1
|
Billmyre RB, Craig CJ, Lyon JW, Reichardt C, Kuhn AM, Eickbush MT, Zanders SE. Landscape of essential growth and fluconazole-resistance genes in the human fungal pathogen Cryptococcus neoformans. PLoS Biol 2025; 23:e3003184. [PMID: 40402997 DOI: 10.1371/journal.pbio.3003184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the C. neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that insertions of transposons into the 5' upstream region can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R Blake Billmyre
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GeorgiaUnited States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GeorgiaUnited States of America
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Caroline J Craig
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Joshua W Lyon
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, Athens, GeorgiaUnited States of America
| | - Claire Reichardt
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GeorgiaUnited States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GeorgiaUnited States of America
| | - Amy M Kuhn
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GeorgiaUnited States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
| | - Michael T Eickbush
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
2
|
Hickman AB, Lannes L, Furman CM, Hong C, Franklin L, Ghirlando R, Ghosh A, Luo W, Konstantinidou P, Lorenzi HA, Grove A, Haase AD, Wilson MH, Dyda F. Activity of the mammalian DNA transposon piggyBat from Myotis lucifugus is restricted by its own transposon ends. Nat Commun 2025; 16:458. [PMID: 39774116 PMCID: PMC11707139 DOI: 10.1038/s41467-024-55784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Members of the piggyBac superfamily of DNA transposons are widely distributed in host genomes ranging from insects to mammals. The human genome has retained five piggyBac-derived genes as domesticated elements although they are no longer mobile. Here, we have investigated the transposition properties of piggyBat from Myotis lucifugus, the only known active mammalian DNA transposon, and show that its low activity in human cells is due to subterminal inhibitory DNA sequences. Activity can be dramatically improved by their removal, suggesting the existence of a mechanism for the suppression of transposon activity. The cryo-electron microscopy structure of the piggyBat transposase pre-synaptic complex showed an unexpected mode of DNA binding and recognition using C-terminal domains that are topologically different from those of the piggyBac transposase. Here we show that structure-based rational re-engineering of the transposase through the removal of putative phosphorylation sites and a changed domain organization - in combination with truncated transposon ends - results in a transposition system that is at least 100-fold more active than wild-type piggyBat.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laurie Lannes
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, Paris, cedex 05, France
| | - Christopher M Furman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- International Flavors and Fragrances, Wilmington, DE, USA
| | - Christina Hong
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lidiya Franklin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Parthena Konstantinidou
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hernán A Lorenzi
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Astrid D Haase
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Billmyre RB, Craig CJ, Lyon J, Reichardt C, Eickbush MT, Zanders SE. Saturation transposon mutagenesis enables genome-wide identification of genes required for growth and fluconazole resistance in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605507. [PMID: 39131341 PMCID: PMC11312461 DOI: 10.1101/2024.07.28.605507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the Cryptococcus neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that 5' insertions of transposons can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Joshua Lyon
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
| | - Claire Reichardt
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
| | | | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, KS, United States
| |
Collapse
|
4
|
Redd PS, Payero L, Gilbert DM, Page CA, King R, McAssey EV, Bodie D, Diaz S, Hancock CN. Transposase expression, element abundance, element size, and DNA repair determine the mobility and heritability of PIF/ Pong/ Harbinger transposable elements. Front Cell Dev Biol 2023; 11:1184046. [PMID: 37363729 PMCID: PMC10288884 DOI: 10.3389/fcell.2023.1184046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Class II DNA transposable elements account for significant portions of eukaryotic genomes and contribute to genome evolution through their mobilization. To escape inactivating mutations and persist in the host genome over evolutionary time, these elements must be mobilized enough to result in additional copies. These elements utilize a "cut and paste" transposition mechanism that does not intrinsically include replication. However, elements such as the rice derived mPing element have been observed to increase in copy number over time. Methods: We used yeast transposition assays to test several parameters that could affect the excision and insertion of mPing and its related elements. This included development of novel strategies for measuring element insertion and sequencing insertion sites. Results: Increased transposase protein expression increased the mobilization frequency of a small (430 bp) element, while overexpression inhibition was observed for a larger (7,126 bp) element. Smaller element size increased both the frequency of excision and insertion of these elements. The effect of yeast ploidy on element excision, insertion, and copy number provided evidence that homology dependent repair allows for replicative transposition. These elements were found to preferentially insert into yeast rDNA repeat sequences. Discussion: Identifying the parameters that influence transposition of these elements will facilitate their use for gene discovery and genome editing. These insights in to the behavior of these elements also provide important clues into how class II transposable elements have shaped eukaryotic genomes.
