1
|
Garrigós V, Matallana E, Picazo C, Aranda A. Peroxiredoxin Tsa1 Regulates the Activity of Trehalose Metabolism-Related Enzymes During Wine Yeast Biomass Propagation. Microb Biotechnol 2025; 18:e70154. [PMID: 40346935 PMCID: PMC12064951 DOI: 10.1111/1751-7915.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/12/2025] Open
Abstract
Trehalose metabolism plays a crucial role in yeast stress tolerance during biomass propagation and dehydration, but its regulatory mechanisms under these industrial conditions remain incompletely understood. This study analyses the role of an antioxidant enzyme, the cytosolic peroxiredoxin Tsa1, in modulating trehalose metabolism in Saccharomyces cerevisiae wine strains during biomass production in molasses. Through comparative analyses in three commercial genetic backgrounds (L2056, T73, EC1118), we demonstrate that TSA1 deletion generally leads to increased intracellular trehalose accumulation despite phenotypic variability among strains. Enzymatic assays revealed that Tsa1 does not regulate trehalose synthesis by altering glycolytic/gluconeogenic flux through pyruvate kinase. However, the deletion of TSA1 resulted in increased oxidation of trehalose synthesis enzymes, as well as enhanced activity of trehalose-6-phosphate synthase and the trehalases Nth1 and Ath1, suggesting the involvement of peroxiredoxin in the futile cycle of trehalose synthesis and degradation. Scaling up the yeast biomass propagation process to semi-industrial conditions confirmed these findings, with increased trehalose levels in the tsa1∆ mutant correlating with enhanced desiccation resistance of the resulting biomass. These results highlight a novel Tsa1-dependent regulatory mechanism governing trehalose metabolism beyond its canonical antioxidant role. Understanding this pathway provides new insights into optimising yeast biomass propagation for industrial applications.
Collapse
Affiliation(s)
- Víctor Garrigós
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Cecilia Picazo
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio)Universitat de València‐CSICPaternaValenciaSpain
| |
Collapse
|
2
|
Hsu PC, Lu TC, Hung PH, Leu JY. Protein moonlighting by a target gene dominates phenotypic divergence of the Sef1 transcriptional regulatory network in yeasts. Nucleic Acids Res 2024; 52:13914-13930. [PMID: 39565215 DOI: 10.1093/nar/gkae1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Transcriptional rewiring generates phenotypic novelty, acting as an important mechanism contributing to evolutionary development, speciation, and adaptation in all organisms. The phenotypic outcomes (functions) of transcription factor (TF) activity are determined by the combined effects of all target genes in the TF's regulatory network. Plastic rewiring of target genes accumulates during species divergence and ultimately alters phenotypes, indicating a TF functional switch. We define this phenomenon as 'disruptive rewiring', where the rewiring process disrupts the link between a TF and its original target genes that determine phenotypes. Here, we investigate if 'complete' disruptive rewiring is a prerequisite for a TF functional switch by employing chromatin immunoprecipitation sequencing, RNA expression, and phenotypic assays across yeast species. In yeasts where Sef1 targets TCA (tricarboxylic acid) cycle genes, we demonstrate that Sef1 orthologs can promote and inhibit respiratory growth by modulating the moonlighting function of their conserved target, NDE1. This modulation occurs without changing the overall association of Sef1 with TCA cycle genes. We propose that phenotypic masking by NDE1 promotes 'deceptive' disruptive rewiring of the Sef1 regulatory network in Saccharomyces cerevisiae, thereby potentially constraining future evolutionary trajectories.
Collapse
Affiliation(s)
- Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Taipei 115201, Taiwan, Republic of China
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Po-Hsiang Hung
- Department of Genetics, Stanford University Medical School, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Taipei 115201, Taiwan, Republic of China
| |
Collapse
|
3
|
Hibshman JD, Clark-Hachtel CM, Bloom KS, Goldstein B. A bacterial expression cloning screen reveals single-stranded DNA-binding proteins as potent desicco-protectants. Cell Rep 2024; 43:114956. [PMID: 39531375 PMCID: PMC11654893 DOI: 10.1016/j.celrep.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Desiccation kills most cells. Some proteins have been identified to help certain cells survive desiccation, but many protein protectants are likely to be unknown. Moreover, the mechanisms ensuring protection of key cellular components are incompletely understood. We devised an expression-cloning approach to discover further protectants. We expressed cDNA libraries from two species of tardigrades in E. coli, and we subjected the bacteria to desiccation to select for survivors. Sequencing the populations of surviving bacteria revealed enrichment of mitochondrial single-stranded DNA-binding proteins (mtSSBs) from both tardigrade species. Expression of mtSSBs in bacteria improved desiccation survival as strongly as the best tardigrade protectants known to date. We found that DNA-binding activity of mtSSBs was necessary and sufficient to improve the desiccation tolerance of bacteria. Although tardigrade mtSSBs were among the strongest protectants we found, single-stranded DNA binding proteins in general offered some protection. These results identify single-stranded DNA-binding proteins as potent desicco-protectants.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Kerry S Bloom
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Romero-Pérez PS, Moran HM, Horani A, Truong A, Manriquez-Sandoval E, Ramirez JF, Martinez A, Gollub E, Hunter K, Lotthammer JM, Emenecker RJ, Liu H, Iwasa JH, Boothby TC, Holehouse AS, Fried SD, Sukenik S. Protein surface chemistry encodes an adaptive tolerance to desiccation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.604841. [PMID: 39131385 PMCID: PMC11312438 DOI: 10.1101/2024.07.28.604841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellular desiccation - the loss of nearly all water from the cell - is a recurring stress in an increasing number of ecosystems that can drive protein unfolding and aggregation. For cells to survive, at least some of the proteome must resume function upon rehydration. Which proteins tolerate desiccation, and the molecular determinants that underlie this tolerance, are largely unknown. Here, we apply quantitative and structural proteomic mass spectrometry to show that certain proteins possess an innate capacity to tolerate rehydration following extreme water loss. Structural analysis points to protein surface chemistry as a key determinant for desiccation tolerance, which we test by showing that rational surface mutants can convert a desiccation sensitive protein into a tolerant one. Desiccation tolerance also has strong overlap with cellular function, with highly tolerant proteins responsible for production of small molecule building blocks, and intolerant proteins involved in energy-consuming processes such as ribosome biogenesis. As a result, the rehydrated proteome is preferentially enriched with metabolite and small molecule producers and depleted of some of the cell's heaviest consumers. We propose this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration.
