1
|
Hashmi JA, Afzal S, Balahmar RM, Latif M, Basit S. Biallelic Variant in the AGXT Gene in a Family Segregating Primary Hyperoxaluria; Accurate Genetic Diagnosis and Carrier Detection. Nephrology (Carlton) 2025; 30:e14423. [PMID: 39746862 DOI: 10.1111/nep.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/28/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
AIM Autosomal recessive primary hyperoxalurias (PH) are genetic disorders characterised by elevated oxalate production. Mutations in genes involved in glycoxylate metabolism are the underlying cause of PH. Type 1 PH (PH1) results in malfunctioning of alanine-glyoxylate aminotransferase enzymes of liver due to a change in the genetic sequence of alanine-glyoxylate aminotransferase (AGXT) gene. We encountered a large family segregating genetic disease of high oxalate kidney stones. A genetic analysis was carried out with the aim to identify underlying genetic defect. METHODS A large family with multiple affected individuals was recruited for this study. An extensive clinical evaluation, followed by genetic analysis, was carried out. Due to the heterogeneous nature of the disease, two members of the family having disease symptoms were subjected to whole exome sequencing (WES). Variants were annotated, filtered, and prioritised using various bioinformatic tools to detect disease associated genetic defects. RESULTS Unbiased and hypothesis-free WES data analysis was performed. Raw reads (fastq files) were mapped to the reference genome and duplicates were removed. Variants were annotated, filtered, and prioritised. A low-frequency missense variant (c. 1049G>A) in the AGXT gene was considered the candidate variant. This variant replaces the highly conserved glycine amino acid with aspartate (p.Gly350Asp). The variant is destabilising for protein-protein interaction based on predicted change in binding free energy (ΔΔG). All members having disease phenotype were found homozygous to the mutation. Both parents and unaffected individuals in a family are heterozygous for the variant. CONCLUSION Identification of pathogenic variant in the AGXT gene, in this family, provides genotype-phenotype correlation and permits accurate clinical diagnosis as well as carrier detection. Moreover, this variant extends the AGXT mutation spectrum in a different population and highlights the clinical significance and diagnostic relevance of the variant.
Collapse
Affiliation(s)
- Jamil A Hashmi
- Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
- Department of Basic Medical Sciences, College of Medicine, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
| | - Sibtan Afzal
- Department of Immunology, College of Medicine, King Saud University Riyadh, Riyadh, Kingdom of Saudi Arabia
| | - Reham M Balahmar
- Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
| | - Muhammad Latif
- Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
- Department of Basic Medical Sciences, College of Medicine, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
- Department of Basic Medical Sciences, College of Medicine, Taibah University Medina, Madinah, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Quan N, Eguchi Y, Geiler-Samerotte K. Intra- FCY1: a novel system to identify mutations that cause protein misfolding. Front Genet 2023; 14:1198203. [PMID: 37745845 PMCID: PMC10512024 DOI: 10.3389/fgene.2023.1198203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Protein misfolding is a common intracellular occurrence. Most mutations to coding sequences increase the propensity of the encoded protein to misfold. These misfolded molecules can have devastating effects on cells. Despite the importance of protein misfolding in human disease and protein evolution, there are fundamental questions that remain unanswered, such as, which mutations cause the most misfolding? These questions are difficult to answer partially because we lack high-throughput methods to compare the destabilizing effects of different mutations. Commonly used systems to assess the stability of mutant proteins in vivo often rely upon essential proteins as sensors, but misfolded proteins can disrupt the function of the essential protein enough to kill the cell. This makes it difficult to identify and compare mutations that cause protein misfolding using these systems. Here, we present a novel in vivo system named Intra-FCY1 that we use to identify mutations that cause misfolding of a model protein [yellow fluorescent protein (YFP)] in Saccharomyces cerevisiae. The Intra-FCY1 system utilizes two complementary fragments of the yeast cytosine deaminase Fcy1, a toxic protein, into which YFP is inserted. When YFP folds, the Fcy1 fragments associate together to reconstitute their function, conferring toxicity in media containing 5-fluorocytosine and hindering growth. But mutations that make YFP misfold abrogate Fcy1 toxicity, thus strains possessing misfolded YFP variants rise to high frequency in growth competition experiments. This makes such strains easier to study. The Intra-FCY1 system cancels localization of the protein of interest, thus can be applied to study the relative stability of mutant versions of diverse cellular proteins. Here, we confirm this method can identify novel mutations that cause misfolding, highlighting the potential for Intra-FCY1 to illuminate the relationship between protein sequence and stability.
Collapse
Affiliation(s)
- N. Quan
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Y. Eguchi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - K. Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Denney AS, Weems AD, McMurray MA. Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast. G3-GENES GENOMES GENETICS 2021; 11:6318398. [PMID: 34544131 PMCID: PMC8496213 DOI: 10.1093/g3journal/jkab230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.