Collapse
Affiliation(s)
- Priscilla S. Redd
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Lisette Payero
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - David M. Gilbert
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Clinton A. Page
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Reese King
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Edward V. McAssey
- Department of Crop and Soil Science, Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Dalton Bodie
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Stephanie Diaz
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| |
Collapse
|
5
|
Zhou X, Xie J, Xu C, Cao X, Zou LH, Zhou M. Artificial optimization of bamboo Ppmar2 transposase and host factors effects on Ppmar2 transposition in yeast. FRONTIERS IN PLANT SCIENCE 2022; 13:1004732. [PMID: 36340339 PMCID: PMC9632168 DOI: 10.3389/fpls.2022.1004732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.
Collapse
|
6
|
Cerbin S, Ou S, Li Y, Sun Y, Jiang N. Distinct composition and amplification dynamics of transposable elements in sacred lotus (Nelumbo nucifera Gaertn.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:172-192. [PMID: 35959634 PMCID: PMC9804982 DOI: 10.1111/tpj.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a basal eudicot plant with a unique lifestyle, physiological features, and evolutionary characteristics. Here we report the unique profile of transposable elements (TEs) in the genome, using a manually curated repeat library. TEs account for 59% of the genome, and hAT (Ac/Ds) elements alone represent 8%, more than in any other known plant genome. About 18% of the lotus genome is comprised of Copia LTR retrotransposons, and over 25% of them are associated with non-canonical termini (non-TGCA). Such high abundance of non-canonical LTR retrotransposons has not been reported for any other organism. TEs are very abundant in genic regions, with retrotransposons enriched in introns and DNA transposons primarily in flanking regions of genes. The recent insertion of TEs in introns has led to significant intron size expansion, with a total of 200 Mb in the 28 455 genes. This is accompanied by declining TE activity in intergenic regions, suggesting distinct control efficacy of TE amplification in different genomic compartments. Despite the prevalence of TEs in genic regions, some genes are associated with fewer TEs, such as those involved in fruit ripening and stress responses. Other genes are enriched with TEs, and genes in epigenetic pathways are the most associated with TEs in introns, indicating a dynamic interaction between TEs and the host surveillance machinery. The dramatic differential abundance of TEs with genes involved in different biological processes as well as the variation of target preference of different TEs suggests the composition and activity of TEs influence the path of evolution.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Ecology & Evolutionary BiologyUniversity of Kansas1200 Sunnyside AvenueLawrenceKS66045USA
| | - Shujun Ou
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
| | - Yang Li
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Yanni Sun
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Ning Jiang
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
| |
Collapse
|
7
|
Chen P, Michel AH, Zhang J. Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms. Nat Commun 2022; 13:1490. [PMID: 35314699 PMCID: PMC8938418 DOI: 10.1038/s41467-022-29228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Due to epistasis, the same mutation can have drastically different phenotypic consequences in different individuals. This phenomenon is pertinent to precision medicine as well as antimicrobial drug development, but its general characteristics are largely unknown. We approach this question by genome-wide assessment of gene essentiality polymorphism in 16 Saccharomyces cerevisiae strains using transposon insertional mutagenesis. Essentiality polymorphism is observed for 9.8% of genes, most of which have had repeated essentiality switches in evolution. Genes exhibiting essentiality polymorphism lean toward having intermediate numbers of genetic and protein interactions. Gene essentiality changes tend to occur concordantly among components of the same protein complex or metabolic pathway and among a group of over 100 mitochondrial proteins, revealing molecular machines or functional modules as units of gene essentiality variation. Most essential genes tolerate transposon insertions consistently among strains in one or more coding segments, delineating nonessential regions within essential genes.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Agnès H Michel
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Riggs P, Blundell-Hunter G, Hagelberger J, Ren G, Ettwiller L, Berkmen M. Insertion Specificity of the hATx-6 Transposase of Hydra magnipapillata. Front Mol Biosci 2022; 8:734154. [PMID: 34988112 DOI: 10.3389/fmolb.2021.734154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Transposable elements (TE) are mobile genetic elements, present in all domains of life. They commonly encode a single transposase enzyme, that performs the excision and reintegration reactions, and these enzymes have been used in mutagenesis and creation of next-generation sequencing libraries. All transposases have some bias in the DNA sequence they bind to when reintegrating the TE DNA. We sought to identify a transposase that showed minimal sequence bias and could be produced recombinantly, using information from the literature and a novel bioinformatic analysis, resulting in the selection of the hATx-6 transposase from Hydra vulgaris (aka Hydra magnipapillata) for further study. This transposase was tested and shown to be active both in vitro and in vivo, and we were able to demonstrate very low sequence bias in its integration preference. This transposase could be an excellent candidate for use in biotechnology, such as the creation of next-generation sequencing libraries.
