genes and promotion of cryptic transcription initiation within the FLO8 gene. To gain insights into the contribution of the H3-L61 residue to chromatin function, we have generated yeast strains expressing versions of histone H3 harboring all possible natural amino acid substitutions at position 61 (H3-L61X mutants) and tested them in a series of assays. We found that whereas 16 of the 19 H3-L61X mutants support viability when expressed as the sole source of histone H3 in cells, all 19 confer abnormal phenotypes ranging from very mild to severe, a finding that might in part explain the high degree of conservation of the H3-L61 residue among eukaryotes. An examination of the strength of the defects conferred by each H3-L61X mutant and the nature of the corresponding substituted residue provides insights into structural features of the nucleosome required for proper Spt16-gene interactions and for prevention of cryptic transcription initiation events. Finally, we provide evidence that the defects imparted by H3-L61X mutants on Spt16-gene interactions and on repression of intragenic transcription initiation are mechanistically related to each other.
Collapse
|
16
|
Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 2014; 15:703-8. [PMID: 25315270 DOI: 10.1038/nrm3890] [Citation(s) in RCA: 708] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-translational modifications of histones regulate all DNA-templated processes, including replication, transcription and repair. These modifications function as platforms for the recruitment of specific effector proteins, such as transcriptional regulators or chromatin remodellers. Recent data suggest that histone modifications also have a direct effect on nucleosomal architecture. Acetylation, methylation, phosphorylation and citrullination of the histone core may influence chromatin structure by affecting histone-histone and histone-DNA interactions, as well as the binding of histones to chaperones.
Collapse
Affiliation(s)
- Peter Tessarz
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK; and the Max Planck Research Group 'Chromatin and Ageing', Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
17
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
18
|
The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts. Genes Dev 2014; 28:735-48. [PMID: 24636987 PMCID: PMC4015491 DOI: 10.1101/gad.234070.113] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin-reorganizing complex FACT functions in transcription elongation and DNA replication, yet its role in replication is not well understood. Here, Herrera-Moyano et al. find increased recombination rates and genetic instability in yeast mutants and FACT-depleted human cells. The results demonstrate a conserved function for FACT in the resolution of transcription–replication conflicts mediated by R loops. This study therefore links the roles of FACT in transcription elongation and DNA replication. FACT (facilitates chromatin transcription) is a chromatin-reorganizing complex that swaps nucleosomes around the RNA polymerase during transcription elongation and has a role in replication that is not fully understood yet. Here we show that recombination factors are required for the survival of yeast FACT mutants, consistent with an accumulation of DNA breaks that we detected by Rad52 foci and transcription-dependent hyperrecombination. Breaks also accumulate in FACT-depleted human cells, as shown by γH2AX foci and single-cell electrophoresis. Furthermore, FACT-deficient yeast and human cells show replication impairment, which in yeast we demonstrate by ChIP–chip (chromatin immunoprecipitation [ChIP] coupled with microarray analysis) of Rrm3 to occur genome-wide but preferentially at highly transcribed regions. Strikingly, in yeast FACT mutants, high levels of Rad52 foci are suppressed by RNH1 overexpression; R loops accumulate at high levels, and replication becomes normal when global RNA synthesis is inhibited in FACT-depleted human cells. The results demonstrate a key function of FACT in the resolution of R-loop-mediated transcription–replication conflicts, likely associated with a specific chromatin organization.
Collapse
|
19
|
Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, Kouzarides T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 2014; 505:564-8. [PMID: 24352239 PMCID: PMC3901671 DOI: 10.1038/nature12819] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 10/29/2013] [Indexed: 12/03/2022]
Abstract
Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.
