1
|
Somashekara SC, Dhyani KM, Thakur M, Muniyappa K. SUMOylation of yeast Pso2 enhances its translocation and accumulation in the mitochondria and suppresses methyl methanesulfonate-induced mitochondrial DNA damage. Mol Microbiol 2023; 120:587-607. [PMID: 37649278 DOI: 10.1111/mmi.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Saccharomyces cerevisiae Pso2/SNM1 is essential for DNA interstrand crosslink (ICL) repair; however, its mechanism of action remains incompletely understood. While recent work has revealed that Pso2/Snm1 is dual-localized in the nucleus and mitochondria, it remains unclear whether cell-intrinsic and -extrinsic factors regulate its subcellular localization and function. Herein, we show that Pso2 undergoes ubiquitination and phosphorylation, but not SUMOylation, in unstressed cells. Unexpectedly, we found that methyl methanesulfonate (MMS), rather than ICL-forming agents, induced robust SUMOylation of Pso2 on two conserved residues, K97 and K575, and that SUMOylation markedly increased its abundance in the mitochondria. Reciprocally, SUMOylation had no discernible impact on Pso2 translocation to the nucleus, despite the presence of steady-state levels of SUMOylated Pso2 across the cell cycle. Furthermore, substitution of the invariant residues K97 and K575 by arginine in the Pso2 SUMO consensus motifs severely impaired SUMOylation and abolished its translocation to the mitochondria of MMS-treated wild type cells, but not in unstressed cells. We demonstrate that whilst Siz1 and Siz2 SUMO E3 ligases catalyze Pso2 SUMOylation, the former plays a dominant role. Notably, we found that the phenotypic characteristics of the SUMOylation-defective mutant Pso2K97R/K575R closely mirrored those observed in the Pso2Δ petite mutant. Additionally, leveraging next-generation sequencing analysis, we demonstrate that Pso2 mitigates MMS-induced damage to mitochondrial DNA (mtDNA). Viewed together, our work offers previously unknown insights into the link between genotoxic stress-induced SUMOylation of Pso2 and its preferential targeting to the mitochondria, as well as its role in attenuating MMS-induced mtDNA damage.
Collapse
Affiliation(s)
| | - Kshitiza M Dhyani
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Manoj Thakur
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Mitochondrial genome stability in human: understanding the role of DNA repair pathways. Biochem J 2021; 478:1179-1197. [DOI: 10.1042/bcj20200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility. Mitochondria from myopathies, dystonia, cancer patient samples show frequent mtDNA mutations such as point mutations, insertions and large-scale deletions that could account for mitochondria-associated disease pathogenesis. The mechanism by which such mutations arise following exposure to various DNA-damaging agents is not well understood. One of the well-studied repair pathways in mitochondria is base excision repair. Other repair pathways such as mismatch repair, homologous recombination and microhomology-mediated end joining have also been reported. Interestingly, nucleotide excision repair and classical nonhomologous DNA end joining are not detected in mitochondria. In this review, we summarize the potential causes of mitochondrial genome fragility, their implications as well as various DNA repair pathways that operate in mitochondria.
Collapse
|
3
|
Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res 2020; 48:11244-11258. [PMID: 33021629 PMCID: PMC7672454 DOI: 10.1093/nar/gkaa804] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Hailey L Gahlon
- To whom correspondence should be addressed. Tel: +41 44 632 3731;
| |
Collapse
|
4
|
Oliveira MT, Pontes CDB, Ciesielski GL. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020; 43:e20190069. [PMID: 32141473 PMCID: PMC7197994 DOI: 10.1590/1678-4685-gmb-2019-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial
diseases. Mutations in the genes encoding components of the mitochondrial
replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle,
have been associated with the accumulation of such deletions and the development
of pathological conditions in humans. Recently, we demonstrated that changes in
the level of wild-type Twinkle promote mtDNA deletions, which implies that not
only mutations in, but also dysregulation of the stoichiometry between the
replisome components is potentially pathogenic. The mechanism(s) by which
alterations to the replisome function generate mtDNA deletions is(are) currently
under debate. It is commonly accepted that stalling of the replication fork at
sites likely to form secondary structures precedes the deletion formation. The
secondary structural elements can be bypassed by the replication-slippage
mechanism. Otherwise, stalling of the replication fork can generate single- and
double-strand breaks, which can be repaired through recombination leading to the
elimination of segments between the recombination sites. Here, we discuss
aberrances of the replisome in the context of the two debated outcomes, and
suggest new mechanistic explanations based on replication restart and template
switching that could account for all the deletion types reported for
patients.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | | | | |
Collapse
|
5
|