Collapse
Affiliation(s)
| | - Haley M. Moran
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Azeem Horani
- Quantitative and Systems Biology Program, University of California Merced, Merced, CA 95343, USA
| | - Alexander Truong
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Edgar Manriquez-Sandoval
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Alec Martinez
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Edith Gollub
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Kara Hunter
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jeffrey M. Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hui Liu
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Shahar Sukenik
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
- Quantitative and Systems Biology Program, University of California Merced, Merced, CA 95343, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
6
|
Robison ZL, Ren Q, Zhang Z. How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast. Int J Mol Sci 2024; 25:7514. [PMID: 39062766 PMCID: PMC11277543 DOI: 10.3390/ijms25147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (Z.L.R.); (Q.R.)
| |
Collapse
|
7
|
Ramirez JF, Kumara U, Arulsamy N, Boothby TC. Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BBA ADVANCES 2024; 5:100115. [PMID: 38318251 PMCID: PMC10840120 DOI: 10.1016/j.bbadva.2024.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis. Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. Protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Next, we examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. The dried desiccation tolerant life stage of all organisms had an increased glass transition temperature and reduced glass former fragility relative to its dried desiccation intolerant life stage. These results suggest in nature organismal desiccation tolerance relies on a combination of various material properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain. Statement of significance For the past three decades the anhydrobiosis field has lived with a paradox, while vitrification is necessary for survival in the dry state, it is not sufficient. Understanding what property(s) distinguishes a desiccation tolerant from an intolerant vitrified system and how anhydrobiotic organisms survive drying is one of the enduring mysteries of organismal physiology. Here we show in vitro the enzyme-protective capacity of different vitrifying sugars can be correlated with distinct material properties. However, in vivo, diverse desiccation tolerant organisms appear to combine these material properties to promote their survival in a dry state.
Collapse
Affiliation(s)
- John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - U.G.V.S.S. Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Ramirez JF, Kumara U, Arulsamy N, Boothby TC. Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547256. [PMID: 38014150 PMCID: PMC10680572 DOI: 10.1101/2023.06.30.547256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis (Greek for "life without water"). Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and varying amounts of glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. We find that protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Extending on this, we have examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. In all cases, the dried desiccation tolerant life stage of an organism had an increased glass transition temperature relative to its dried desiccation intolerant life stage, and this trend is also seen in all three organisms when considering reduced glass former fragility. These results suggest that while drying of different protective sugars in vitro results in vitrified systems with distinct material properties that correlate with their enzyme-protective capacity, in nature organismal desiccation tolerance relies on a combination of these properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain.
Collapse
Affiliation(s)
- John F. Ramirez
- Department of Molecular Biology, University of Wyoming. Laramie, WY 82071
| | - U.G.V.S.S. Kumara
- Department of Molecular Biology, University of Wyoming. Laramie, WY 82071
| | | | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming. Laramie, WY 82071
| |
Collapse
|
10
|
Prasad A, Sreedharan S, Bakthavachalu B, Laxman S. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism. PLoS Biol 2023; 21:e3002342. [PMID: 37874799 PMCID: PMC10597479 DOI: 10.1371/journal.pbio.3002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Upon water loss, some organisms pause their life cycles and escape death. While widespread in microbes, this is less common in animals. Aedes mosquitoes are vectors for viral diseases. Aedes eggs can survive dry environments, but molecular and cellular principles enabling egg survival through desiccation remain unknown. In this report, we find that Aedes aegypti eggs, in contrast to Anopheles stephensi, survive desiccation by acquiring desiccation tolerance at a late developmental stage. We uncover unique proteome and metabolic state changes in Aedes embryos during desiccation that reflect reduced central carbon metabolism, rewiring towards polyamine production, and enhanced lipid utilisation for energy and polyamine synthesis. Using inhibitors targeting these processes in blood-fed mosquitoes that lay eggs, we infer a two-step process of desiccation tolerance in Aedes eggs. The metabolic rewiring towards lipid breakdown and dependent polyamine accumulation confers resistance to desiccation. Furthermore, rapid lipid breakdown is required to fuel energetic requirements upon water reentry to enable larval hatching and survival upon rehydration. This study is fundamental to understanding Aedes embryo survival and in controlling the spread of these mosquitoes.
Collapse
Affiliation(s)
- Anjana Prasad
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| |
Collapse
|
11
|
Attfield PV. Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit Rev Biotechnol 2023; 43:920-937. [PMID: 35731243 DOI: 10.1080/07388551.2022.2072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
The multitude of applications to which Saccharomyces spp. are put makes these yeasts the most prolific of industrial microorganisms. This review considers biological aspects pertaining to the manufacture of industrial yeast biomass. It is proposed that the production of yeast biomass can be considered in two distinct but interdependent phases. Firstly, there is a cell replication phase that involves reproduction of cells by their transitions through multiple budding and metabolic cycles. Secondly, there needs to be a cell conditioning phase that enables the accrued biomass to withstand the physicochemical challenges associated with downstream processing and storage. The production of yeast biomass is not simply a case of providing sugar, nutrients, and other growth conditions to enable multiple budding cycles to occur. In the latter stages of culturing, it is important that all cells are induced to complete their current budding cycle and subsequently enter into a quiescent state engendering robustness. Both the cell replication and conditioning phases need to be optimized and considered in concert to ensure good biomass production economics, and optimum performance of industrial yeasts in food and fermentation applications. Key features of metabolism and cell biology affecting replication and conditioning of industrial Saccharomyces are presented. Alternatives for growth substrates are discussed, along with the challenges and prospects associated with defining the genetic bases of industrially important phenotypes, and the generation of new yeast strains."I must be cruel only to be kind: Thus bad begins, and worse remains behind." William Shakespeare: Hamlet, Act 3, Scene 4.
