1
|
Witzany C, Rolff J, Regoes RR, Igler C. The pharmacokinetic-pharmacodynamic modelling framework as a tool to predict drug resistance evolution. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001368. [PMID: 37522891 PMCID: PMC10433423 DOI: 10.1099/mic.0.001368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Pharmacokinetic-pharmacodynamic (PKPD) models, which describe how drug concentrations change over time and how that affects pathogen growth, have proven highly valuable in designing optimal drug treatments aimed at bacterial eradication. However, the fast rise of antimicrobial resistance calls for increased focus on an additional treatment optimization criterion: avoidance of resistance evolution. We demonstrate here how coupling PKPD and population genetics models can be used to determine treatment regimens that minimize the potential for antimicrobial resistance evolution. Importantly, the resulting modelling framework enables the assessment of resistance evolution in response to dynamic selection pressures, including changes in antimicrobial concentration and the emergence of adaptive phenotypes. Using antibiotics and antimicrobial peptides as an example, we discuss the empirical evidence and intuition behind individual model parameters. We further suggest several extensions of this framework that allow a more comprehensive and realistic prediction of bacterial escape from antimicrobials through various phenotypic and genetic mechanisms.
Collapse
Affiliation(s)
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Guillemet M, Chabas H, Nicot A, Gatchich F, Ortega-Abboud E, Buus C, Hindhede L, Rousseau GM, Bataillon T, Moineau S, Gandon S. Competition and coevolution drive the evolution and the diversification of CRISPR immunity. Nat Ecol Evol 2022; 6:1480-1488. [PMID: 35970864 DOI: 10.1038/s41559-022-01841-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
The diversity of resistance challenges the ability of pathogens to spread and to exploit host populations. Yet, how this host diversity evolves over time remains unclear because it depends on the interplay between intraspecific competition among host genotypes and coevolution with pathogens. Here we study experimentally the effect of coevolving phage populations on the diversification of bacterial CRISPR immunity across space and time. We demonstrate that the negative-frequency-dependent selection generated by coevolution is a powerful force that maintains host resistance diversity and selects for new resistance mutations in the host. We also find that host evolution is driven by asymmetries in competitive abilities among different host genotypes. Even if the fittest host genotypes are targeted preferentially by the evolving phages, they often escape extinctions through the acquisition of new CRISPR immunity. Together, these fluctuating selective pressures maintain diversity, but not by preserving the pre-existing host composition. Instead, we repeatedly observe the introduction of new resistance genotypes stemming from the fittest hosts in each population. These results highlight the importance of competition on the transient dynamics of host-pathogen coevolution.
Collapse
Affiliation(s)
| | - Hélène Chabas
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, Zurich, Switzerland
| | - Antoine Nicot
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | | | - Cornelia Buus
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Hindhede
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Geneviève M Rousseau
- Département de biochimie, microbiologie, et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Sylvain Moineau
- Département de biochimie, microbiologie, et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
3
|
Pfennig A, Lachance J. Hybrid fitness effects modify fixation probabilities of introgressed alleles. G3 GENES|GENOMES|GENETICS 2022; 12:6583188. [PMID: 35536195 PMCID: PMC9258535 DOI: 10.1093/g3journal/jkac113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Hybridization is a common occurrence in natural populations, and introgression is a major source of genetic variation. Despite the evolutionary importance of adaptive introgression, classical population genetics theory does not take into account hybrid fitness effects. Specifically, heterosis (i.e. hybrid vigor) and Dobzhansky–Muller incompatibilities influence the fates of introgressed alleles. Here, we explicitly account for polygenic, unlinked hybrid fitness effects when tracking a rare introgressed marker allele. These hybrid fitness effects quickly decay over time due to repeated backcrossing, enabling a separation-of-timescales approach. Using diffusion and branching process theory in combination with computer simulations, we formalize the intuition behind how hybrid fitness effects affect introgressed alleles. We find that hybrid fitness effects can significantly hinder or boost the fixation probability of introgressed alleles, depending on the relative strength of heterosis and Dobzhansky–Muller incompatibilities effects. We show that the inclusion of a correction factor (α, representing the compounded effects of hybrid fitness effects over time) into classic population genetics theory yields accurate fixation probabilities. Despite having a strong impact on the probability of fixation, hybrid fitness effects only subtly change the distribution of fitness effects of introgressed alleles that reach fixation. Although strong Dobzhansky–Muller incompatibility effects may expedite the loss of introgressed alleles, fixation times are largely unchanged by hybrid fitness effects.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Fulgione A, Neto C, Elfarargi AF, Tergemina E, Ansari S, Göktay M, Dinis H, Döring N, Flood PJ, Rodriguez-Pacheco S, Walden N, Koch MA, Roux F, Hermisson J, Hancock AM. Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages. Nat Commun 2022; 13:1461. [PMID: 35304466 PMCID: PMC8933414 DOI: 10.1038/s41467-022-28800-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Understanding how populations adapt to abrupt environmental change is necessary to predict responses to future challenges, but identifying specific adaptive variants, quantifying their responses to selection and reconstructing their detailed histories is challenging in natural populations. Here, we use Arabidopsis from the Cape Verde Islands as a model to investigate the mechanisms of adaptation after a sudden shift to a more arid climate. We find genome-wide evidence of adaptation after a multivariate change in selection pressures. In particular, time to flowering is reduced in parallel across islands, substantially increasing fitness. This change is mediated by convergent de novo loss of function of two core flowering time genes: FRI on one island and FLC on the other. Evolutionary reconstructions reveal a case where expansion of the new populations coincided with the emergence and proliferation of these variants, consistent with models of rapid adaptation and evolutionary rescue. Detailing how populations adapted to environmental change is needed to predict future responses, but identifying adaptive variants and detailing their fitness effects is rare. Here, the authors show that parallel loss of FRI and FLC function reduces time to flowering and drives adaptation in a drought prone environment.
Collapse
Affiliation(s)
- Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria.,Vienna Graduate School for Population Genetics, Vienna, Austria
| | - Célia Neto
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Shifa Ansari
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Herculano Dinis
- Parque Natural do Fogo, Direção Nacional do Ambiente, Praia, Santiago, Cabo Verde.,Associação Projecto Vitó, São Filipe, Fogo, Cabo Verde
| | - Nina Döring
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pádraic J Flood
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Nora Walden
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany.,Biosystematics, Wageningen University, Wageningen, The Netherlands
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - Fabrice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Joachim Hermisson
- Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany. .,Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Ahlawat N, Geeta Arun M, Maggu K, Prasad NG. Enemies make you stronger: Coevolution between fruit fly host and bacterial pathogen increases postinfection survivorship in the host. Ecol Evol 2021; 11:9563-9574. [PMID: 34306643 PMCID: PMC8293768 DOI: 10.1002/ece3.7774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one-sided adaptation. In addition, our results also show that the coevolving host-pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.