Collapse
Affiliation(s)
- Paul Riggs
- New England Biolabs, Ipswich, MA, United States
| | | | | | - Guoping Ren
- New England Biolabs, Ipswich, MA, United States
| | | | | |
Collapse
|
9
|
Michel AH, Kornmann B. SAturated Transposon Analysis in Yeast (SATAY) for Deep Functional Mapping of Yeast Genomes. Methods Mol Biol 2022; 2477:349-379. [PMID: 35524127 DOI: 10.1007/978-1-0716-2257-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genome-wide transposon mutagenesis followed by deep sequencing allows the genome-wide mapping of growth-affecting loci in a straightforward and time-efficient way.SAturated Transposon Analysis in Yeast (SATAY) takes advantage of a modified maize transposon that is highly mobilizable in S. cerevisiae. SATAY allows not only the genome-wide mapping of genes required for growth in select conditions (such as genetic interactions or drug sensitivity/resistance), but also of protein sub-domains, as well as the creation of gain- and separation-of-function alleles. From strain preparation to the mapping of sequencing reads, we detail all the steps for the making and analysis of SATAY libraries in any S. cerevisiae lab, requiring only ordinary equipment and access to a Next-Gen sequencing platform.
Collapse
Affiliation(s)
- Agnès H Michel
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benoît Kornmann
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Schrevens S, Sanglard D. Hijacking Transposable Elements for Saturation Mutagenesis in Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:633876. [PMID: 37744130 PMCID: PMC10512250 DOI: 10.3389/ffunb.2021.633876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 09/26/2023]
Abstract
Transposable elements are present in almost all known genomes, these endogenous transposons have recently been referred to as the mobilome. They are now increasingly used in research in order to make extensive mutant libraries in different organisms. Fungi are an essential part of our lives on earth, they influence the availability of our food and they live inside our own bodies both as commensals and pathogenic organisms. Only few fungal species have been studied extensively, mainly due to the lack of appropriate molecular genetic tools. The use of transposon insertion libraries can however help to rapidly advance our knowledge of (conditional) essential genes, compensatory mutations and drug target identification in fungi. Here we give an overview of some recent developments in the use of different transposons for saturation mutagenesis in different fungi.