Wallis CP, Scott LH, Filipovska A, Rackham O. Manipulating and elucidating mitochondrial gene expression with engineered proteins. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190185. [PMID: 31787043 DOI: 10.1098/rstb.2019.0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many conventional, modern genome engineering tools cannot be used to study mitochondrial genetics due to the unusual structure and physiology of the mitochondrial genome. Here, we review a number of newly developed, synthetic biology-based approaches for altering levels of mutant mammalian mitochondrial DNA and mitochondrial RNAs, including transcription activator-like effector nucleases, zinc finger nucleases and engineered RNA-binding proteins. These approaches allow researchers to manipulate and visualize mitochondrial processes and may provide future therapeutics. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Christopher P Wallis
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Louis H Scott
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,The University of Western Australia Centre for Medical Research, Crawley, Western Australia 6009, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
6
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
8
|
Saccharomyces cerevisiae Mhr1 can bind Xho I-induced mitochondrial DNA double-strand breaks in vivo. Mitochondrion 2017; 42:23-32. [PMID: 29032234 DOI: 10.1016/j.mito.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 11/23/2022]
Abstract
Mitochondrial DNA (mtDNA) double-strand break (DSB) repair is essential for maintaining mtDNA integrity, but little is known about the proteins involved in mtDNA DSB repair. Here, we utilize Saccharomyces cerevisiae as a eukaryotic model to identify proteins involved in mtDNA DSB repair. We show that Mhr1, a protein known to possess homologous DNA pairing activity in vitro, binds to mtDNA DSBs in vivo, indicating its involvement in mtDNA DSB repair. Our data also indicate that Yku80, a protein previously implicated in mtDNA DSB repair, does not compete with Mhr1 for binding to mtDNA DSBs. In fact, C-terminally tagged Yku80 could not be detected in yeast mitochondrial extracts. Therefore, we conclude that Mhr1, but not Yku80, is a potential mtDNA DSB repair factor in yeast.
Collapse
|
9
|
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. [PMID: 27915046 PMCID: PMC5449269 DOI: 10.1016/j.freeradbiomed.2016.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress.
Collapse
Affiliation(s)
- Mohammad Saki
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Aishwarya Prakash
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
10
|
Roles for the Rad27 Flap Endonuclease in Mitochondrial Mutagenesis and Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics 2017; 206:843-857. [PMID: 28450457 DOI: 10.1534/genetics.116.195149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
The structure-specific nuclease, Rad27p/FEN1, plays a crucial role in DNA repair and replication mechanisms in the nucleus. Genetic assays using the rad27-∆ mutant have shown altered rates of DNA recombination, microsatellite instability, and point mutation in mitochondria. In this study, we examined the role of Rad27p in mitochondrial mutagenesis and double-strand break (DSB) repair in Saccharomyces cerevisiae Our findings show that Rad27p is essential for efficient mitochondrial DSB repair by a pathway that generates deletions at a region flanked by direct repeat sequences. Mutant analysis suggests that both exonuclease and endonuclease activities of Rad27p are required for its role in mitochondrial DSB repair. In addition, we found that the nuclease activities of Rad27p are required for the prevention of mitochondrial DNA (mtDNA) point mutations, and in the generation of spontaneous mtDNA rearrangements. Overall, our findings underscore the importance of Rad27p in the maintenance of mtDNA, and demonstrate that it participates in multiple DNA repair pathways in mitochondria, unlinked to nuclear phenotypes.
Collapse
|
11
|
Repair of Oxidative DNA Damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2017; 51:2-13. [PMID: 28189416 DOI: 10.1016/j.dnarep.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae.
Collapse
|
12
|
Gaidutšik I, Sedman T, Sillamaa S, Sedman J. Irc3 is a mitochondrial DNA branch migration enzyme. Sci Rep 2016; 6:26414. [PMID: 27194389 PMCID: PMC4872236 DOI: 10.1038/srep26414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules.
Collapse
Affiliation(s)
- Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Sirelin Sillamaa
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| |
Collapse
|
13
|
Kanagavijayan D, Rajasekharan R, Srinivasan M. Yeast MRX deletions have short chronological life span and more triacylglycerols. FEMS Yeast Res 2015; 16:fov109. [PMID: 26678749 DOI: 10.1093/femsyr/fov109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Saccharomyces cerevisiae is an excellent model organism for lipid research. Here, we have used yeast haploid RAdiation Damage (RAD) deletion strains to study life span and lipid storage patterns. RAD genes are mainly involved in DNA repair mechanism and hence, their deletions have resulted in shorter life span. Viable RAD mutants were screened for non-polar lipid content, and some of the mutants showed significantly high amounts of triacylglycerol (TAG) and steryl ester, besides short chronological life span. Among these, RAD50, MRE11 and XRS2 form a complex, MRX that is involved in homologous recombination that showed an increase in the amount of TAG. Microarray data of single MRX deletions revealed that besides DNA damage signature genes, lipid metabolism genes are also differentially expressed. Lipid biosynthetic genes (LPP1, SLC1) were upregulated and lipid hydrolytic gene (TGL3) was downregulated. We observed that rad50Δ, mre11Δ, xrs2Δ and mrxΔ strains have high number of lipid droplets (LDs) with fragmented mitochondria. These mutants have a short chronological life span compared to wild type. Aged wild-type cells also accumulated TAG with LDs of ∼2.0 μm in diameter. These results suggest that TAG accumulation and big size LDs could be possible markers for premature or normal aging.