Collapse
Affiliation(s)
- Neetika Ahlawat
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Manas Geeta Arun
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Komal Maggu
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| | - Nagaraj Guru Prasad
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliMohaliIndia
| |
Collapse
|
6
|
Cote-Hammarlof PA, Fragata I, Flynn J, Mavor D, Zeldovich KB, Bank C, Bolon DNA. The Adaptive Potential of the Middle Domain of Yeast Hsp90. Mol Biol Evol 2021; 38:368-379. [PMID: 32871012 PMCID: PMC7826181 DOI: 10.1093/molbev/msaa211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase–chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase–chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.
Collapse
Affiliation(s)
| | - Inês Fragata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Julia Flynn
- University of Massachusetts Medical School, Worcester, MA
| | - David Mavor
- University of Massachusetts Medical School, Worcester, MA
| | | | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute of Ecology and Evolution, University of Bern, Switzerland
| | | |
Collapse
|
7
|
Abstract
RNA viruses, such as hepatitis C virus (HCV), influenza virus, and SARS-CoV-2, are notorious for their ability to evolve rapidly under selection in novel environments. It is known that the high mutation rate of RNA viruses can generate huge genetic diversity to facilitate viral adaptation. However, less attention has been paid to the underlying fitness landscape that represents the selection forces on viral genomes, especially under different selection conditions. Here, we systematically quantified the distribution of fitness effects of about 1,600 single amino acid substitutions in the drug-targeted region of NS5A protein of HCV. We found that the majority of nonsynonymous substitutions incur large fitness costs, suggesting that NS5A protein is highly optimized. The replication fitness of viruses is correlated with the pattern of sequence conservation in nature, and viral evolution is constrained by the need to maintain protein stability. We characterized the adaptive potential of HCV by subjecting the mutant viruses to selection by the antiviral drug daclatasvir at multiple concentrations. Both the relative fitness values and the number of beneficial mutations were found to increase with the increasing concentrations of daclatasvir. The changes in the spectrum of beneficial mutations in NS5A protein can be explained by a pharmacodynamics model describing viral fitness as a function of drug concentration. Overall, our results show that the distribution of fitness effects of mutations is modulated by both the constraints on the biophysical properties of proteins (i.e., selection pressure for protein stability) and the level of environmental stress (i.e., selection pressure for drug resistance). IMPORTANCE Many viruses adapt rapidly to novel selection pressures, such as antiviral drugs. Understanding how pathogens evolve under drug selection is critical for the success of antiviral therapy against human pathogens. By combining deep sequencing with selection experiments in cell culture, we have quantified the distribution of fitness effects of mutations in hepatitis C virus (HCV) NS5A protein. Our results indicate that the majority of single amino acid substitutions in NS5A protein incur large fitness costs. Simulation of protein stability suggests viral evolution is constrained by the need to maintain protein stability. By subjecting the mutant viruses to selection under an antiviral drug, we find that the adaptive potential of viral proteins in a novel environment is modulated by the level of environmental stress, which can be explained by a pharmacodynamics model. Our comprehensive characterization of the fitness landscapes of NS5A can potentially guide the design of effective strategies to limit viral evolution.
Collapse
|
8
|
Weng ML, Ågren J, Imbert E, Nottebrock H, Rutter MT, Fenster CB. Fitness effects of mutation in natural populations of Arabidopsis thaliana reveal a complex influence of local adaptation. Evolution 2020; 75:330-348. [PMID: 33340094 DOI: 10.1111/evo.14152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/22/2022]
Abstract
Little is empirically known about the contribution of mutations to fitness in natural environments. However, Fisher's Geometric Model (FGM) provides a conceptual foundation to consider the influence of the environment on mutational effects. To quantify mutational properties in the field, we established eight sets of MA lines (7-10 generations) derived from eight founders collected from natural populations of Arabidopsis thaliana from French and Swedish sites, representing the range margins of the species in Europe. We reciprocally planted the MA lines and their founders at French and Swedish sites, allowing us to test predictions of FGM under naturally occurring environmental conditions. The performance of the MA lines relative to each other and to their respective founders confirmed some and contradicted other predictions of the FGM: the contribution of mutation to fitness variance increased when the genotype was in an environment where its fitness was low, that is, in the away environment, but mutations were more likely to be beneficial when the genotype was in its home environment. Consequently, environmental context plays a large role in the contribution of mutations to the evolutionary process and local adaptation does not guarantee that a genotype is at or close to its optimum.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Department of Biology, Westfield State University, Westfield, Massachusettes, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Eric Imbert
- Institut des Sciences de la Évolution, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Henning Nottebrock
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Matthew T Rutter
- Department of Biology, College of Charleston, South Carolina, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Oak Lake Field Station, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
9
|
Chavhan Y, Malusare S, Dey S. Larger bacterial populations evolve heavier fitness trade-offs and undergo greater ecological specialization. Heredity (Edinb) 2020; 124:726-736. [PMID: 32203249 DOI: 10.1038/s41437-020-0308-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Evolutionary studies over the last several decades have invoked fitness trade-offs to explain why species prefer some environments to others. However, the effects of population size on trade-offs and ecological specialization remain largely unknown. To complicate matters, trade-offs themselves have been visualized in multiple ways in the literature. Thus, it is not clear how population size can affect the various aspects of trade-offs. To address these issues, we conducted experimental evolution with Escherichia coli populations of two different sizes in two nutritionally limited environments, and studied fitness trade-offs from three different perspectives. We found that larger populations evolved greater fitness trade-offs, regardless of how trade-offs are conceptualized. Moreover, although larger populations adapted more to their selection conditions, they also became more maladapted to other environments, ultimately paying heavier costs of adaptation. To enhance the generalizability of our results, we further investigated the evolution of ecological specialization across six different environmental pairs, and found that larger populations specialized more frequently and evolved consistently steeper reaction norms of fitness. This is the first study to demonstrate a relationship between population size and fitness trade-offs, and the results are important in understanding the population genetics of ecological specialization and vulnerability to environmental changes.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Sarthak Malusare
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.,Gaia Doctoral School, Institut des Sciences de l'Evolution (ISEM), 1093-1317 Route de Mende, 34090, Montpellier, France
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
10
|
Osmond MM, Otto SP, Martin G. Genetic Paths to Evolutionary Rescue and the Distribution of Fitness Effects Along Them. Genetics 2020; 214:493-510. [PMID: 31822480 PMCID: PMC7017017 DOI: 10.1534/genetics.119.302890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The past century has seen substantial theoretical and empirical progress on the genetic basis of adaptation. Over this same period, a pressing need to prevent the evolution of drug resistance has uncovered much about the potential genetic basis of persistence in declining populations. However, we have little theory to predict and generalize how persistence-by sufficiently rapid adaptation-might be realized in this explicitly demographic scenario. Here, we use Fisher's geometric model with absolute fitness to begin a line of theoretical inquiry into the genetic basis of evolutionary rescue, focusing here on asexual populations that adapt through de novo mutations. We show how the dominant genetic path to rescue switches from a single mutation to multiple as mutation rates and the severity of the environmental change increase. In multi-step rescue, intermediate genotypes that themselves go extinct provide a "springboard" to rescue genotypes. Comparing to a scenario where persistence is assured, our approach allows us to quantify how a race between evolution and extinction leads to a genetic basis of adaptation that is composed of fewer loci of larger effect. We hope this work brings awareness to the impact of demography on the genetic basis of adaptation.