Collapse
Affiliation(s)
- Peter Tessarz
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Helena Santos-Rosa
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sam C. Robson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Kathrine B. Sylvestersen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Christopher J Nelson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Michael L. Nielsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
20
|
Voth WP, Takahata S, Nishikawa JL, Metcalfe BM, Näär AM, Stillman DJ. A role for FACT in repopulation of nucleosomes at inducible genes. PLoS One 2014; 9:e84092. [PMID: 24392107 PMCID: PMC3879260 DOI: 10.1371/journal.pone.0084092] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
Xenobiotic drugs induce Pleiotropic Drug Resistance (PDR) genes via the orthologous Pdr1/Pdr3 transcription activators. We previously identified the Mediator transcription co-activator complex as a key target of Pdr1 orthologs and demonstrated that Pdr1 interacts directly with the Gal11/Med15 subunit of the Mediator complex. Based on an interaction between Pdr1 and the FACT complex, we show that strains with spt16 or pob3 mutations are sensitive to xenobiotic drugs and display diminished PDR gene induction. Although FACT acts during the activation of some genes by assisting in the nucleosomes eviction at promoters, PDR promoters already contain nucleosome-depleted regions (NDRs) before induction. To determine the function of FACT at PDR genes, we examined the kinetics of RNA accumulation and changes in nucleosome occupancy following exposure to a xenobiotic drug in wild type and FACT mutant yeast strains. In the presence of normal FACT, PDR genes are transcribed within 5 minutes of xenobiotic stimulation and transcription returns to basal levels by 30–40 min. Nucleosomes are constitutively depleted in the promoter regions, are lost from the open reading frames during transcription, and the ORFs are wholly repopulated with nucleosomes as transcription ceases. While FACT mutations cause minor delays in activation of PDR genes, much more pronounced and significant defects in nucleosome repopulation in the ORFs are observed in FACT mutants upon transcription termination. FACT therefore has a major role in nucleosome redeposition following cessation of transcription at the PDR genes, the opposite of its better-known function in nucleosome disassembly.
Collapse
Affiliation(s)
- Warren P. Voth
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Joy L. Nishikawa
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin M. Metcalfe
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J. Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
21
|
Oliveira DV, Kato A, Nakamura K, Ikura T, Okada M, Kobayashi J, Yanagihara H, Saito Y, Tauchi H, Komatsu K. Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J Cell Sci 2013; 127:763-72. [PMID: 24357716 DOI: 10.1242/jcs.135855] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The E3 ubiquitin ligase RNF20 regulates chromatin structure through ubiquitylation of histone H2B, so that early homologous recombination repair (HRR) proteins can access the DNA in eukaryotes during repair. However, it remains unresolved how RNF20 itself approaches the DNA in the presence of chromatin structure. Here, we identified the histone chaperone FACT as a key protein in the early steps of HRR. Depletion of SUPT16H, a component of FACT, caused pronounced defects in accumulations of repair proteins and, consequently, decreased HRR activity. This led to enhanced sensitivity to ionizing radiation (IR) and mitomycin-C in a fashion similar to RNF20-deficient cells, indicating that SUPT16H is essential for RNF20-mediated pathway. Indeed, SUPT16H directly bound to RNF20 in vivo, and mutation at the RING-finger domain in RNF20 abolished its interaction and accumulation, as well as that of RAD51 and BRCA1, at sites of DNA double-strand breaks (DSBs), whereas the localization of SUPT16H remained intact. Interestingly, PAF1, which has been implicated in transcription as a mediator of FACT and RNF20 association, was dispensable for DNA-damage-induced interaction of RNF20 with SUPT16H. Furthermore, depletion of SUPT16H caused pronounced defects in RNF20-mediated H2B ubiquitylation and thereby, impaired accumulation of the chromatin remodeling factor SNF2h. Consistent with this observation, the defective phenotypes of SUPT16H were effectively counteracted by enforced nucleosome relaxation. Taken together, our results indicate a primary role of FACT in RNF20 recruitment and the resulting chromatin remodeling for initiation of HRR.