Collapse
|
12
|
Laurent A, Scaletta C, Abdel-Sayed P, Raffoul W, Hirt-Burri N, Applegate LA. Industrial Biotechnology Conservation Processes: Similarities with Natural Long-Term Preservation of Biological Organisms. BIOTECH 2023; 12:biotech12010015. [PMID: 36810442 PMCID: PMC9944097 DOI: 10.3390/biotech12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
13
|
Chen A, Smith JR, Tapia H, Gibney PA. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:jkac196. [PMID: 35929793 PMCID: PMC9635654 DOI: 10.1093/g3journal/jkac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the yeast Saccharomyces cerevisiae, trehalose-6-phospahte synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2) are the main proteins catalyzing intracellular trehalose production. In addition to Tps1 and Tps2, 2 putative regulatory proteins with less clearly defined roles also appear to be involved with trehalose production, Tps3 and Tsl1. While this pathway has been extensively studied in laboratory strains of S. cerevisiae, we sought to examine the phenotypic consequences of disrupting these genes in wild strains. Here we deleted the TPS1, TPS2, TPS3, and TSL1 genes in 4 wild strains and 1 laboratory strain for comparison. Although some tested phenotypes were not shared between all strains, deletion of TPS1 abolished intracellular trehalose, caused inability to grow on fermentable carbon sources and resulted in severe sporulation deficiency for all 5 strains. After examining tps1 mutant strains expressing catalytically inactive variants of Tps1, our results indicate that Tps1, independent of trehalose production, is a key component for yeast survival in response to heat stress, for regulating sporulation, and growth on fermentable sugars. All tps2Δ mutants exhibited growth impairment on nonfermentable carbon sources, whereas variations were observed in trehalose synthesis, thermosensitivity and sporulation efficiency. tps3Δ and tsl1Δ mutants exhibited mild or no phenotypic disparity from their isogenic wild type although double mutants tps3Δ tsl1Δ decreased the amount of intracellular trehalose production in all 5 strains by 17-45%. Altogether, we evaluated, confirmed, and expanded the phenotypic characteristics associated trehalose biosynthesis mutants. We also identified natural phenotypic variants in multiple strains that could be used to genetically dissect the basis of these traits and then develop mechanistic models connecting trehalose metabolism to diverse cellular processes.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy R Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Hugo Tapia
- Biology Program, California State University—Channel Islands, Camarillo, CA 93012, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Foster B, Tyrawa C, Ozsahin E, Lubberts M, Krogerus K, Preiss R, van der Merwe G. Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation. Front Microbiol 2022; 13:747546. [PMID: 35369501 PMCID: PMC8966892 DOI: 10.3389/fmicb.2022.747546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Collapse
Affiliation(s)
- Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mark Lubberts
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Armaleo D, Chiou L. Modeling in yeast how rDNA introns slow growth and increase desiccation tolerance in lichens. G3 GENES|GENOMES|GENETICS 2021; 11:6347584. [PMID: 34849787 PMCID: PMC8527467 DOI: 10.1093/g3journal/jkab279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022]
Abstract
Abstract
We connect ribosome biogenesis to desiccation tolerance in lichens, widespread symbioses between specialized fungi (mycobionts) and unicellular phototrophs. We test whether the introns present in the nuclear ribosomal DNA of lichen mycobionts contribute to their anhydrobiosis. Self-splicing introns are found in the rDNA of several eukaryotic microorganisms, but most introns populating lichen rDNA are unable to self-splice, being either catalytically impaired group I introns, or spliceosomal introns ectopically present in rDNA. Although the mycobiont’s splicing machinery removes all introns from rRNA, Northern analysis indicates delayed post-transcriptional removal during rRNA processing, suggesting interference with ribosome assembly. To study the effects of lichen introns in a model system, we used CRISPR to introduce a spliceosomal rDNA intron from the lichen fungus Cladonia grayi into all nuclear rDNA copies of Saccharomyces cerevisiae, which lacks rDNA introns. Three intron-bearing yeast mutants were constructed with the intron inserted either in the 18S rRNA genes, the 25S rRNA genes, or in both. The mutants removed the introns correctly but had half the rDNA genes of the wildtype, grew 4.4–6 times slower, and were 40–1700 times more desiccation tolerant depending on intron position and number. Intracellular trehalose, a disaccharide implicated in desiccation tolerance, was detected at low concentration. Our data suggest that the interference of the splicing machinery with ribosome assembly leads to fewer ribosomes and proteins and to slow growth and increased desiccation tolerance in the yeast mutants. The relevance of these findings for slow growth and desiccation tolerance in lichens is discussed.
Collapse
Affiliation(s)
- Daniele Armaleo
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lilly Chiou
- Department of Biology, Duke University, Durham, NC 27708, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J Control Release 2021; 336:480-498. [PMID: 34214597 DOI: 10.1016/j.jconrel.2021.06.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
Freeze-drying is the most widespread method to preserve protein drugs and vaccines in a dry form facilitating their storage and transportation without the laborious and expensive cold chain. Extending this method for the preservation of natural biomaterials and cells in a dry form would provide similar benefits, but most results in the domain are still below expectations. In this review, rather than consider freeze-drying as a traditional black box we "break it" through a detailed process thinking approach. We discuss freeze-drying from process thinking aspects, introduce the chemical, physical, and mechanical environments important in this process, and present advanced biophotonic process analytical technology. In the end, we review the state of the art in the freeze-drying of the biomaterials, extracellular vesicles, and cells. We suggest that the rational design of the experiment and implementation of advanced biophotonic tools are required to successfully preserve the natural biomaterials and cells by freeze-drying. We discuss this change of paradigm with existing literature and elaborate on our perspective based on our new unpublished results.
Collapse
Affiliation(s)
- Arto Merivaara
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Jacopo Zini
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elle Koivunotko
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Sami Valkonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, UMR7574, 75005 Paris, France
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
17
|
A Crucial Role of Mitochondrial Dynamics in Dehydration Resistance in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22094607. [PMID: 33925688 PMCID: PMC8124315 DOI: 10.3390/ijms22094607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are dynamic organelles as they continuously undergo fission and fusion. These dynamic processes conduct not only mitochondrial network morphology but also activity regulation and quality control. Saccharomyces cerevisiae has a remarkable capacity to resist stress from dehydration/rehydration. Although mitochondria are noted for their role in desiccation tolerance, the mechanisms underlying these processes remains obscure. Here, we report that yeast cells that went through stationary growth phase have a better survival rate after dehydration/rehydration. Dynamic defective yeast cells with reduced mitochondrial genome cannot maintain the mitochondrial activity and survival rate of wild type cells. Our results demonstrate that yeast cells balance mitochondrial fusion and fission according to growth conditions, and the ability to adjust dynamic behavior aids the dehydration resistance by preserving mitochondria.
Collapse
|
18
|
Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration. Antonie van Leeuwenhoek 2021; 114:1069-1077. [PMID: 33844120 DOI: 10.1007/s10482-021-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Two Saccharomyces cerevisiae strains, BY4741 and BY4741-derived strain lacking the IST2 gene (ist2Δ), were used to characterise the possible role of cortical endoplasmic reticulum (ER) protein Ist2 upon cell dehydration and subsequent rehydration. For the first time, we show that not only protein components of the plasma membrane (PM), but also at least one ER membrane protein (Ist2) play an important role in the maintenance of the viability of yeast cells during dehydration and subsequent rehydration. The low viability of the mutant strain ist2∆ upon dehydration-rehydration stress was related to the lack of Ist2 protein in the ER. We revealed that the PM of ist2∆ strain is not able to completely restore its molecular organisation during reactivation from the state of anhydrobiosis. As the result, the permeability of the PM remains high regardless of the type of reactivation (rapid or gradual rehydration). We conclude that ER protein Ist2 plays an important role in ensuring the stability of molecular organisation and functionality of the PM during dehydration-rehydration stress. These results indicate an important role of ER-PM interactions during cells transition into the state of anhydrobiosis and the subsequent restoration of their physiological activities.