Collapse
Affiliation(s)
- Matthew M Osmond
- Biodiversity Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sarah P Otto
- Biodiversity Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guillaume Martin
- Institut des Sciences de l'Evolution de Montpellier UMR5554, Universite de Montpellier, CNRS-IRD-EPHE-UM, France
| |
Collapse
|
11
|
Clarke L, Pelin A, Phan M, Wong A. The effect of environmental heterogeneity on the fitness of antibiotic resistance mutations in Escherichia coli. Evol Ecol 2020. [DOI: 10.1007/s10682-019-10027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Bergman J, Eyre-Walker A. Does Adaptive Protein Evolution Proceed by Large or Small Steps at the Amino Acid Level? Mol Biol Evol 2019; 36:990-998. [PMID: 30903659 DOI: 10.1093/molbev/msz033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A long-standing question in evolutionary biology is the relative contribution of large and small effect mutations to the adaptive process. We have investigated this question in proteins by estimating the rate of adaptive evolution between all pairs of amino acids separated by one mutational step using a McDonald-Kreitman type approach and genome-wide data from several Drosophila species. We find that the rate of adaptive evolution is highest among amino acids that are more similar. This is partly due to the fact that the proportion of mutations that are adaptive is higher among more similar amino acids. We also find that the rate of neutral evolution between amino acids is higher among more similar amino acids. Overall our results suggest that both the adaptive and nonadaptive evolution of proteins are dominated by substitutions between similar amino acids.
Collapse
Affiliation(s)
- Juraj Bergman
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria.,Vienna Graduate School of Population Genetics, Wien, Austria
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
13
|
Sane M, Miranda JJ, Agashe D. Antagonistic pleiotropy for carbon use is rare in new mutations. Evolution 2018; 72:2202-2213. [PMID: 30095155 PMCID: PMC6203952 DOI: 10.1111/evo.13569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Pleiotropic effects of mutations underlie diverse biological phenomena such as ageing and specialization. In particular, antagonistic pleiotropy ("AP": when a mutation has opposite fitness effects in different environments) generates tradeoffs, which may constrain adaptation. Models of adaptation typically assume that AP is common - especially among large-effect mutations - and that pleiotropic effect sizes are positively correlated. Empirical tests of these assumptions have focused on de novo beneficial mutations arising under strong selection. However, most mutations are actually deleterious or neutral, and may contribute to standing genetic variation that can subsequently drive adaptation. We quantified the incidence, nature, and effect size of pleiotropy for carbon utilization across 80 single mutations in Escherichia coli that arose under mutation accumulation (i.e., weak selection). Although ∼46% of the mutations were pleiotropic, only 11% showed AP; among beneficial mutations, only ∼4% showed AP. In some environments, AP was more common in large-effect mutations; and AP effect sizes across environments were often negatively correlated. Thus, AP for carbon use is generally rare (especially among beneficial mutations); is not consistently enriched in large-effect mutations; and often involves weakly deleterious antagonistic effects. Our unbiased quantification of mutational effects therefore suggests that antagonistic pleiotropy may be unlikely to cause maladaptive tradeoffs.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Joshua John Miranda
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Deepa Agashe
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
14
|
The fitness landscape of the codon space across environments. Heredity (Edinb) 2018; 121:422-437. [PMID: 30127529 DOI: 10.1038/s41437-018-0125-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Fitness landscapes map the relationship between genotypes and fitness. However, most fitness landscape studies ignore the genetic architecture imposed by the codon table and thereby neglect the potential role of synonymous mutations. To quantify the fitness effects of synonymous mutations and their potential impact on adaptation on a fitness landscape, we use a new software based on Bayesian Monte Carlo Markov Chain methods and re-estimate selection coefficients of all possible codon mutations across 9 amino acid positions in Saccharomyces cerevisiae Hsp90 across 6 environments. We quantify the distribution of fitness effects of synonymous mutations and show that it is dominated by many mutations of small or no effect and few mutations of larger effect. We then compare the shape of the codon fitness landscape across amino acid positions and environments, and quantify how the consideration of synonymous fitness effects changes the evolutionary dynamics on these fitness landscapes. Together these results highlight a possible role of synonymous mutations in adaptation and indicate the potential mis-inference when they are neglected in fitness landscape studies.