Collapse
Affiliation(s)
- Dhanabalan Kanagavijayan
- Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Bangalore-560065, India Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore-570020, India
| | - Ram Rajasekharan
- Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore-570020, India
| | - Malathi Srinivasan
- Lipidomics Center, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Bangalore-560065, India The Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI, Mysore-570020, India
| |
Collapse
|
14
|
Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell 2015; 27:223-35. [PMID: 26609070 PMCID: PMC4713127 DOI: 10.1091/mbc.e15-05-0260] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022] Open
Abstract
Repair of double-strand breaks in mammalian mitochondria depends on microhomology-mediated end joining (MMEJ). Classical NHEJ is not detectable in mitochondria. DNA ligase III, but not ligase IV or ligase I, is involved in mitochondrial MMEJ. The protein machinery involved in miitochondrial MMEJ includes CtIP, FEN1, ligase III, MRE11, and PARP1. Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knockdown studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.
Collapse
Affiliation(s)
- Satish Kumar Tadi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Robin Sebastian
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Ravi K Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560 100, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
15
|
Stein A, Kalifa L, Sia EA. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005664. [PMID: 26540255 PMCID: PMC4634946 DOI: 10.1371/journal.pgen.1005664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.
Collapse
Affiliation(s)
- Alexis Stein
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Lidza Kalifa
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Elaine A. Sia
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
16
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
18
|
Jin K, Musso G, Vlasblom J, Jessulat M, Deineko V, Negroni J, Mosca R, Malty R, Nguyen-Tran DH, Aoki H, Minic Z, Freywald T, Phanse S, Xiang Q, Freywald A, Aloy P, Zhang Z, Babu M. Yeast Mitochondrial Protein–Protein Interactions Reveal Diverse Complexes and Disease-Relevant Functional Relationships. J Proteome Res 2015; 14:1220-37. [DOI: 10.1021/pr501148q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ke Jin
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Gabriel Musso
- Cardiovascular
Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - James Vlasblom
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Matthew Jessulat
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Viktor Deineko
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jacopo Negroni
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
| | - Roberto Mosca
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
| | - Ramy Malty
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Diem-Hang Nguyen-Tran
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoran Minic
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Tanya Freywald
- Cancer Research
Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sadhna Phanse
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Qian Xiang
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Andrew Freywald
- Cancer Research
Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Patrick Aloy
- Joint
IRB−BSC Program in Computational Biology, IRB, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Zhaolei Zhang
- Terrence
Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Mohan Babu
- Department
of Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
19
|
Sedman T, Gaidutšik I, Villemson K, Hou Y, Sedman J. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance. Nucleic Acids Res 2014; 42:13214-27. [PMID: 25389272 PMCID: PMC4245962 DOI: 10.1093/nar/gku1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability.
Collapse
Affiliation(s)
- Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Karin Villemson
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - YingJian Hou
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| |
Collapse
|
20
|
Abstract
In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance.
Collapse
|
21
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
22
|
Next-generation sequencing of mitochondrial targeted AAV transfer of human ND4 in mice. Mol Vis 2013; 19:1482-91. [PMID: 23869167 PMCID: PMC3712668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To determine the effects of mitochondrial targeting sequence (MTS) modified AAV gene delivery of wild-type human NADH dehydrogenase subunit 4 (ND4), mutated in most cases of the blinding disease Leber hereditary optic neuropathy (LHON), on the host mouse mitochondrial genome. METHODS We injected a modified self-complementary (sc) AAV vector, to which we appended the cytochrome oxidase subunit 8 (COX8) leader to one of the three capsid proteins (VP2) comprising the protein shell of the AAV virion, into the mouse vitreous to deliver the human ND4 gene under the control of a mitochondrial heavy strand promoter (HSP) directly to the mitochondria of the mouse retina. Control viruses consisting of scAAV lacking the COX8 targeting sequence and containing human ND4, or scAAV containing GFP, were also vitreally injected. Using next-generation sequencing of mitochondrial DNA extracted from the pooled mouse retinas of experimental and control eyes, we tested for the presence of the transferred human ND4, and any potential recombination of the transferred human ND4 gene with the endogenous host mitochondrial genome. RESULTS We found hundreds of human ND4 DNA reads in mitochondrial samples of MTS AAV-ND4-injected eyes, a few human ND4 reads with AAV-ND4 lacking the MTS, and none with AAV-GFP injection. Putative chimeric read pairs at the 5' or 3' ends of human ND4 showed only vector sequences without the flanking mouse sequences expected with homologous recombination of human ND4 with the murine ND4. Examination of mouse mitochondrial ND4 sequences for evidence of intra-molecular small-scale homologous recombination events yielded no significant stretches greater than three to four nucleotides attributable to human ND4. Furthermore, in no instance did human ND4 insert into other non-homologous sites of the 16 kb host mtDNA. CONCLUSIONS Our findings suggest that human ND4 remains episomal in host mitochondria and is not disruptive to any of the endogenous mitochondrial genes of the host genome. Therefore, mitochondrial gene transfer with an MTS-AAV is non-mutagenic and likely to be safe if used to treat LHON patients with mutated ND4.