Collapse
|
19
|
Ren Q, Brenner R, Boothby TC, Zhang Z. Membrane and lipid metabolism plays an important role in desiccation resistance in the yeast Saccharomyces cerevisiae. BMC Microbiol 2020; 20:338. [PMID: 33167888 PMCID: PMC7653879 DOI: 10.1186/s12866-020-02025-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background Anhydrobiotes, such as the yeast Saccharomyces cerevisiae, are capable of surviving almost total loss of water. Desiccation tolerance requires an interplay of multiple events, including preserving the protein function and membrane integrity, preventing and mitigating oxidative stress, maintaining certain level of energy required for cellular activities in the desiccated state. Many of these crucial processes can be controlled and modulated at the level of organelle morphology and dynamics. However, little is understood about what organelle perturbations manifest in desiccation-sensitive cells as a consequence of drying or how this differs from organelle biology in desiccation-tolerant organisms undergoing anhydrobiosis. Results In this study, electron and optical microscopy was used to examine the dynamic changes of yeast cells during the desiccation process. Dramatic structural changes were observed during the desiccation process, including the diminishing of vacuoles, decrease of lipid droplets, decrease in mitochondrial cristae and increase of ER membrane, which is likely caused by ER stress and unfolded protein response. The survival rate was significantly decreased in mutants that are defective in lipid droplet biosynthesis, or cells treated with cerulenin, an inhibitor of fatty acid synthesis. Conclusion Our study suggests that the metabolism of lipid droplets and membrane may play an important role in yeast desiccation tolerance by providing cells with energy and possibly metabolic water. Additionally, the decrease in mitochondrial cristae coupled with a decrease in lipid droplets is indicative of a cellular response to reduce the production of reactive oxygen species.
Collapse
Affiliation(s)
- Qun Ren
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Rebecca Brenner
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA.
| |
Collapse
|
20
|
Torrellas M, Rozès N, Aranda A, Matallana E. Basal catalase activity and high glutathione levels influence the performance of non-Saccharomyces active dry wine yeasts. Food Microbiol 2020; 92:103589. [PMID: 32950173 DOI: 10.1016/j.fm.2020.103589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
Non-Saccharomyces wine yeasts are useful tools for producing wines with complex aromas or low ethanol content. Their use in wine would benefit from their production as active dry yeast (ADY) starters to be used as co-inocula alongside S. cerevisiae. Oxidative stress during biomass propagation and dehydration is a key factor in determining ADY performance, as it affects yeast vitality and viability. Several studies have analysed the response of S. cerevisiae to oxidative stress under dehydration conditions, but not so many deal with non-conventional yeasts. In this work, we analysed eight non-Saccharomyces wine yeasts under biomass production conditions and studied oxidative stress parameters and lipid composition. The results revealed wide variability among species in their technological performance during ADY production. Also, for Metschnikowia pulcherrima and Starmerella bacillaris, better performance correlates with high catalase activity and glutathione levels. Our data suggest that non-Saccharomyces wine yeasts with an enhanced oxidative stress response are better suited to grow under ADY production conditions.
Collapse
Affiliation(s)
- Max Torrellas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Spain.
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
21
|
Gade VR, Traikov S, Oertel J, Fahmy K, Kurzchalia TV. C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress. Sci Rep 2020; 10:13466. [PMID: 32778668 PMCID: PMC7417548 DOI: 10.1038/s41598-020-70311-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/21/2020] [Indexed: 01/27/2023] Open
Abstract
All organisms encounter abiotic stress but only certain organisms are able to cope with extreme conditions and enter into cryptobiosis (hidden life). Previously, we have shown that C. elegans dauer larvae can survive severe desiccation (anhydrobiosis), a specific form of cryptobiosis. Entry into anhydrobiosis is preceded by activation of a set of biochemical pathways by exposure to mild desiccation. This process called preconditioning induces elevation of trehalose, intrinsically disordered proteins, polyamines and some other pathways that allow the preservation of cellular functionality in the absence of water. Here, we demonstrate that another stress factor, high osmolarity, activates similar biochemical pathways. The larvae that acquired resistance to high osmotic pressure can also withstand desiccation. In addition, high osmolarity significantly increases the biosynthesis of glycerol making larva tolerant to freezing. Thus, to survive abiotic stress, C. elegans activates a combination of genetic and biochemical pathways that serve as a general survival program.
Collapse
Affiliation(s)
- Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Jana Oertel
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| |
Collapse
|
22
|
Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S. BioSentinel: Long-Term Saccharomyces cerevisiae Preservation for a Deep Space Biosensor Mission. ASTROBIOLOGY 2020; 23:617-630. [PMID: 31905002 DOI: 10.1089/ast.2019.2073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The biological risks of the deep space environment must be elucidated to enable a new era of human exploration and scientific discovery beyond low earth orbit (LEO). There is a paucity of deep space biological missions that will inform us of the deleterious biological effects of prolonged exposure to the deep space environment. To safely undertake long-term missions to Mars and space habitation beyond LEO, we must first prove and optimize autonomous biosensors to query the deep space radiation environment. Such biosensors must contain organisms that can survive for extended periods with minimal life support technology and must function reliably with intermittent communication with Earth. NASA's BioSentinel mission, a nanosatellite containing the budding yeast Saccharomyces cerevisiae, is such a biosensor and one of the first biological missions beyond LEO in nearly half a century. It will help fill critical gaps in knowledge about the effects of uniquely composed, chronic, low-flux deep space radiation on biological systems and in particular will provide valuable insight into the DNA damage response to highly ionizing particles. Due to yeast's robustness and desiccation tolerance, it can survive for periods analogous to that of a human Mars mission. In this study, we discuss our optimization of conditions for long-term reagent storage and yeast survival under desiccation in preparation for the BioSentinel mission. We show that long-term yeast cell viability is maximized when cells are air-dried in trehalose solution and stored in a low-relative humidity and low-temperature environment and that dried yeast is sensitive to low doses of deep space-relevant ionizing radiation under these conditions. Our findings will inform the design and development of improved future long-term biological missions into deep space.
Collapse
Affiliation(s)
- Sergio R Santa Maria
- COSMIAC Research Center, University of New Mexico, Albuquerque, New Mexico
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
| | - Diana B Marina
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
- Amyris, Inc., Emeryville, California (present address)
| | - Sofia Massaro Tieze
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Lauren C Liddell
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
- Logyx LLC, Mountain View, California
| | | |
Collapse
|
23
|
Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae. Mol Cell 2019; 77:266-278.e6. [PMID: 31757756 DOI: 10.1016/j.molcel.2019.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Theory and experiments suggest that organisms would benefit from pre-adaptation to future stressors based on reproducible environmental fluctuations experienced by their ancestors, but the mechanisms driving pre-adaptation remain enigmatic. We report that the [SMAUG+] prion allows yeast to anticipate nutrient repletion after periods of starvation, providing a strong selective advantage. By transforming the landscape of post-transcriptional gene expression, [SMAUG+] regulates the decision between two broad growth and survival strategies: mitotic proliferation or meiotic differentiation into a stress-resistant state. [SMAUG+] is common in laboratory yeast strains, where standard propagation practice produces regular cycles of nutrient scarcity followed by repletion. Distinct [SMAUG+] variants are also widespread in wild yeast isolates from multiple niches, establishing that prion polymorphs can be utilized in natural populations. Our data provide a striking example of how protein-based epigenetic switches, hidden in plain sight, can establish a transgenerational memory that integrates adaptive prediction into developmental decisions.