Collapse
|
15
|
Sackman AM, McGee LW, Morrison AJ, Pierce J, Anisman J, Hamilton H, Sanderbeck S, Newman C, Rokyta DR. Mutation-Driven Parallel Evolution during Viral Adaptation. Mol Biol Evol 2018; 34:3243-3253. [PMID: 29029274 DOI: 10.1093/molbev/msx257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Convergent evolution has been demonstrated across all levels of biological organization, from parallel nucleotide substitutions to convergent evolution of complex phenotypes, but whether instances of convergence are the result of selection repeatedly finding the same optimal solution to a recurring problem or are the product of mutational biases remains unsettled. We generated 20 replicate lineages allowed to fix a single mutation from each of four bacteriophage genotypes under identical selective regimes to test for parallel changes within and across genotypes at the levels of mutational effect distributions and gene, protein, amino acid, and nucleotide changes. All four genotypes shared a distribution of beneficial mutational effects best approximated by a distribution with a finite upper bound. Parallel adaptation was high at the protein, gene, amino acid, and nucleotide levels, both within and among phage genotypes, with the most common first-step mutation in each background fixing on an average in 7 of 20 replicates and half of the substitutions in two of the four genotypes occurring at shared sites. Remarkably, the mutation of largest beneficial effect that fixed for each genotype was never the most common, as would be expected if parallelism were driven by selection. In fact, the mutation of smallest benefit for each genotype fixed in a total of 7 of 80 lineages, equally as often as the mutation of largest benefit, leading us to conclude that adaptation was largely mutation-driven, such that mutational biases led to frequent parallel fixation of mutations of suboptimal effect.
Collapse
Affiliation(s)
- Andrew M Sackman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Lindsey W McGee
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Jessica Pierce
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Jeremy Anisman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Hunter Hamilton
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Cayla Newman
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
16
|
Iyyappan J, Bharathiraja B, Baskar G, Jayamuthunagai J, Barathkumar S, Anna Shiny R. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. BIORESOURCE TECHNOLOGY 2018; 251:264-267. [PMID: 29288953 DOI: 10.1016/j.biortech.2017.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India.
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - J Jayamuthunagai
- Centre for Biotechnology, Anna University, Chennai 600025, India
| | - S Barathkumar
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Anna Shiny
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| |
Collapse
|
17
|
Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc Biol Sci 2017; 283:rspb.2016.0749. [PMID: 27466449 PMCID: PMC4971204 DOI: 10.1098/rspb.2016.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Robyn L Phillips
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
18
|
Additive Phenotypes Underlie Epistasis of Fitness Effects. Genetics 2017; 208:339-348. [PMID: 29113978 DOI: 10.1534/genetics.117.300451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/03/2017] [Indexed: 11/18/2022] Open
Abstract
Gene interactions, or epistasis, play a large role in determining evolutionary outcomes. The ruggedness of fitness landscapes, and thus the predictability of evolution and the accessibility of high-fitness genotypes, is determined largely by the pervasiveness of epistasis and the degree of correlation between similar genotypes. We created all possible pairings of three sets of five beneficial first-step mutations fixed during adaptive walks under three different regimes: selection on growth rate alone, on growth rate and thermal stability, and on growth rate and pH stability. All 30 double-mutants displayed negative, antagonistic epistasis with regard to growth rate and fitness, but positive epistasis and additivity were common for the stability phenotypes. This suggested that biophysically simple phenotypes, such as capsid stability, may on average behave more additively than complex phenotypes like viral growth rate. Growth rate epistasis was also smaller in magnitude when the individual effects of single mutations were smaller. Significant sign epistasis, such that the effect of a mutation that is beneficial in the wild-type background is deleterious in combination with a second mutation, emerged more frequently in intragenic mutational pairings than in intergenic pairs, and was evident in nearly half of the double-mutants, indicating that the fitness landscape is moderately uncorrelated and of intermediate ruggedness. Together, our results indicated that mutations may interact additively with regard to phenotype when considered at a basic, biophysical level, but that epistasis arises as a result of pleiotropic interactions between the individual components of complex phenotypes and diminishing returns arising from intermediate phenotypic optima.
Collapse
|
19
|
Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data. Genetics 2017; 207:1103-1119. [PMID: 28951530 PMCID: PMC5676230 DOI: 10.1534/genetics.117.300323] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022] Open
Abstract
The distribution of fitness effects (DFE) encompasses the fraction of deleterious, neutral, and beneficial mutations. It conditions the evolutionary trajectory of populations, as well as the rate of adaptive molecular evolution (α). Inferring DFE and α from patterns of polymorphism, as given through the site frequency spectrum (SFS) and divergence data, has been a longstanding goal of evolutionary genetics. A widespread assumption shared by previous inference methods is that beneficial mutations only contribute negligibly to the polymorphism data. Hence, a DFE comprising only deleterious mutations tends to be estimated from SFS data, and α is then predicted by contrasting the SFS with divergence data from an outgroup. We develop a hierarchical probabilistic framework that extends previous methods to infer DFE and α from polymorphism data alone. We use extensive simulations to examine the performance of our method. While an outgroup is still needed to obtain an unfolded SFS, we show that both a DFE, comprising both deleterious and beneficial mutations, and α can be inferred without using divergence data. We also show that not accounting for the contribution of beneficial mutations to polymorphism data leads to substantially biased estimates of the DFE and α. We compare our framework with one of the most widely used inference methods available and apply it on a recently published chimpanzee exome data set.
Collapse
|
20
|
Kraemer SA, Kassen R. Temporal patterns of local adaptation in soil pseudomonads. Proc Biol Sci 2016; 283:20161652. [PMID: 27708150 PMCID: PMC5069515 DOI: 10.1098/rspb.2016.1652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Strong divergent selection leading to local adaptation is often invoked to explain the staggering diversity of bacteria in microbial ecosystems. However, examples of specialization by bacterial clones to alternative niches in nature are rare. Here, we investigate the extent of local adaptation in natural isolates of pseudomonads and their relatives to their soil environments across both space and time. Though most isolates grew well in most environments, patchily distributed low-quality environments were found to drive specialization. In contrast to experimental evolution work on microbial adaptation, temporal adaptation was stronger than spatial adaptation among the isolates and environments we sampled. Time-shift analysis of fitness across two seasons of growth revealed an unexpectedly strong effect of preadaptation. This pattern of apparent future adaptation may be caused by unknown abiotic properties of these environments, phages, bacterial competitors or general mechanisms of ecological niche release, and warrants future study.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Rees Kassen
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Moura de Sousa JA, Alpedrinha J, Campos PRA, Gordo I. Competition and fixation of cohorts of adaptive mutations under Fisher geometrical model. PeerJ 2016; 4:e2256. [PMID: 27547562 PMCID: PMC4975028 DOI: 10.7717/peerj.2256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/23/2016] [Indexed: 11/24/2022] Open
Abstract
One of the simplest models of adaptation to a new environment is Fisher’s Geometric Model (FGM), in which populations move on a multidimensional landscape defined by the traits under selection. The predictions of this model have been found to be consistent with current observations of patterns of fitness increase in experimentally evolved populations. Recent studies investigated the dynamics of allele frequency change along adaptation of microbes to simple laboratory conditions and unveiled a dramatic pattern of competition between cohorts of mutations, i.e., multiple mutations simultaneously segregating and ultimately reaching fixation. Here, using simulations, we study the dynamics of phenotypic and genetic change as asexual populations under clonal interference climb a Fisherian landscape, and ask about the conditions under which FGM can display the simultaneous increase and fixation of multiple mutations—mutation cohorts—along the adaptive walk. We find that FGM under clonal interference, and with varying levels of pleiotropy, can reproduce the experimentally observed competition between different cohorts of mutations, some of which have a high probability of fixation along the adaptive walk. Overall, our results show that the surprising dynamics of mutation cohorts recently observed during experimental adaptation of microbial populations can be expected under one of the oldest and simplest theoretical models of adaptation—FGM.