Collapse
Affiliation(s)
- Douglas V Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
A highly conserved region within H2B is important for FACT to act on nucleosomes. Mol Cell Biol 2013; 34:303-14. [PMID: 24248595 DOI: 10.1128/mcb.00478-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone N-terminal tails play crucial roles in chromatin-related processes. The tails of histones H3 and H4 are highly conserved and well characterized, but much less is known about the functions of the tails of histones H2A and H2B and their sequences are more divergent among eukaryotes. Here we characterized the function of the only highly conserved region in the H2B tail, the H2B repression (HBR) domain. Once thought to play a role only in repression, it also has an uncharacterized function in gene activation and DNA damage responses. We report that deletion of the HBR domain impairs the eviction of nucleosomes at the promoters and open reading frames of genes. A closer examination of the HBR domain mutants revealed that they displayed phenotypes similar to those of histone chaperone complex FACT mutants, including an increase in intragenic transcription and the accumulation of free histones in cells. Biochemical characterization of recombinant nucleosomes indicates that deletion of the HBR domain impairs FACT-dependent removal of H2A-H2B from nucleosomes, suggesting that the HBR domain plays an important role in allowing FACT to disrupt dimer-DNA interactions. We have uncovered a previously unappreciated role for the HBR domain in regulating chromatin structure and have provided insight into how FACT acts on nucleosomes.
Collapse
|
23
|
Kulaeva OI, Malyuchenko NV, Nikitin DV, Demidenko AV, Chertkov OV, Efimova NS, Kirpichnikov MP, Studitsky VM. Molecular mechanisms of transcription through a nucleosome by RNA polymerase II. Mol Biol 2013. [DOI: 10.1134/s0026893313050099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae. Genetics 2013; 195:101-13. [PMID: 23833181 DOI: 10.1534/genetics.113.153080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation.
Collapse
|
25
|
Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A 2013; 110:7654-9. [PMID: 23610384 DOI: 10.1073/pnas.1222198110] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FACT (facilitates chromatin transcription) is a histone chaperone that promotes chromatin recovery during transcription, with additional roles in cell differentiation. Although several models of the action of FACT during transcription have been proposed, they remain to be experimentally evaluated. Here we show that human FACT (hFACT) facilitates transcription through chromatin and promotes nucleosome recovery in vitro. FACT action depends on the presence of histone H2A/H2B dimers in the nucleosome. Kinetic analysis suggests that hFACT decreases the lifetime of nonproductive RNA polymerase II (Pol II)-nucleosome complexes and facilitates the formation of productive complexes containing nucleosomal DNA partially uncoiled from the octamer. Taken together, our data suggest that hFACT interacts with DNA-binding surfaces of H2A/H2B dimers, facilitating uncoiling of DNA from the histone octamer. Thus, hFACT-H2A/H2B interactions play a key role in overcoming the nucleosomal barrier by Pol II and promoting nucleosome survival during transcription.
Collapse
|
26
|
Kemble DJ, Whitby FG, Robinson H, McCullough LL, Formosa T, Hill CP. Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT. J Biol Chem 2013; 288:10188-94. [PMID: 23417676 DOI: 10.1074/jbc.c113.451369] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins.