Collapse
|
24
|
Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R, Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hutzler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat Ecol Evol 2019; 3:1562-1575. [PMID: 31636425 DOI: 10.1038/s41559-019-0997-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Stijn Mertens
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Jonathan L Gordon
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Ruben Wauters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Francesca Bellinazzo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | | | | | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | - Franz Meußdoerffer
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | | | | | | | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium. .,Leuven Institute for Beer Research, Leuven, Belgium.
| |
Collapse
|
25
|
Anhydrobiosis in Yeasts: Changes in Mitochondrial Membranes Improve the Resistance of Saccharomyces cerevisiae Cells to Dehydration–Rehydration. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anhydrobiosis is a unique state of live organisms in which their metabolism is temporary reversibly suspended as the result of strong dehydration of their cells. This state is widely used currently during large-capacity production of active dry baker’s yeast. Other strains of the yeast Saccharomyces cerevisiae, as well as other yeast species that could potentially find use in modern biotechnology, are not resistant to dehydration–rehydration treatments. To improve their resistance, the main factors that influence cell survival during such treatment need to be revealed. This study showed the importance of mitochondria for yeast cell survival during transfer into anhydrobiosis, a factor that was strongly underestimated until this study. It was revealed that the external introduction inside yeast cells of 50 μM of lithocholic acid (LCA), an agent that induces changes in glycerophospholipids in mitochondrial membranes, in combination with 1% DMSO, may improve the survival rate of dehydrated cells. The influence of LCA upon yeast cell resistance to dehydration–rehydration was not linked with changes in the state of the cells’ plasma membrane.
Collapse
|
26
|
N'Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Bastide F, Hamon B, Mouchès C, Porcheron B, Lemoine R, Kwasiborski A, Simoneau P, Guillemette T. Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Front Microbiol 2019; 10:1969. [PMID: 31543870 PMCID: PMC6730492 DOI: 10.3389/fmicb.2019.01969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.
Collapse
Affiliation(s)
- Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Roxane Raulo
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Muriel Marchi
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | | | - Beatrice Iacomi
- Department of Plant Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Nelly Bataillé-Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Chloé Mouchès
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Benoit Porcheron
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Remi Lemoine
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
27
|
Abstract
Climate change has accentuated the importance of understanding how organisms respond to stresses imposed by changes to their environment, like water availability. Unusual organisms, called anhydrobiotes, can survive loss of almost all intracellular water. Desiccation tolerance of anhydrobiotes provides an unusual window to study the stresses and stress response imposed by water loss. Because of the myriad of stresses that could be induced by water loss, desiccation tolerance seemed likely to require many established stress effectors. The sugar trehalose and hydrophilins (small intrinsically disordered proteins) had also been proposed as stress effectors against desiccation because they were found in nearly all anhydrobiotes, and could mitigate desiccation-induced damage to model proteins and membranes in vitro. Here, we summarize in vivo studies of desiccation tolerance in worms, yeast, and tardigrades. These studies demonstrate the remarkable potency of trehalose and a subset of hydrophilins as the major stress effectors of desiccation tolerance. They act, at least in part, by limiting in vivo protein aggregation and loss of membrane integrity. The apparent specialization of individual hydrophilins for desiccation tolerance suggests that other hydrophilins may have distinct roles in mitigating additional cellular stresses, thereby defining a potentially new functionally diverse set of stress effectors.
Collapse
Affiliation(s)
- Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Hugo Tapia
- Biology Program, California State University-Channel Islands, Camarillo, CA 93012
| |
Collapse
|
28
|
Gupta R, Walvekar AS, Liang S, Rashida Z, Shah P, Laxman S. A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis. eLife 2019; 8:e44795. [PMID: 31259691 PMCID: PMC6688859 DOI: 10.7554/elife.44795] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/30/2019] [Indexed: 12/21/2022] Open
Abstract
Cells must appropriately sense and integrate multiple metabolic resources to commit to proliferation. Here, we report that S. cerevisiae cells regulate carbon and nitrogen metabolic homeostasis through tRNA U34-thiolation. Despite amino acid sufficiency, tRNA-thiolation deficient cells appear amino acid starved. In these cells, carbon flux towards nucleotide synthesis decreases, and trehalose synthesis increases, resulting in a starvation-like metabolic signature. Thiolation mutants have only minor translation defects. However, in these cells phosphate homeostasis genes are strongly down-regulated, resulting in an effectively phosphate-limited state. Reduced phosphate enforces a metabolic switch, where glucose-6-phosphate is routed towards storage carbohydrates. Notably, trehalose synthesis, which releases phosphate and thereby restores phosphate availability, is central to this metabolic rewiring. Thus, cells use thiolated tRNAs to perceive amino acid sufficiency, balance carbon and amino acid metabolic flux and grow optimally, by controlling phosphate availability. These results further biochemically explain how phosphate availability determines a switch to a 'starvation-state'.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Adhish S Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Shun Liang
- Department of GeneticsRutgers UniversityPiscatawayUnited States
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Premal Shah
- Department of GeneticsRutgers UniversityPiscatawayUnited States
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
29
|
Rapoport A, Golovina EA, Gervais P, Dupont S, Beney L. Anhydrobiosis: Inside yeast cells. Biotechnol Adv 2019; 37:51-67. [DOI: 10.1016/j.biotechadv.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
|
30
|
Liu J, Moyankova D, Lin CT, Mladenov P, Sun RZ, Djilianov D, Deng X. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC PLANT BIOLOGY 2018; 18:351. [PMID: 30541446 PMCID: PMC6291977 DOI: 10.1186/s12870-018-1566-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/22/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Water shortage is a major factor that harms agriculture and ecosystems worldwide. Plants display various levels of tolerance to water deficit, but only resurrection plants can survive full desiccation of their vegetative tissues. Haberlea rhodopensis, an endemic plant of the Balkans, is one of the few resurrection plants found in Europe. We performed transcriptomic analyses of this species under slight, severe and full dehydration and recovery to investigate the dynamics of gene expression and associate them with existing physiological and metabolomics data. RESULTS De novo assembly yielded a total of 142,479 unigenes with an average sequence length of 1034 nt. Among them, 18,110 unigenes were differentially expressed. Hierarchical clustering of all differentially expressed genes resulted in seven clusters of dynamic expression patterns. The most significant expression changes, involving more than 15,000 genes, started at severe dehydration (~ 20% relative water content) and were partially maintained at full desiccation (< 10% relative water content). More than a hundred pathways were enriched and functionally organized in a GO/pathway network at the severe dehydration stage. Transcriptomic changes in key pathways were analyzed and discussed in relation to metabolic processes, signal transduction, quality control of protein and DNA repair in this plant during dehydration and rehydration. CONCLUSION Reprograming of the transcriptome occurs during severe dehydration, resulting in a profound alteration of metabolism toward alternative energy supply, hormone signal transduction, and prevention of DNA/protein damage under very low cellular water content, underlying the observed physiological and metabolic responses and the resurrection behavior of H. rhodopensis.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, 262700 China
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Petko Mladenov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| | - Run-Ze Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
31
|
Roca Domènech G, López Martínez G, Barrera E, Poblet M, Rozès N, Cordero-Otero R. Enhancing the tolerance of the Starmerella bacillaris wine strain to dehydration stress. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1373-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Kim SX, Çamdere G, Hu X, Koshland D, Tapia H. Synergy between the small intrinsically disordered protein Hsp12 and trehalose sustain viability after severe desiccation. eLife 2018; 7:38337. [PMID: 30010539 PMCID: PMC6054528 DOI: 10.7554/elife.38337] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/15/2018] [Indexed: 01/03/2023] Open
Abstract
Anhydrobiotes are rare microbes, plants and animals that tolerate severe water loss. Understanding the molecular basis for their desiccation tolerance may provide novel insights into stress biology and critical tools for engineering drought-tolerant crops. Using the anhydrobiote, budding yeast, we show that trehalose and Hsp12, a small intrinsically disordered protein (sIDP) of the hydrophilin family, synergize to mitigate completely the inviability caused by the lethal stresses of desiccation. We show that these two molecules help to stabilize the activity and prevent aggregation of model proteins both in vivo and in vitro. We also identify a novel in vitro role for Hsp12 as a membrane remodeler, a protective feature not shared by another yeast hydrophilin, suggesting that sIDPs have distinct biological functions.