Collapse
Affiliation(s)
| | | | - Paulo R A Campos
- Departamento de Fisica, Cidade Universitária, Universidade Federal de Pernambuco , Recife , Pernambuco , Brazil
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência , Oeiras , Portugal
| |
Collapse
|
22
|
Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc Biol Sci 2016. [PMID: 26224708 DOI: 10.1098/rspb.2015.1270] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity.
Collapse
Affiliation(s)
- Pedro F Vale
- Centre for Immunity, Infection, and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Guillaume Lafforgue
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | - Francois Gatchitch
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| | | | - Sylvain Moineau
- GREB and Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Québec, Canada G1V 0A6 Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Faculté des sciences et de génie, Université Laval, Québec, Canada G1V 0A6
| | - Sylvain Gandon
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293 Montpellier Cedex 5, France
| |
Collapse
|
23
|
Monotonicity of fitness landscapes and mutation rate control. J Math Biol 2016; 73:1491-1524. [PMID: 27072124 PMCID: PMC5061859 DOI: 10.1007/s00285-016-0995-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 11/29/2015] [Indexed: 01/20/2023]
Abstract
A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher’s work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms.
Collapse
|
24
|
John S, Seetharaman S. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects. PLoS One 2016; 11:e0151795. [PMID: 26990188 PMCID: PMC4798746 DOI: 10.1371/journal.pone.0151795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments.
Collapse
Affiliation(s)
- Sona John
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
- * E-mail:
| | - Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
25
|
Gifford DR, Moss E, MacLean RC. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. Evolution 2016; 70:725-30. [PMID: 26880677 DOI: 10.1111/evo.12880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
The fitness effects of antibiotic resistance mutations in antibiotic-free conditions play a key role in determining the long-term maintenance of resistance. Although resistance is usually associated with a cost, the impact of environmental variation on the cost of resistance is poorly understood. Here, we test the impact of heterogeneity in temperature and resource availability on the fitness effects of antibiotic resistance using strains of the pathogenic bacterium Pseudomonas aeruginosa carrying clinically important rifampicin resistance mutations. Although the rank order of fitness was generally maintained across environments, fitness effects relative to the wild type differed significantly. Changes in temperature had a profound impact on the fitness effects of resistance, whereas changes in carbon substrate had only a weak impact. This suggests that environmental heterogeneity may influence whether the costs of resistance are likely to be ameliorated by second-site compensatory mutations or by reversion to wild-type rpoB. Our results highlight the need to consider environmental heterogeneity and genotype-by-environment interactions for fitness in models of resistance evolution.
Collapse
Affiliation(s)
- Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, United Kingdom.
| | - Ethan Moss
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, United Kingdom
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, United Kingdom
| |
Collapse
|
26
|
Dillon MM, Rouillard NP, Van Dam B, Gallet R, Cooper VS. Diverse phenotypic and genetic responses to short-term selection in evolving Escherichia coli populations. Evolution 2016; 70:586-99. [PMID: 26995338 DOI: 10.1111/evo.12868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first-step beneficial mutants derived from naïve and adapted genotypes used in a long-term experimental evolution of Escherichia coli. Whole-genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion.
Collapse
Affiliation(s)
- Marcus M Dillon
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | - Nicholas P Rouillard
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | - Brian Van Dam
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824
| | - Romain Gallet
- INRA - UMR BGPI Cirad TA A-54/K, Campus International de Baillarguet, 34398, Montpellier, Cedex 5, France
| | - Vaughn S Cooper
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219.
| |
Collapse
|
27
|
Bailey SF, Bataillon T. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature? Mol Ecol 2016; 25:203-18. [PMID: 26346808 PMCID: PMC5019151 DOI: 10.1111/mec.13378] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/26/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023]
Abstract
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches.
Collapse
Affiliation(s)
- Susan F. Bailey
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| | - Thomas Bataillon
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| |
Collapse
|
28
|
Mai HTN, Lee KM, Choi SS. Enhanced oxalic acid production from corncob by a methanol-resistant strain of Aspergillus niger using semi solid-sate fermentation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Abstract
Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve when essential mutations are only accessible through positive selection if they are fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here, we studied genetic constraints in fixed and fluctuating environments using the Escherichia coli lac operon as a model system for genotype-environment interactions. We found that, in different fixed environments, all trajectories that were reconstructed by applying point mutations within the transcription factor-operator interface became trapped at suboptima, where no additional improvements were possible. Paradoxically, repeated switching between these same environments allows unconstrained adaptation by continuous improvements. This evolutionary mode is explained by pervasive cross-environmental tradeoffs that reposition the peaks in such a way that trapped genotypes can repeatedly climb ascending slopes and hence, escape adaptive stasis. Using a Markov approach, we developed a mathematical framework to quantify the landscape-crossing rates and show that this ratchet-like adaptive mechanism is robust in a wide spectrum of fluctuating environments. Overall, this study shows that genetic constraints can be overcome by environmental change and that cross-environmental tradeoffs do not necessarily impede but also, can facilitate adaptive evolution. Because tradeoffs and environmental variability are ubiquitous in nature, we speculate this evolutionary mode to be of general relevance.