Collapse
Affiliation(s)
- David J Kemble
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | | | | | | | |
Collapse
|
27
|
Hainer SJ, Charsar BA, Cohen SB, Martens JA. Identification of Mutant Versions of the Spt16 Histone Chaperone That Are Defective for Transcription-Coupled Nucleosome Occupancy in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2012; 2:555-67. [PMID: 22670226 PMCID: PMC3362939 DOI: 10.1534/g3.112.002451] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/04/2012] [Indexed: 12/12/2022]
Abstract
The highly conserved FACT (Facilitates Chromatin Transactions) complex performs essential functions in eukaryotic cells through the reorganization of nucleosomes. During transcription, FACT reorganizes nucleosomes to allow passage of RNA Polymerase II and then assists in restoring these nucleosomes after RNA Polymerase II has passed. We have previously shown, consistent with this function, that Spt16 facilitates repression of the Saccharomyces cerevisiae SER3 gene by maintaining nucleosome occupancy over the promoter of this gene as a consequence of intergenic transcription of SRG1 noncoding DNA. In this study, we report the results of a genetic screen to identify mutations in SPT16 that derepress SER3. Twenty-five spt16 mutant alleles were found to derepress SER3 without causing significant reductions in either SRG1 RNA levels or Spt16 protein levels. Additional phenotypic assays indicate that these mutants have general transcription defects related to altered chromatin structure. Our analyses of a subset of these spt16 mutants reveal defects in SRG1 transcription-coupled nucleosome occupancy over the SER3 promoter. We provide evidence that these mutants broadly impair transcription-coupled nucleosome occupancy at highly transcribed genes but not at lowly transcribed genes. Finally, we show that one consequence shared by these mutations is the reduced binding of mutant Spt16 proteins across SRG1 and other highly transcribed genes. Taken together, our results highlight an important role for Spt16 in orchestrating transcription-coupled nucleosome assembly at highly transcribed regions of the genome, possibly by facilitating the association of Spt16 during this process.
Collapse
Affiliation(s)
- Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Brittany A. Charsar
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shayna B. Cohen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joseph A. Martens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
28
|
Chavez MS, Scorgie JK, Dennehey BK, Noone S, Tyler JK, Churchill ME. The conformational flexibility of the C-terminus of histone H4 promotes histone octamer and nucleosome stability and yeast viability. Epigenetics Chromatin 2012; 5:5. [PMID: 22541333 PMCID: PMC3439350 DOI: 10.1186/1756-8935-5-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 03/19/2012] [Indexed: 01/10/2023] Open
Abstract
Background The protein anti-silencing function 1 (Asf1) chaperones histones H3/H4 for assembly into nucleosomes every cell cycle as well as during DNA transcription and repair. Asf1 interacts directly with H4 through the C-terminal tail of H4, which itself interacts with the docking domain of H2A in the nucleosome. The structure of this region of the H4 C-terminus differs greatly in these two contexts. Results To investigate the functional consequence of this structural change in histone H4, we restricted the available conformations of the H4 C-terminus and analyzed its effect in vitro and in vivo in Saccharomyces cerevisiae. One such mutation, H4 G94P, had modest effects on the interaction between H4 and Asf1. However, in yeast, flexibility of the C-terminal tail of H4 has essential functions that extend beyond chromatin assembly and disassembly. The H4 G94P mutation resulted in severely sick yeast, although nucleosomes still formed in vivo albeit yielding diffuse micrococcal nuclease ladders. In vitro, H4G4P had modest effects on nucleosome stability, dramatically reduced histone octamer stability, and altered nucleosome sliding ability. Conclusions The functional consequences of altering the conformational flexibility in the C-terminal tail of H4 are severe. Interestingly, despite the detrimental effects of the histone H4 G94P mutant on viability, nucleosome formation was not markedly affected in vivo. However, histone octamer stability and nucleosome stability as well as nucleosome sliding ability were altered in vitro. These studies highlight an important role for correct interactions of the histone H4 C-terminal tail within the histone octamer and suggest that maintenance of a stable histone octamer in vivo is an essential feature of chromatin dynamics.