Collapse
Affiliation(s)
- Skylar Xantus Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Gamze Çamdere
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xuchen Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Hugo Tapia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
33
|
Kulikova-Borovikova D, Lisi S, Dauss E, Alamae T, Buzzini P, Hallsworth JE, Rapoport A. Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biol 2018; 122:613-620. [PMID: 29801806 DOI: 10.1016/j.funbio.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
Abstract
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10-15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.
Collapse
Affiliation(s)
- Diana Kulikova-Borovikova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Silvia Lisi
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - Edgars Dauss
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Tiina Alamae
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia.
| |
Collapse
|
34
|
Zambuto M, Romaniello R, Guaragnella N, Romano P, Votta S, Capece A. Identification by phenotypic and genetic approaches of an indigenous Saccharomyces cerevisiae wine strain with high desiccation tolerance. Yeast 2017; 34:417-426. [PMID: 28732117 DOI: 10.1002/yea.3245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/11/2022] Open
Abstract
During active dry yeast (ADY) production process, cells are exposed to multiple stresses, such as thermal, oxidative and hyperosmotic shock. Previously, by analysing cells in exponential growth phase, we selected an indigenous Saccharomyces cerevisiae wine strain, namely CD-6Sc, for its higher tolerance to desiccation and higher expression of specific desiccation stress-related genes in comparison to other yeast strains. In this study, we performed a desiccation treatment on stationary phase cells by comparing the efficacy of two different methods: a 'laboratory dry test' on a small scale (mild stress) and a treatment by spray-drying (severe stress), one of the most appropriate preservation method for yeasts and other micro-organisms. The expression of selected desiccation-related genes has been also assessed in order to validate predictive markers for desiccation tolerance. Our data demonstrate that the 'mild' and the 'severe' desiccation treatments give similar results in terms of cell recovery, but the choice of marker genes strictly depends on the growth phase in which cells undergo desiccation. The indigenous CD-6Sc was ultimately identified as a high dehydration stress-tolerant indigenous strain suitable for ADY production. This study highlights the exploitation of natural yeast biodiversity as a source of hidden technological features and as an alternative approach to strain improvement by genetic modifications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marianna Zambuto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Rossana Romaniello
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Nicoletta Guaragnella
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, CNR, Bari, Italy
| | - Patrizia Romano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Sonia Votta
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
35
|
Ryabova A, Mukae K, Cherkasov A, Cornette R, Shagimardanova E, Sakashita T, Okuda T, Kikawada T, Gusev O. Genetic background of enhanced radioresistance in an anhydrobiotic insect: transcriptional response to ionizing radiations and desiccation. Extremophiles 2016; 21:109-120. [PMID: 27807620 DOI: 10.1007/s00792-016-0888-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
It is assumed that resistance to ionizing radiation, as well as cross-resistance to other abiotic stresses, is a side effect of the evolutionary-based adaptation of anhydrobiotic animals to dehydration stress. Larvae of Polypedilum vanderplanki can withstand prolonged desiccation as well as high doses of ionizing radiation exposure. For a further understanding of the mechanisms of cross-tolerance to both types of stress exposure, we profiled genome-wide mRNA expression patterns using microarray techniques on the chironomid larvae collected at different stages of desiccation and after exposure to two types of ionizing radiation-70 Gy of high-linear energy transfer (LET) ions (4He) and the same dose of low-LET radiation (gamma rays). In expression profiles, a wide transcriptional response to desiccation stress that much exceeded the amount of up-regulated transcripts to irradiation exposure was observed. An extensive group of coincidently up-regulated overlapped transcripts in response to desiccation and ionizing radiation was found. Among this, overlapped set of transcripts was indicated anhydrobiosis-related genes: antioxidants, late embryogenesis abundant (LEA) proteins, and heat-shock proteins. The most overexpressed group was that of protein-L-isoaspartate/D-aspartate O-methyltransferase (PIMT), while probes, corresponding to LEA proteins, were the most represented. Performed functional analysis showed strongly enriched gene ontology terms associated with protein methylation. In addition, active processes of DNA repair were detected. We assume that the cross-tolerance of the sleeping chironomid to both desiccation and irradiation exposure comes from a complex mechanism of adaptation to anhydrobiosis.
Collapse
Affiliation(s)
- Alina Ryabova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
| | - Kyosuke Mukae
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan.,Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Alexander Cherkasov
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
| | - Richard Cornette
- Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Elena Shagimardanova
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
| | - Tetsuya Sakashita
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Japan
| | - Takashi Okuda
- Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Takahiro Kikawada
- Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan. .,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Oleg Gusev
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia. .,Anhydrobiosis Research Group, Institute of Agrobiological Sciences, NARO, Tsukuba, Japan. .,Center for Life Science Technologies, RIKEN, Yokohama, Japan. .,RIKEN Innovation Center, RIKEN, Yokohama, Japan.
| |
Collapse
|
36
|
Erkut C, Gade VR, Laxman S, Kurzchalia TV. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. eLife 2016; 5. [PMID: 27090086 PMCID: PMC4880444 DOI: 10.7554/elife.13614] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | |
Collapse
|
37
|
Capece A, Votta S, Guaragnella N, Zambuto M, Romaniello R, Romano P. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance. FEMS Yeast Res 2016; 16:fow015. [PMID: 26882930 DOI: 10.1093/femsyr/fow015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
The most diffused formulation of starter for winemaking is active dry yeast (ADY). ADYs production process is essentially characterized by air-drying stress, a combination of several stresses, including thermal, hyperosmotic and oxidative and cell capacity to counteract such multiple stresses will determine its survival. The molecular mechanisms underlying cell stress response to desiccation have been mostly studied in laboratory and commercial yeast strains, but a growing interest is currently developing for indigenous yeast strains which represent a valuable and alternative source of genetic and molecular biodiversity to be exploited. In this work, a comparative study of different Saccharomyces cerevisiae indigenous wine strains, previously selected for their technological traits, has been carried out to identify potentially relevant genes involved in desiccation stress tolerance. Cell viability was evaluated along desiccation treatment and gene expression was analyzed by real-time PCR before and during the stress. Our data show that the observed differences in individual strain sensitivity to desiccation stress could be associated to specific gene expression over time. In particular, either the basal or the stress-induced mRNA levels of certain genes, such as HSP12, SSA3, TPS1, TPS2, CTT1 and SOD1, result tightly correlated to the strain survival advantage. This study provides a reliable and sensitive method to predict desiccation stress tolerance of indigenous wine yeast strains which could be preliminary to biotechnological applications.