Collapse
|
30
|
Schick A, Bailey SF, Kassen R. Evolution of Fitness Trade-Offs in Locally Adapted Populations of Pseudomonas fluorescens. Am Nat 2015; 186 Suppl 1:S48-59. [DOI: 10.1086/682932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Martin G, Lenormand T. The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima. Evolution 2015; 69:1433-1447. [DOI: 10.1111/evo.12671] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Guillaume Martin
- Institut des Sciences de l'Evolution de Montpellier, UMR CNRS-UM II 5554; Université Montpellier II; 34 095 Montpellier cedex 5 France
| | - Thomas Lenormand
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry, EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
| |
Collapse
|
32
|
Kraemer SA, Kassen R. Patterns of Local Adaptation in Space and Time among Soil Bacteria. Am Nat 2015; 185:317-31. [DOI: 10.1086/679585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Tenaillon O. The Utility of Fisher's Geometric Model in Evolutionary Genetics. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:179-201. [PMID: 26740803 PMCID: PMC4699269 DOI: 10.1146/annurev-ecolsys-120213-091846] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The accumulation of data on the genomic bases of adaptation has triggered renewed interest in theoretical models of adaptation. Among these models, Fisher Geometric Model (FGM) has received a lot of attention over the last two decades. FGM is based on a continuous multidimensional phenotypic landscape, but it is for the emerging properties of individual mutation effects that it is mostly used. Despite an apparent simplicity and a limited number of parameters, FGM integrates a full model of mutation and epistatic interactions that allows the study of both beneficial and deleterious mutations, and subsequently the fate of evolving populations. In this review, I present the different properties of FGM and the qualitative and quantitative support they have received from experimental evolution data. I later discuss how to estimate the different parameters of the model and outline some future directions to connect FGM and the molecular determinants of adaptation.
Collapse
Affiliation(s)
- O Tenaillon
- IAME, UMR 1137, INSERM, F-75018 Paris, France ; IAME, UMR 1137, Univ. Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| |
Collapse
|
34
|
Seetharaman S, Jain K. Length of adaptive walk on uncorrelated and correlated fitness landscapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032703. [PMID: 25314469 DOI: 10.1103/physreve.90.032703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 06/04/2023]
Abstract
We consider the adaptation dynamics of an asexual population that walks uphill on a rugged fitness landscape which is endowed with a large number of local fitness peaks. We work in a parameter regime where only those mutants that are a single mutation away are accessible, as a result of which the population eventually gets trapped at a local fitness maximum and the adaptive walk terminates. We study how the number of adaptive steps taken by the population before reaching a local fitness peak depends on the initial fitness of the population, the extreme value distribution of the beneficial mutations, and correlations among the fitnesses. Assuming that the relative fitness difference between successive steps is small, we analytically calculate the average walk length for both uncorrelated and correlated fitnesses in all extreme value domains for a given initial fitness. We present numerical results for the model where the fitness differences can be large and find that the walk length behavior differs from that in the former model in the Fréchet domain of extreme value theory. We also discuss the relevance of our results to microbial experiments.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
35
|
Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl 2014; 8:273-83. [PMID: 25861385 PMCID: PMC4380921 DOI: 10.1111/eva.12196] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance is increasing in pathogenic microbial populations and is thus a major threat to public health. The fate of a resistance mutation in pathogen populations is determined in part by its fitness. Mutations that suffer little or no fitness cost are more likely to persist in the absence of antibiotic treatment. In this review, we performed a meta-analysis to investigate the fitness costs associated with single mutational events that confer resistance. Generally, these mutations were costly, although several drug classes and species of bacteria on average did not show a cost. Further investigations into the rate and fitness values of compensatory mutations that alleviate the costs of resistance will help us to better understand both the emergence and management of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Anita H Melnyk
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada
| | - Alex Wong
- Department of Biology, Carleton University Ottawa, ON, Canada
| | - Rees Kassen
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
36
|
Hall AR, Angst DC, Schiessl KT, Ackermann M. Costs of antibiotic resistance - separating trait effects and selective effects. Evol Appl 2014; 8:261-72. [PMID: 25861384 PMCID: PMC4380920 DOI: 10.1111/eva.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline.
Collapse
Affiliation(s)
- Alex R Hall
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Daniel C Angst
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Konstanze T Schiessl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| |
Collapse
|
37
|
Abstract
The rates and properties of new mutations affecting fitness have implications for a number of outstanding questions in evolutionary biology. Obtaining estimates of mutation rates and effects has historically been challenging, and little theory has been available for predicting the distribution of fitness effects (DFE); however, there have been recent advances on both fronts. Extreme-value theory predicts the DFE of beneficial mutations in well-adapted populations, while phenotypic fitness landscape models make predictions for the DFE of all mutations as a function of the initial level of adaptation and the strength of stabilizing selection on traits underlying fitness. Direct experimental evidence confirms predictions on the DFE of beneficial mutations and favors distributions that are roughly exponential but bounded on the right. A growing number of studies infer the DFE using genomic patterns of polymorphism and divergence, recovering a wide range of DFE. Future work should be aimed at identifying factors driving the observed variation in the DFE. We emphasize the need for further theory explicitly incorporating the effects of partial pleiotropy and heterogeneity in the environment on the expected DFE.
Collapse
Affiliation(s)
- Thomas Bataillon
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
38
|
Taute KM, Gude S, Nghe P, Tans SJ. Evolutionary constraints in variable environments, from proteins to networks. Trends Genet 2014; 30:192-8. [PMID: 24780086 DOI: 10.1016/j.tig.2014.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Environmental changes can not only trigger a regulatory response, but also impose evolutionary pressures that can modify the underlying regulatory network. Here, we review recent approaches that are beginning to disentangle this complex interplay between regulatory and evolutionary responses. Systematic genetic reconstructions have shown how evolutionary constraints arise from epistatic interactions between mutations in fixed environments. This approach is now being extended to more complex environments and systems. The first results suggest that epistasis is affected dramatically by environmental changes and, hence, can profoundly affect the course of evolution. Thus, external environments not only define the selection of favored phenotypes, but also affect the internal constraints that can limit the evolution of these phenotypes. These findings also raise new questions relating to the conditions for evolutionary transitions and the evolutionary potential of regulatory networks.
Collapse
Affiliation(s)
- Katja M Taute
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sebastian Gude
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Philippe Nghe
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sander J Tans
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
39
|
The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations. Genetics 2014; 196:1217-26. [PMID: 24514901 DOI: 10.1534/genetics.113.160069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outcomes of evolution are determined by which mutations occur and fix. In rapidly adapting microbial populations, this process is particularly hard to predict because lineages with different beneficial mutations often spread simultaneously and interfere with one another's fixation. Hence to predict the fate of any individual variant, we must know the rate at which new mutations create competing lineages of higher fitness. Here, we directly measured the effect of this interference on the fates of specific adaptive variants in laboratory Saccharomyces cerevisiae populations and used these measurements to infer the distribution of fitness effects of new beneficial mutations. To do so, we seeded marked lineages with different fitness advantages into replicate populations and tracked their subsequent frequencies for hundreds of generations. Our results illustrate the transition between strongly advantageous lineages that decisively sweep to fixation and more moderately advantageous lineages that are often outcompeted by new mutations arising during the course of the experiment. We developed an approximate likelihood framework to compare our data to simulations and found that the effects of these competing beneficial mutations were best approximated by an exponential distribution, rather than one with a single effect size. We then used this inferred distribution of fitness effects to predict the rate of adaptation in a set of independent control populations. Finally, we discuss how our experimental design can serve as a screen for rare, large-effect beneficial mutations.