Collapse
Affiliation(s)
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
11
|
Woodard LE, Williams FM, Jarrett IC, Wilson MH. Functional analysis of the catalytic triad of the hAT-family transposase TcBuster. Plasmid 2021; 114:102554. [PMID: 33476638 PMCID: PMC7946762 DOI: 10.1016/j.plasmid.2021.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022]
Abstract
TcBuster is a hAT-family DNA transposon from the red flour beetle, Tribolium castaneum. The TcBuster transposase is of interest for genome engineering as it is highly active in insect and mammalian cells. To test the predicted catalytic triad of TcBuster, each residue of the catalytic triad of a haemagglutinin-tagged TcBuster transposase was individually mutated to a structurally conserved amino acid. Using a drug-resistant colony assay for transposon integration, we found that the D223N, D289N, and E589Q mutants of TcBuster transposase were inactive in human cells. We used a modified chromatin immunoprecipitation assay to determine that each mutant maintained binding to TcBuster transposon inverted repeat elements. Although the catalytic mutants retained their transposon binding properties, mutants displayed altered expression and localization in human cells. None of the catalytic mutants formed characteristic TcBuster transposase rodlet structures, and the D223N and D289N mutants were not able to be detected by immunofluorescence microscopy. Immunoblot analysis demonstrated that the E589Q mutant is less abundant than wild-type TcBuster transposase. Cells transfected with either TcBuster or TcBuster-E589Q transposase were imaged by structured illumination microscopy to quantify differences in the length of the transposase rodlets. The average length of the TcBuster transposase rodlets (N = 39) was 3.284 μm while the E589Q rodlets (N = 33) averaged 1.157 μm (p < 0.0001; t-test). The catalytic triad mutations decreased overall protein levels and disrupted transposase rodlet formation while nuclear localization and DNA binding to the inverted repeat elements were maintained. Our results may have broader implications for the overproduction inhibition phenomenon observed for DNA transposons.
Collapse
Affiliation(s)
- Lauren E Woodard
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Felisha M Williams
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Isria C Jarrett
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
13
|
Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Curr Genet 2020; 66:1117-1134. [PMID: 32681306 PMCID: PMC7599172 DOI: 10.1007/s00294-020-01096-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
In vivo transposon mutagenesis, coupled with deep sequencing, enables large-scale genome-wide mutant screens for genes essential in different growth conditions. We analyzed six large-scale studies performed on haploid strains of three yeast species (Saccharomyces cerevisiae, Schizosaccaromyces pombe, and Candida albicans), each mutagenized with two of three different heterologous transposons (AcDs, Hermes, and PiggyBac). Using a machine-learning approach, we evaluated the ability of the data to predict gene essentiality. Important data features included sufficient numbers and distribution of independent insertion events. All transposons showed some bias in insertion site preference because of jackpot events, and preferences for specific insertion sequences and short-distance vs long-distance insertions. For PiggyBac, a stringent target sequence limited the ability to predict essentiality in genes with few or no target sequences. The machine learning approach also robustly predicted gene function in less well-studied species by leveraging cross-species orthologs. Finally, comparisons of isogenic diploid versus haploid S. cerevisiae isolates identified several genes that are haplo-insufficient, while most essential genes, as expected, were recessive. We provide recommendations for the choice of transposons and the inference of gene essentiality in genome-wide studies of eukaryotic haploid microbes such as yeasts, including species that have been less amenable to classical genetic studies.
Collapse
|
14
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. mBio 2018; 9:mBio.02048-18. [PMID: 30377286 PMCID: PMC6212825 DOI: 10.1128/mbio.02048-18] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comprehensive understanding of an organism requires that we understand the contributions of most, if not all, of its genes. Classical genetic approaches to this issue have involved systematic deletion of each gene in the genome, with comprehensive sets of mutants available only for very-well-studied model organisms. We took a different approach, harnessing the power of in vivo transposition coupled with deep sequencing to identify >500,000 different mutations, one per cell, in the prevalent human fungal pathogen Candida albicans and to map their positions across the genome. The transposition approach is efficient and less labor-intensive than classic approaches. Here, we describe the production and analysis (aided by machine learning) of a large collection of mutants and the comprehensive identification of 1,610 C. albicans genes that are essential for growth under standard laboratory conditions. Among these C. albicans essential genes, we identify those that are also essential in two distantly related model yeasts as well as those that are conserved in all four major human fungal pathogens and that are not conserved in the human genome. This list of genes with functions important for the survival of the pathogen provides a good starting point for the development of new antifungal drugs, which are greatly needed because of the emergence of fungal pathogens with elevated resistance and/or tolerance of the currently limited set of available antifungal drugs. Knowing the full set of essential genes for a given organism provides important information about ways to promote, and to limit, its growth and survival. For many non-model organisms, the lack of a stable haploid state and low transformation efficiencies impede the use of conventional approaches to generate a genome-wide comprehensive set of mutant strains and the identification of the genes essential for growth. Here we report on the isolation and utilization of a highly stable haploid derivative of the human pathogenic fungus Candida albicans, together with a modified heterologous transposon and machine learning (ML) analysis method, to predict the degree to which all of the open reading frames are required for growth under standard laboratory conditions. We identified 1,610 C. albicans essential genes, including 1,195 with high “essentiality confidence” scores, thereby increasing the number of essential genes (currently 66 in the Candida Genome Database) by >20-fold and providing an unbiased approach to determine the degree of confidence in the determination of essentiality. Among the genes essential in C. albicans were 602 genes also essential in the model budding and fission yeasts analyzed by both deletion and transposon mutagenesis. We also identified essential genes conserved among the four major human pathogens C. albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum and highlight those that lack homologs in humans and that thus could serve as potential targets for the design of antifungal therapies.