Collapse
|
23
|
Kamenisch Y, Berneburg M. Mitochondrial CSA and CSB: Protein interactions and protection from ageing associated DNA mutations. Mech Ageing Dev 2013; 134:270-4. [DOI: 10.1016/j.mad.2013.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/31/2022]
|
24
|
Mbantenkhu M, Wierzbicki S, Wang X, Guo S, Wilkens S, Chen XJ. A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol Biol Cell 2013; 24:1507-18. [PMID: 23536705 PMCID: PMC3655812 DOI: 10.1091/mbc.e13-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32-amino acid carboxyl-terminal tail (Mgm101(238-269)) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37°C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251-Arg-252-Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dzierzbicki P, Kaniak-Golik A, Malc E, Mieczkowski P, Ciesla Z. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 2012; 740:21-33. [PMID: 23276591 DOI: 10.1016/j.mrfmmm.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome.
Collapse
Affiliation(s)
- Piotr Dzierzbicki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | |
Collapse
|
26
|
Nardozzi JD, Wang X, Mbantenkhu M, Wilkens S, Chen XJ. A properly configured ring structure is critical for the function of the mitochondrial DNA recombination protein, Mgm101. J Biol Chem 2012; 287:37259-68. [PMID: 22948312 PMCID: PMC3481324 DOI: 10.1074/jbc.m112.389965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/11/2012] [Indexed: 11/06/2022] Open
Abstract
Mgm101 is a Rad52-type recombination protein of bacteriophage origin required for the repair and maintenance of mitochondrial DNA (mtDNA). It forms large oligomeric rings of ∼14-fold symmetry that catalyze the annealing of single-stranded DNAs in vitro. In this study, we investigated the structural elements that contribute to this distinctive higher order structural organization and examined its functional implications. A pair of vicinal cysteines, Cys-216 and Cys-217, was found to be essential for mtDNA maintenance. Mutations to the polar serine, the negatively charged aspartic and glutamic acids, and the hydrophobic amino acid alanine all destabilize mtDNA in vivo. The alanine mutants have an increased propensity of forming macroscopic filaments. In contrast, mutations to aspartic acid drastically destabilize the protein and result in unstructured aggregates with severely reduced DNA binding activity. Interestingly, the serine mutants partially disassemble the Mgm101 rings into smaller oligomers. In the case of the C216S mutant, a moderate increase in DNA binding activity was observed. By using small angle x-ray scattering analysis, we found that Mgm101 forms rings of ∼200 Å diameter in solution, consistent with the structure previously established by transmission electron microscopy. We also found that the C216A/C217A double mutant tends to form broken rings, which likely provide free ends for seeding the growth of the super-stable but functionally defective filaments. Taken together, our data underscore the importance of a delicately maintained ring structure critical for Mgm101 activity. We discuss a potential role of Cys-216 and Cys-217 in regulating Mgm101 function and the repair of damaged mtDNA under stress conditions.
Collapse
Affiliation(s)
- Jonathan D. Nardozzi
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xiaowen Wang
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - MacMillan Mbantenkhu
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xin Jie Chen
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
27
|
Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 2012; 13:659-71. [PMID: 22992591 DOI: 10.1038/nrm3439] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) faces the universal challenges of genome maintenance: the accurate replication, transmission and preservation of its integrity throughout the life of the organism. Although mtDNA was originally thought to lack DNA repair activity, four decades of research on mitochondria have revealed multiple mtDNA repair pathways, including base excision repair, single-strand break repair, mismatch repair and possibly homologous recombination. These mtDNA repair pathways are mediated by enzymes that are similar in activity to those operating in the nucleus, and in all cases identified so far in mammals, they are encoded by nuclear genes.
Collapse
|