Collapse
Affiliation(s)
- Myrriah S Chavez
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jean K Scorgie
- Department of Pharmacology and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO, 80045-0511, USA
| | - Briana K Dennehey
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth Noone
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mair Ea Churchill
- Department of Pharmacology and Structural Biology and Biophysics Program, University of Colorado, School of Medicine, 12801 East 17th Avenue, Aurora, CO, 80045-0511, USA
| |
Collapse
|
29
|
|
30
|
Winkler DD, Muthurajan UM, Hieb AR, Luger K. Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. J Biol Chem 2011; 286:41883-41892. [PMID: 21969370 PMCID: PMC3308894 DOI: 10.1074/jbc.m111.301465] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/28/2011] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, DNA maintenance requires ordered disassembly and re-assembly of chromatin templates. These processes are highly regulated and require extrinsic factors such as chromatin remodelers and histone chaperones. The histone chaperone FACT (facilitates chromatin transcription) is a large heterodimeric complex with roles in transcription, replication, and repair. FACT promotes and subsequently restricts access to DNA as a result of dynamic nucleosome reorganization. However, until now, there lacked a truly quantitative assessment of the critical contacts mediating FACT function. Here, we demonstrate that FACT binds histones, DNA, and intact nucleosomes at nanomolar concentrations. We also determine roles for the histone tails in free histone and nucleosome binding by FACT. Furthermore, we propose that the conserved acidic C-terminal domain of the FACT subunit Spt16 actively displaces nucleosomal DNA to provide access to the histone octamer. Experiments with tri-nucleosome arrays indicate a possible mode for FACT binding within chromatin. Together, the data reveal that specific FACT subunits synchronize interactions with various target sites on individual nucleosomes to generate a high affinity binding event and promote reorganization.
Collapse
Affiliation(s)
- Duane D Winkler
- Howard Hughes Medical Institute and the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Uma M Muthurajan
- Howard Hughes Medical Institute and the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Aaron R Hieb
- Howard Hughes Medical Institute and the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Karolin Luger
- Howard Hughes Medical Institute and the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870.
| |
Collapse
|
31
|
Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:625210. [PMID: 22567361 PMCID: PMC3335715 DOI: 10.4061/2011/625210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
The process of gene transcription requires the participation of a large number of factors that collectively promote the accurate and efficient expression of an organism's genetic information. In eukaryotic cells, a subset of these factors can control the chromatin environments across the regulatory and transcribed units of genes to modulate the transcription process and to ensure that the underlying genetic information is utilized properly. This article focuses on two such factors-the highly conserved histone chaperones Spt6 and FACT-that play critical roles in managing chromatin during the gene transcription process. These factors have related but distinct functions during transcription and several recent studies have provided exciting new insights into their mechanisms of action at transcribed genes. A discussion of their respective roles in regulating gene transcription, including their shared and unique contributions to this process, is presented.
Collapse
Affiliation(s)
- Andrea A Duina
- Biology Department, Hendrix College, 1600 Washington Avenue, Conway, AR 72032, USA
| |
Collapse
|
32
|
Stevens JR, O'Donnell AF, Perry TE, Benjamin JJR, Barnes CA, Johnston GC, Singer RA. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. PLoS One 2011; 6:e25644. [PMID: 22022426 PMCID: PMC3192111 DOI: 10.1371/journal.pone.0025644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023] Open
Abstract
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome.
Collapse
Affiliation(s)
- Jennifer R. Stevens
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson F. O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Troy E. Perry
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeremy J. R. Benjamin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine A. Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerald C. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard A. Singer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
33
|
Formosa T. The role of FACT in making and breaking nucleosomes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:247-55. [PMID: 21807128 DOI: 10.1016/j.bbagrm.2011.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
FACT is a roughly 180kDa heterodimeric protein complex important for managing the properties of chromatin in eukaryotic cells. Chromatin is a repressive barrier that plays an important role in protecting genomic DNA and regulating access to it. This barrier must be temporarily removed during transcription, replication, and repair, but it also must be rapidly restored to the original state afterwards. Further, the properties of chromatin are dynamic and must be adjusted as conditions dictate. FACT was identified as a factor that destabilizes nucleosomes in vitro, but it has now also been implicated as a central factor in the deposition of histones to form nucleosomes, as an exchange factor that swaps the histones within existing nucleosomes for variant forms, and as a tether that prevents histones from being displaced by the passage of RNA polymerases during transcription. FACT therefore plays central roles in building, maintaining, adjusting, and overcoming the chromatin barrier. This review summarizes recent results that have begun to reveal how FACT can promote what appear to be contradictory goals, using a simple set of binding activities to both enhance and diminish the stability of nucleosomes. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|