Collapse
Affiliation(s)
- Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Sonia Votta
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Nicoletta Guaragnella
- National Research Council, Institute of Biomembranes and Bioenergetics, Bari 70126, Italy School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Marianna Zambuto
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Rossana Romaniello
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| | - Patrizia Romano
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza 85100, Italy
| |
Collapse
|
38
|
Warner AH, Guo ZH, Moshi S, Hudson JW, Kozarova A. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins. Cell Stress Chaperones 2016; 21:139-154. [PMID: 26462928 PMCID: PMC4679747 DOI: 10.1007/s12192-015-0647-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/23/2022] Open
Abstract
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.
Collapse
Affiliation(s)
- Alden H Warner
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| | - Zhi-Hao Guo
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Sandra Moshi
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - John W Hudson
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Anna Kozarova
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
39
|
Leprince O, Buitink J. Introduction to desiccation biology: from old borders to new frontiers. PLANTA 2015; 242:369-78. [PMID: 26142353 DOI: 10.1007/s00425-015-2357-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/22/2015] [Indexed: 05/21/2023]
Abstract
A special issue reviews the recent progress made in our understanding of desiccation tolerance across various plant and animal kingdoms. It has been known for a long time that seeds can survive near absolute protoplasmic dehydration through air drying and complete germination upon rehydration because of their desiccation tolerance. This property is present both in prokaryotes and eukaryotes across all life kingdoms. These dry organisms suspend their metabolism when dry, are extremely tolerant to acute environmental stresses and are relatively stable during long periods of desiccation. Studies aiming at understanding the mechanisms of survival in the dry state have emerged during the past 40 years, moving from in vitro to genomic models and comparative genomics, and from a view that tolerance is an all-or-nothing phenomenon to a quantitative trait. With the prospect of global climate change, understanding the mechanisms of desiccation tolerance appears to be a promising avenue as a prelude to engineering crops for improved drought tolerance. Understanding desiccation is also useful for seed banks that rely on dehydration tolerance to preserve plant genetic resources in the form of these propagules. Articles in this special issue explore the recent progress in our understanding of desiccation tolerance, including the evolutionary mechanisms that have been adopted across various plant (algae, lichens, seeds, resurrection plants) and animal model systems (Caenorhabditis elegans, brine shrimp). We propose that the term desiccation biology defines the discipline dedicated to understand the desiccation tolerance in living organisms as well as the limits and time constraints thereof.
Collapse
Affiliation(s)
- Olivier Leprince
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences, UMR 1345, Campus du Végétal, 42 rue Georges Morel, CS 60057, 49071, Beaucouzé, France,
| | | |
Collapse
|
40
|
Petitjean M, Teste MA, François JM, Parrou JL. Yeast Tolerance to Various Stresses Relies on the Trehalose-6P Synthase (Tps1) Protein, Not on Trehalose. J Biol Chem 2015; 290:16177-90. [PMID: 25934390 DOI: 10.1074/jbc.m115.653899] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
Trehalose is a stable disaccharide commonly found in nature, from bacteria to fungi and plants. For the model yeast Saccharomyces cerevisiae, claims that trehalose is a stress protectant were based indirectly either on correlation between accumulation of trehalose and high resistance to various stresses or on stress hypersensitivity of mutants deleted for TPS1, which encodes the first enzyme in trehalose biosynthetic pathway. Our goal was to investigate more directly which one, between trehalose and/or the Tps1 protein, may serve yeast cells to withstand exposure to stress. By employing an original strategy that combined the use of mutant strains expressing catalytically inactive variants of Tps1, with MAL(+) yeast strains able to accumulate trehalose from an exogenous supply, we bring for the first time unbiased proof that trehalose does not protect yeast cells from dying and that the stress-protecting role of trehalose in this eukaryotic model was largely overestimated. Conversely, we identified the Tps1 protein as a key player for yeast survival in response to temperature, oxidative, and desiccation stress. We also showed by robust RT-quantitative PCR and genetic interaction analysis that the role of Tps1 in thermotolerance is not dependent upon Hsf1-dependent transcription activity. Finally, our results revealed that the Tps1 protein is essential to maintain ATP levels during heat shock. Altogether, these findings supported the idea that Tps1 is endowed with a regulatory function in energy homeostasis, which is essential to withstand adverse conditions and maintain cellular integrity.
Collapse
Affiliation(s)
- Marjorie Petitjean
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Marie-Ange Teste
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean M François
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Luc Parrou
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
41
|
Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:6122-7. [PMID: 25918381 DOI: 10.1073/pnas.1506415112] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytoplasm and metabolic arrest. The exact stress(es) that cause lethality in desiccation-sensitive organisms and how the lethal stresses are mitigated in desiccation-tolerant organisms remain poorly understood. The presence of trehalose in anhydrobiotes has been strongly correlated with desiccation tolerance. In the yeast Saccharomyces cerevisiae, trehalose is essential for survival after long-term desiccation. Here, we establish that the elevation of intracellular trehalose in dividing yeast by its import from the media converts yeast from extreme desiccation sensitivity to a high level of desiccation tolerance. This trehalose-induced tolerance is independent of utilization of trehalose as an energy source, de novo synthesis of other stress effectors, or the metabolic effects of trehalose biosynthetic intermediates, indicating that a chemical property of trehalose is directly responsible for desiccation tolerance. Finally, we demonstrate that elevated intracellular maltose can also make dividing yeast tolerant to short-term desiccation, indicating that other disaccharides have stress effector activity. However, trehalose is much more effective than maltose at conferring tolerance to long-term desiccation. The effectiveness and sufficiency of trehalose as an antagonizer of desiccation-induced damage in yeast emphasizes its potential to confer desiccation tolerance to otherwise sensitive organisms.