Collapse
|
16
|
Mielich K, Shtifman-Segal E, Golz JC, Zeng G, Wang Y, Berman J, Kunze R. Maize Transposable Elements Ac/ Ds as Insertion Mutagenesis Tools in Candida albicans. G3 (BETHESDA, MD.) 2018; 8:1139-1145. [PMID: 29378819 PMCID: PMC5873905 DOI: 10.1534/g3.117.300388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/26/2018] [Indexed: 12/23/2022]
Abstract
In nonmodel systems, genetic research is often limited by the lack of techniques for the generation and identification of gene mutations. One approach to overcome this bottleneck is the application of transposons for gene tagging. We have established a two-element transposon tagging system, based on the transposable elements Activator (Ac)/Dissociation (Ds) from maize, for in vivo insertion mutagenesis in the fungal human pathogen Candida albicans A nonautonomous Ds transposon carrying a selectable marker was constructed into the ADE2 promoter on chromosome 3 and a codon usage-adapted Ac transposase gene was inserted into the neutral NEUT5L locus on chromosome 5. In C. albicans cells expressing the transposase, the Ds element efficiently excised and reintegrated elsewhere in the genome, which makes the Ac/Ds transposons promising tools for saturating insertion mutagenesis in clinical strains of C. albicans.
Collapse
Affiliation(s)
- Kevin Mielich
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University pf Berlin, 14195, Germany
| | - Ella Shtifman-Segal
- Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Julia C Golz
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University pf Berlin, 14195, Germany
| | - Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Free University pf Berlin, 14195, Germany
| |
Collapse
|
17
|
Cerbin S, Jiang N. Duplication of host genes by transposable elements. Curr Opin Genet Dev 2018; 49:63-69. [PMID: 29571044 DOI: 10.1016/j.gde.2018.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
The availability of large amounts of genomic and transcriptome sequences have allowed systematic surveys about the host gene sequences that have been duplicated by transposable elements. It is now clear that all super-families of transposons are capable of duplicating genes or gene fragments, and such incidents have been detected in a wide spectrum of organisms. Emerging evidence suggests that a considerable portion of them function as coding or non-coding sequences, driving innovations at molecular and phenotypic levels. Interestingly, the duplication events not only have to occur in the reproductive tissues to become heritable, but the duplicated copies are also preferentially expressed in those tissues. As a result, reproductive tissues may serve as the 'incubator' for genes generated by transposable elements.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of Horticulture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
18
|
Michel AH, Hatakeyama R, Kimmig P, Arter M, Peter M, Matos J, De Virgilio C, Kornmann B. Functional mapping of yeast genomes by saturated transposition. eLife 2017; 6. [PMID: 28481201 PMCID: PMC5466422 DOI: 10.7554/elife.23570] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/06/2017] [Indexed: 12/17/2022] Open
Abstract
Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput. DOI:http://dx.doi.org/10.7554/eLife.23570.001 Genes are stretches of DNA that carry the instructions to build and maintain cells. Many studies in genetics involve inactivating one or more genes and observing the consequences. If the loss of a gene kills the cell, that gene is likely to be vital for life. If it does not, the gene may not be essential, or a similar gene may be able to take over its role. Baker’s yeast is a simple organism that shares many characteristics with human cells. Many yeast genes have a counterpart among human genes, and so studying baker’s yeast can reveal clues about our own genetics. Michel et al. report an adaptation for baker’s yeast of a technique called “Transposon sequencing”, which had been used in other single-celled organisms to study the effects of interrupting genes. Briefly, a virus-like piece of DNA, called a transposon, inserts randomly into the genetic material and switches off individual genes. The DNA is then sequenced to reveal every gene that can be disrupted without