Collapse
|
40
|
Foll M, Poh YP, Renzette N, Ferrer-Admetlla A, Bank C, Shim H, Malaspinas AS, Ewing G, Liu P, Wegmann D, Caffrey DR, Zeldovich KB, Bolon DN, Wang JP, Kowalik TF, Schiffer CA, Finberg RW, Jensen JD. Influenza virus drug resistance: a time-sampled population genetics perspective. PLoS Genet 2014; 10:e1004185. [PMID: 24586206 PMCID: PMC3937227 DOI: 10.1371/journal.pgen.1004185] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence of drug treatment. Importantly, these approaches re-identify the known oseltamivir resistance site, successfully validating the approaches used. Enticingly, a number of previously unknown variants have also been identified as being positively selected. Results are interpreted in the light of Fisher's Geometric Model, allowing for a quantification of the increased distance to optimum exerted by the presence of drug, and theoretical predictions regarding the distribution of beneficial fitness effects of contending mutations are empirically tested. Further, given the fit to expectations of the Geometric Model, results suggest the ability to predict certain aspects of viral evolution in response to changing host environments and novel selective pressures.
Collapse
Affiliation(s)
- Matthieu Foll
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yu-Ping Poh
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas Renzette
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anna Ferrer-Admetlla
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Claudia Bank
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Hyunjin Shim
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna-Sapfo Malaspinas
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Gregory Ewing
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ping Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel Wegmann
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Department of Biology and Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Daniel R. Caffrey
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Konstantin B. Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniel N. Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeffrey D. Jensen
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
41
|
A bayesian MCMC approach to assess the complete distribution of fitness effects of new mutations: uncovering the potential for adaptive walks in challenging environments. Genetics 2014; 196:841-52. [PMID: 24398421 PMCID: PMC3948810 DOI: 10.1534/genetics.113.156190] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of adaptation in the evolutionary process has been contentious for decades. At the heart of the century-old debate between neutralists and selectionists lies the distribution of fitness effects (DFE)—that is, the selective effect of all mutations. Attempts to describe the DFE have been varied, occupying theoreticians and experimentalists alike. New high-throughput techniques stand to make important contributions to empirical efforts to characterize the DFE, but the usefulness of such approaches depends on the availability of robust statistical methods for their interpretation. We here present and discuss a Bayesian MCMC approach to estimate fitness from deep sequencing data and use it to assess the DFE for the same 560 point mutations in a coding region of Hsp90 in Saccharomyces cerevisiae across six different environmental conditions. Using these estimates, we compare the differences in the DFEs resulting from mutations covering one-, two-, and three-nucleotide steps from the wild type—showing that multiple-step mutations harbor more potential for adaptation in challenging environments, but also tend to be more deleterious in the standard environment. All observations are discussed in the light of expectations arising from Fisher’s geometric model.
Collapse
|
42
|
Seetharaman S, Jain K. Adaptive walks and distribution of beneficial fitness effects. Evolution 2014; 68:965-75. [PMID: 24274696 DOI: 10.1111/evo.12327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
Abstract
We study the adaptation dynamics of a maladapted asexual population on rugged fitness landscapes with many local fitness peaks. The distribution of beneficial fitness effects is assumed to belong to one of the three extreme value domains, viz. Weibull, Gumbel, and Fréchet. We work in the strong selection-weak mutation regime in which beneficial mutations fix sequentially, and the population performs an uphill walk on the fitness landscape until a local fitness peak is reached. A striking prediction of our analysis is that the fitness difference between successive steps follows a pattern of diminishing returns in the Weibull domain and accelerating returns in the Fréchet domain, as the initial fitness of the population is increased. These trends are found to be robust with respect to fitness correlations. We believe that this result can be exploited in experiments to determine the extreme value domain of the distribution of beneficial fitness effects. Our work here differs significantly from the previous ones that assume the selection coefficient to be small. On taking large effect mutations into account, we find that the length of the walk shows different qualitative trends from those derived using small selection coefficient approximation.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore, 560064, India
| | | |
Collapse
|
43
|
Baker S, Duy PT, Nga TVT, Dung TTN, Phat VV, Chau TT, Turner AK, Farrar J, Boni MF. Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure. eLife 2013; 2:e01229. [PMID: 24327559 PMCID: PMC3857714 DOI: 10.7554/elife.01229] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced. DOI:http://dx.doi.org/10.7554/eLife.01229.001 The fluoroquinolones are a group of antimicrobials that are used to treat a variety of life-threatening bacterial infections, including typhoid fever. Before the introduction of antimicrobials, the mortality rate from typhoid fever was 10–20%. Prompt treatment with fluoroquinolones has reduced this to less than 1%, and has also decreased the severity of symptoms suffered by people with the disease. Now, however, the usefulness of many antimicrobials, including the fluoroquinolones, is threatened by the evolution of antimicrobial resistance within the bacterial populations being treated. Drug resistance in bacteria typically arises through specific mutations, or following the acquisition of antimicrobial resistance genes from other bacteria. It is thought that the frequent use of antimicrobials in human and animal health puts selective pressure on bacterial populations, allowing bacterial strains with mutations or genes that confer antimicrobial resistance to survive, while bacterial strains that are sensitive to the antimicrobials die out. At first it was thought that specific mutations conferring antimicrobial resistance came at a fitness cost, which would mean that such mutations would be rare in the absence of antimicrobials. Now, based on research into typhoid fever, Baker et al. describe a system in which the majority of evolutionary routes to drug resistance are marked by significant fitness benefits, even in the absence of antimicrobial exposure. Typhoid is caused by a bacterial pathogen known as Salmonella Typhi, and mutations in two genes—gyrA and parC—result in resistance to fluoroquinolones. Baker et al. show that mutations in these genes confer a measurable fitness advantage over strains without these mutations, even in the absence of exposure to fluoroquinolones. Moreover, strains with two mutations in one of these genes exhibited a higher than predicted fitness, suggesting that there is a synergistic interaction between the two mutations. This work challenges the dogma that antimicrobial resistant organisms have a fitness disadvantage in the absence of antimicrobials, and suggests that increasing resistance to the fluoroquinolones is not solely driven by excessive use of this important group of drugs. DOI:http://dx.doi.org/10.7554/eLife.01229.002
Collapse
Affiliation(s)
- Stephen Baker
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moura de Sousa JA, Campos PRA, Gordo I. An ABC method for estimating the rate and distribution of effects of beneficial mutations. Genome Biol Evol 2013; 5:794-806. [PMID: 23542207 PMCID: PMC3673657 DOI: 10.1093/gbe/evt045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Determining the distribution of adaptive mutations available to natural selection is a
difficult task. These are rare events and most of them are lost by chance. Some
theoretical works propose that the distribution of newly arising beneficial mutations
should be close to exponential. Empirical data are scarce and do not always support an
exponential distribution. Analysis of the dynamics of adaptation in asexual populations of
microorganisms has revealed that these can be summarized by two effective parameters, the
effective mutation rate, Ue, and the effective selection
coefficient of a beneficial mutation, Se. Here, we show that
these effective parameters will not always reflect the rate and mean effect of beneficial
mutations, especially when the distribution of arising mutations has high variance, and
the mutation rate is high. We propose a method to estimate the distribution of arising
beneficial mutations, which is motivated by a common experimental setup. The method, which
we call One Biallelic Marker Approximate Bayesian Computation, makes use of experimental
data consisting of periodic measures of neutral marker frequencies and mean population
fitness. Using simulations, we find that this method allows the discrimination of the
shape of the distribution of arising mutations and that it provides reasonable estimates
of their rates and mean effects in ranges of the parameter space that may be of biological
relevance.