Collapse
|
42
|
Dekkers BJW, Costa MCD, Maia J, Bentsink L, Ligterink W, Hilhorst HWM. Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. PLANTA 2015; 241:563-77. [PMID: 25567203 DOI: 10.1007/s00425-014-2240-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/25/2014] [Indexed: 05/20/2023]
Abstract
Besides being an important model to study desiccation tolerance, the induction of desiccation tolerance in germinated seeds may also play an ecological role in seedling establishment. Desiccation tolerance (DT) is the ability of certain organisms to survive extreme water losses without accumulation of lethal damage. This was a key feature in the conquering of dry land and is currently found in all taxa including bacteria, fungi, roundworms and plants. Not surprisingly, studies in various fields have been performed to unravel this intriguing phenomenon. In flowering plants, DT is rare in whole plants (vegetative tissues), yet is common in seeds. In this review, we present our current understanding of the evolution of DT in plants. We focus on the acquisition of DT in seeds and the subsequent loss during and after germination by highlighting and comparing research in two model plants Medicago truncatula and Arabidopsis thaliana. Finally, we discuss the ability of seeds to re-establish DT during post-germination, the possible ecological meaning of this phenomenon, and the hypothesis that DT, in combination with dormancy, optimizes seedling establishment.
Collapse
Affiliation(s)
- Bas J W Dekkers
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
43
|
Schiabor KM, Quan AS, Eisen MB. Saccharomyces cerevisiae mitochondria are required for optimal attractiveness to Drosophila melanogaster. PLoS One 2014; 9:e113899. [PMID: 25462617 PMCID: PMC4252075 DOI: 10.1371/journal.pone.0113899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/02/2014] [Indexed: 11/18/2022] Open
Abstract
While screening a large collection of wild and laboratory yeast strains for their ability to attract Drosophila melanogaster adults, we noticed a large difference in fly preference for two nearly isogenic strains of Saccharomyces cerevisiae, BY4741 and BY4742. Using standard genetic analyses, we tracked the preference difference to the lack of mitochondria in the BY4742 strain used in the initial experiment. We used gas chromatography coupled with mass spectroscopy to examine the volatile compounds produced by BY4741 and the mitochondria-deficient BY4742, and found that they differed significantly. We observed that several ethyl esters are present at much higher levels in strains with mitochondria, even in fermentative conditions. We found that nitrogen levels in the substrate affect the production of these compounds, and that they are produced at the highest level by strains with mitochondria when fermenting natural fruit substrates. Collectively these observations demonstrate that core metabolic processes mediate the interaction between yeasts and insect vectors, and highlight the importance mitochondrial functions in yeast ecology.
Collapse
Affiliation(s)
- Kelly M. Schiabor
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States of America
| | - Allison S. Quan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States of America
- Department of Integrative Biology, University of California, Berkeley, California 94720, United States of America
- QB3 Institute, University of California, Berkeley, California 94720, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States of America
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Abstract
Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. However, researchers must take special care and implement new resources to enable the newest members of the community to engage fully with the remarkable legacy of information in these fields.
Collapse
Affiliation(s)
- Jasper Rine
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3220
| |
Collapse
|
46
|
Tapia H, Koshland DE. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 2014; 24:2758-66. [PMID: 25456447 DOI: 10.1016/j.cub.2014.10.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/16/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Diverse organisms across taxa are desiccation tolerant, capable of surviving extreme water loss. Remarkably, desiccation tolerant organisms can survive years without water. However, the molecular mechanisms underlying this rare trait are poorly understood. RESULTS Here, using Saccharomyces cerevisiae, we show that intracellular trehalose is essential for survival to long-term desiccation. The time frame for maintaining long-term desiccation tolerance consists of a balance of trehalose stockpiled prior to desiccation and trehalose degradation by trehalases in desiccated cells. The activity of trehalases in desiccated cell reveals the stunning ability of cells to retain enzymatic activity while desiccated. Interestingly, the protein chaperone Hsp104 compensates for loss of trehalose during short-term, but not long-term, desiccation. We show that desiccation induces protein misfolding/aggregation of cytoplasmic and membrane proteins using luciferase and prion reporters. We demonstrate that trehalose, but not Hsp104, mitigates the aggregation of both cytoplasmic and membrane prions. We propose that desiccated cells initially accumulate both protein and chemical chaperones, like Hsp104 and trehalose, respectively. As desiccation extends, the activities of the protein chaperones are lost because of their complexity and requirement for energy, leaving trehalose as the major protector against the aggregation of cytoplasmic and membrane proteins. CONCLUSIONS Our results suggest that trehalose is both a more stable and more versatile protectant than protein chaperones, explaining its important role in desiccation tolerance and emphasizing the translational potential of small chemical chaperones as stress effectors.
Collapse
Affiliation(s)
- Hugo Tapia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Douglas E Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
47
|
Abusharkh SE, Erkut C, Oertel J, Kurzchalia TV, Fahmy K. The role of phospholipid headgroup composition and trehalose in the desiccation tolerance of Caenorhabditis elegans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12897-12906. [PMID: 25290156 DOI: 10.1021/la502654j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic state. Distributed to various taxa of life, these organisms have developed strategies to efficiently protect their cell membranes and proteins against extreme water loss. Recently, we showed that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation to harsh desiccation (preconditioning). Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, dauer larvae dramatically reduce their phosphatidylcholine (PC) content. The chemical composition of the phospholipids (PLs) has key consequences not only for their interaction with trehalose, as we demonstrate with Langmuir-Blodgett monolayers, but also, the kinetic response of PLs to hydration transients is strongly influenced as evidenced by time-resolved FTIR spectroscopy. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates of their lyotropic transitions and sub-headgroup H-bond interactions. The different hydration properties of PC and phosphatidylethanolamine (PE) headgroups are crucial for the hydration-dependent rearrangement of the trehalose-mediated H-bond network. As a consequence, the compressibility modulus of PLs from preconditioned larvae is about 2.6-fold smaller than that from non-preconditioned ones. Thus, the biological relevance of reducing the PC:PE ratio by PL headgroup adaptation should be the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose-containing cells during fast rehydration.
Collapse
Affiliation(s)
- Sawsan E Abusharkh
- Biophysics Division, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf , PF 510119, D-01314 Dresden, Germany
| | | | | | | | | |
Collapse
|
48
|
Dupont S, Rapoport A, Gervais P, Beney L. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 2014; 98:8821-34. [DOI: 10.1007/s00253-014-6028-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023]
|
49
|
Romano P, Pietrafesa R, Romaniello R, Zambuto M, Calabretti A, Capece A. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation. Yeast 2014; 32:245-56. [DOI: 10.1002/yea.3034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 07/27/2014] [Indexed: 11/10/2022] Open
Affiliation(s)
- Patrizia Romano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Rossana Romaniello
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Marianna Zambuto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - Antonella Calabretti
- DEAMS; Università degli Studi di Trieste, Sezione di Merceologia, Biologia, Farmaceutica e Alimenti; Trieste Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
50
|
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast. Biotechnol J 2014; 9:1055-64. [DOI: 10.1002/biot.201300448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 11/05/2022]
|