killing the cell, and remaining genes are inferred to be essential for life. The approach, named SATAY (which is short for “saturated transposon analysis in yeast”), uses this strategy to create millions of baker’s yeast cells, each with a different gene switched off. Because the number of cells generated this way vastly exceeds the number of genes, every gene will be switched off by several independent transposons. Therefore the technique allows all yeast genes to be inactivated several times in one single experiment. The cells can be grown in varying conditions during the experiment, revealing the genes needed for survival in different situations. Non-essential genes can also be inactivated beforehand to uncover if any genes might be compensating for their absence. In the future, this technique may be used to better understand human diseases, such as cancer, since many disease-causing genes in humans have counterparts in yeast. DOI:http://dx.doi.org/10.7554/eLife.23570.002
Collapse
Affiliation(s)
- Agnès H Michel
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Philipp Kimmig
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Meret Arter
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Zhou MB, Hu H, Miskey C, Lazarow K, Ivics Z, Kunze R, Yang G, Izsvák Z, Tang DQ. Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Mol Phylogenet Evol 2017; 109:367-374. [PMID: 28189615 DOI: 10.1016/j.ympev.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.
Collapse
Affiliation(s)
- Ming-Bing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Hui Hu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Csaba Miskey
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Katina Lazarow
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zoltán Ivics
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guojun Yang
- Department of Biology, University of Toronto, Mississauga, ON, Canada
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| | - Ding-Qin Tang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China.
| |
Collapse
|
20
|
Johnson ET, Owens JB, Moisyadi S. Vast potential for using the piggyBac transposon to engineer transgenic plants at specific genomic locations. Bioengineered 2016; 7:3-6. [PMID: 26930269 DOI: 10.1080/21655979.2015.1131367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant loci. Off target activity of these nucleases may limit widespread use. Insertion of transgenes by transposases engineered with a specific DNA binding domain has been accomplished in a number of organisms, but not in plants. The piggyBac transposon system, originally isolated from an insect, has been utilized to transform a variety of organisms. The piggyBac transposase is amendable to structural modifications, and was able to insert a transgene at a specific human locus through fusion of a DNA binding domain to its N-terminus. Recent developments demonstrating the activity of piggyBac transposase in plants is an important first step toward the potential use of engineered versions of piggyBac transposase for site-specific transgene insertion in plants.
Collapse
Affiliation(s)
- Eric T Johnson
- a Crop Bioprotection Research, USDA ARS , Peoria , Illinois
| | - Jesse B Owens
- b Institute for Biogenesis Research, University of Hawaii at Manoa , Honolulu , Hawaii
| | - Stefan Moisyadi
- b Institute for Biogenesis Research, University of Hawaii at Manoa , Honolulu , Hawaii
| |
Collapse
|
21
|
Abstract
hAT transposons are ancient in their origin and they are widespread across eukaryote kingdoms. They can be present in large numbers in many genomes. However, only a few active forms of these elements have so far been discovered indicating that, like all transposable elements, there is selective pressure to inactivate them. Nonetheless, there have been sufficient numbers of active hAT elements and their transposases characterized that permit an analysis of their structure and function. This review analyzes these and provides a comparison with the several domesticated hAT genes discovered in eukaryote genomes. Active hAT transposons have also been developed as genetic tools and understanding how these may be optimally utilized in new hosts will depend, in part, on understanding the basis of their function in genomes.