Collapse
|
45
|
Perfeito L, Sousa A, Bataillon T, Gordo I. Rates of fitness decline and rebound suggest pervasive epistasis. Evolution 2013; 68:150-62. [PMID: 24372601 PMCID: PMC3912910 DOI: 10.1111/evo.12234] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
Abstract
Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of −0.01, and an effective number of traits nine in mutS−E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.
Collapse
Affiliation(s)
- L Perfeito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; The authors contributed equally to this work
| | | | | | | |
Collapse
|
46
|
de Vos MGJ, Poelwijk FJ, Battich N, Ndika JDT, Tans SJ. Environmental dependence of genetic constraint. PLoS Genet 2013; 9:e1003580. [PMID: 23825963 PMCID: PMC3694820 DOI: 10.1371/journal.pgen.1003580] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/04/2013] [Indexed: 11/25/2022] Open
Abstract
The epistatic interactions that underlie evolutionary constraint have mainly been studied for constant external conditions. However, environmental changes may modulate epistasis and hence affect genetic constraints. Here we investigate genetic constraints in the adaptive evolution of a novel regulatory function in variable environments, using the lac repressor, LacI, as a model system. We have systematically reconstructed mutational trajectories from wild type LacI to three different variants that each exhibit an inverse response to the inducing ligand IPTG, and analyzed the higher-order interactions between genetic and environmental changes. We find epistasis to depend strongly on the environment. As a result, mutational steps essential to inversion but inaccessible by positive selection in one environment, become accessible in another. We present a graphical method to analyze the observed complex higher-order interactions between multiple mutations and environmental change, and show how the interactions can be explained by a combination of mutational effects on allostery and thermodynamic stability. This dependency of genetic constraint on the environment should fundamentally affect evolutionary dynamics and affects the interpretation of phylogenetic data.
Collapse
|
47
|
Hall AR. Genotype-by-environment interactions due to antibiotic resistance and adaptation in Escherichia coli. J Evol Biol 2013; 26:1655-64. [DOI: 10.1111/jeb.12172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A. R. Hall
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics; ETH Zürich; Zürich Switzerland
- Department of Environmental Microbiology; Eawag; Dübendorf Switzerland
| |
Collapse
|
48
|
Jasmin JN, Zeyl C. Evolution of pleiotropic costs in experimental populations. J Evol Biol 2013; 26:1363-9. [DOI: 10.1111/jeb.12144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/09/2013] [Accepted: 02/17/2013] [Indexed: 11/28/2022]
Affiliation(s)
- J.-N. Jasmin
- Department of Biology; Wake Forest University; Winston-Salem NC USA
- CEFE-UMR 5175; Montpellier France
| | - C. Zeyl
- Department of Biology; Wake Forest University; Winston-Salem NC USA
| |
Collapse
|
49
|
Rodríguez-Verdugo A, Gaut BS, Tenaillon O. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol Biol 2013; 13:50. [PMID: 23433244 PMCID: PMC3598500 DOI: 10.1186/1471-2148-13-50] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/11/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Beneficial mutations play an essential role in bacterial adaptation, yet little is known about their fitness effects across genetic backgrounds and environments. One prominent example of bacterial adaptation is antibiotic resistance. Until recently, the paradigm has been that antibiotic resistance is selected by the presence of antibiotics because resistant mutations confer fitness costs in antibiotic free environments. In this study we show that it is not always the case, documenting the selection and fixation of resistant mutations in populations of Escherichia coli B that had never been exposed to antibiotics but instead evolved for 2000 generations at high temperature (42.2°C). RESULTS We found parallel mutations within the rpoB gene encoding the beta subunit of RNA polymerase. These amino acid substitutions conferred different levels of rifampicin resistance. The resistant mutations typically appeared, and were fixed, early in the evolution experiment. We confirmed the high advantage of these mutations at 42.2°C in glucose-limited medium. However, the rpoB mutations had different fitness effects across three genetic backgrounds and six environments. CONCLUSIONS We describe resistance mutations that are not necessarily costly in the absence of antibiotics or compensatory mutations but are highly beneficial at high temperature and low glucose. Their fitness effects depend on the environment and the genetic background, providing glimpses into the prevalence of epistasis and pleiotropy.
Collapse
|
50
|
Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Antimicrob Agents Chemother 2012; 57:189-95. [PMID: 23089747 DOI: 10.1128/aac.01632-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in the rpoB, rpsL, and gyrA genes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits-growth rate and survival ability-of 12 Escherichia coli K-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, all E. coli streptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival of E. coli in the context of an infection.
Collapse
|