Collapse
|
22
|
Cheng J, Liao L, Zhou H, Gu C, Wang L, Han Y. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7227-39. [PMID: 26357885 PMCID: PMC4765791 DOI: 10.1093/jxb/erv419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ornamental peach cultivar 'Hongbaihuatao (HBH)' can simultaneously bear pink, red, and variegated flowers on a single tree. Anthocyanin content in pink flowers is extremely low, being only 10% that of a red flower. Surprisingly, the expression of anthocyanin structural and potential regulatory genes in white flowers was not significantly lower than that in both pink and red flowers. However, proteomic analysis revealed a GST encoded by a gene-regulator involved in anthocyanin transport (Riant)-which is expressed in the red flower, but almost undetectable in the variegated flower. The Riant gene contains an insertion-deletion (indel) polymorphism in exon 3. In white flowers, the Riant gene is interrupted by a 2-bp insertion in the last exon, which causes a frameshift and a premature stop codon. In contrast, both pink and red flowers that arise from bud sports are heterozygous for the Riant locus, with one functional allele due to the 2-bp deletion or a novel 1-bp insertion. Southern blot analysis indicated that the Riant gene occurs in a single copy in the peach genome and it is not interrupted by a transposon. The function of the Riant gene was confirmed by its ectopic expression in the Arabidopsis tt19 mutant, where it complements the anthocyanin phenotype, but not the proanthocyanidin pigmentation in seed coat. Collectively,these results indicate that a small indel mutation in the Riant gene, which is not the result of a transposon insertion or excision, causes variegated colouration of peach flowers.
Collapse
Affiliation(s)
- Jun Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P.R. China
| | - Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, P.R. China
| |
Collapse
|
23
|
Zhao D, Ferguson A, Jiang N. Transposition of a rice Mutator-like element in the yeast Saccharomyces cerevisiae. THE PLANT CELL 2015; 27:132-148. [PMID: 25587002 PMCID: PMC4330571 DOI: 10.1105/tpc.114.128488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/30/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Mutator-like transposable elements (MULEs) are widespread in plants and are well known for their high transposition activity as well as their ability to duplicate and amplify host gene fragments. Despite their abundance and importance, few active MULEs have been identified. In this study, we demonstrated that a rice (Oryza sativa) MULE, Os3378, is capable of excising and reinserting in yeast (Saccharomyces cerevisiae), suggesting that yeast harbors all the host factors for the transposition of MULEs. The transposition activity induced by the wild-type transposase is low but can be altered by modification of the transposase sequence, including deletion, fusion, and substitution. Particularly, fusion of a fluorescent protein to the transposase enhanced the transposition activity, representing another approach to manipulate transposases. Moreover, we identified a critical region in the transposase where the net charge of the amino acids seems to be important for activity. Finally, transposition efficiency is also influenced by the element and its flanking sequences (i.e., small elements are more competent than their large counterparts). Perfect target site duplication is favorable, but not required, for precise excision. In addition to the potential application in functional genomics, this study provides the foundation for further studies of the transposition mechanism of MULEs.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Ann Ferguson
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
24
|
Abstract
ABSTRACT
The bacterial transposon Tn7 is distinguished by the levels of control it displays over transposition and its capacity to utilize different kinds of target sites. Transposition is carried out using five transposon-encoded proteins, TnsA, TnsB, TnsC, TnsD, and TnsE, which facilitate transfer of the element while minimizing the chances of inactivating host genes by using two pathways of transposition. One of these pathways utilizes TnsD, which targets transposition into a single site found in bacteria (
attTn7
), and a second utilizes TnsE, which preferentially directs transposition into plasmids capable of moving between bacteria. Control of transposition involves a heteromeric transposase that consists of two proteins, TnsA and TnsB, and a regulator protein TnsC. Tn7 also has the ability to inhibit transposition into a region already occupied by the element in a process called target immunity. Considerable information is available about the functional interactions of the Tn7 proteins and many of the protein–DNA complexes involved in transposition. Tn7-like elements that encode homologs of all five of the proteins found in Tn7 are common in diverse bacteria, but a newly appreciated larger family of elements appears to use the same core TnsA, TnsB, and TnsC proteins with other putative target site selector proteins allowing different targeting pathways.
Collapse
|
25
|
Abstract
Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.
Collapse
Affiliation(s)
- Katina Lazarow
- Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | |
Collapse
|