Collapse
Affiliation(s)
- Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Oppici E, Dindo M, Conter C, Borri Voltattorni C, Cellini B. Folding Defects Leading to Primary Hyperoxaluria. Handb Exp Pharmacol 2018; 245:313-343. [PMID: 29071511 DOI: 10.1007/164_2017_59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT). Various studies performed in the last decade clearly evidence that many pathogenic missense mutations prevent the AGT correct folding, leading to various downstream effects including aggregation, increased degradation or mistargeting to mitochondria. Primary hyperoxaluria Type II and primary hyperoxaluria Type III are due to the deficit of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) and 4-hydroxy-2-oxoglutarate aldolase (HOGA1), respectively. Although the molecular features of pathogenic variants of GRHPR and HOGA1 have not been investigated in detail, the data available suggest that some of them display folding defects. Thus, primary hyperoxalurias can be ranked among protein misfolding disorders, because in most cases the enzymatic deficit is due to the inability of each enzyme to reach its native and functional conformation. It follows that molecules able to improve the folding yield of the enzymes involved in each disease form could represent new therapeutic strategies.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Mirco Dindo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
5
|
Sheahan AV, Sekar TV, Chen K, Paulmurugan R, Massoud TF. A molecular imaging biosensor detects in vivo protein folding and misfolding. J Mol Med (Berl) 2016; 94:799-808. [PMID: 27277823 DOI: 10.1007/s00109-016-1437-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/08/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED Aberrant protein folding represents the molecular basis of many important human diseases. Although the discovery of new anti-misfolding drugs is a major priority in molecular therapeutics, there is currently no generalizable protein folding assay for use in cell-based high throughput screening (HTS) of chemical libraries, or for in vivo imaging. We molecularly engineered a bioluminescence-based biosensor composed of rationally split Firefly luciferase reporter fragments flanking a test protein, and used this in a protein-fragment complementation assay to quantitatively measure folding of the test protein. We comprehensively validated this biosensor in vitro, in cells, and by optically imaging protein folding and misfolding in living mice using several test proteins including enhanced green fluorescent protein, Renilla luciferase, Gaussia luciferase, and SIRT1. Applications of this novel biosensor are potentially far-reaching in both cell-based HTS approaches to discover new anti-misfolding drugs, and when using the same biosensor in validation studies of drug candidates in small animal models. KEY MESSAGES Novel anti-misfolding drugs are needed as molecular therapeutics for many diseases. We developed first in vivo imaging protein folding biosensor to aid drug discovery. Biosensor created by flanking a test protein with rationally split Firefly luciferase. Biosensor validated by detecting folding of test proteins EGFP, Rluc, Gluc, and SIRT1. Generalizable molecular biosensor for translational applications in drug screening.
Collapse
Affiliation(s)
- Anjali V Sheahan
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA
| | - Thillai V Sekar
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA
| | - Kai Chen
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA
| | - Ramasamy Paulmurugan
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA.
| | - Tarik F Massoud
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA.
| |
Collapse
|
6
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
7
|
Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1280-9. [DOI: 10.1016/j.bbapap.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
|
8
|
Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1212-9. [PMID: 25620715 DOI: 10.1016/j.bbapap.2014.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 11/21/2022]
Abstract
Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
|
9
|
Abstract
![]()
Optical dimerizers are a powerful
new class of optogenetic tools
that allow light-inducible control of protein–protein interactions.
Such tools have been useful for regulating cellular pathways and processes
with high spatiotemporal resolution in live cells, and a growing number
of dimerizer systems are available. As these systems have been characterized
by different groups using different methods, it has been difficult
for users to compare their properties. Here, we set about to systematically
benchmark the properties of four optical dimerizer systems, CRY2/CIB1,
TULIPs, phyB/PIF3, and phyB/PIF6. Using a yeast transcriptional assay,
we find significant differences in light sensitivity and fold-activation
levels between the red light regulated systems but similar responses
between the CRY2/CIB and TULIP systems. Further comparison of the
ability of the CRY2/CIB1 and TULIP systems to regulate a yeast MAPK
signaling pathway also showed similar responses, with slightly less
background activity in the dark observed with CRY2/CIB. In the process
of developing this work, we also generated an improved blue-light-regulated
transcriptional system using CRY2/CIB in yeast. In addition, we demonstrate
successful application of the CRY2/CIB dimerizers using a membrane-tethered
CRY2, which may allow for better local control of protein interactions.
Taken together, this work allows for a better understanding of the
capacities of these different dimerization systems and demonstrates
new uses of these dimerizers to control signaling and transcription
in yeast.
Collapse
Affiliation(s)
- Gopal P. Pathak
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Devin Strickland
- Department
of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Justin D. Vrana
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Chandra L. Tucker
- Department
of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
10
|
Mesa-Torres N, Salido E, Pey AL. The lower limits for protein stability and foldability in primary hyperoxaluria type I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2355-65. [PMID: 25461797 DOI: 10.1016/j.bbapap.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 01/12/2023]
Abstract
Mutational effects on protein stability and foldability are important to understand conformational diseases and protein evolution. In this work, we perform a comprehensive investigation on the energetic basis underlying mutational effects on the stability of human alanine:glyoxylate aminotransferase (AGT). We study twenty two variants whose kinetic stabilities span over eleven orders of magnitude and are classified into two groups: i) ten naturally-occurring variants, including the most common mutations causing primary hyperoxaluria type I (PH1); and ii) twelve consensus variants obtained by sequence-alignment statistics. We show that AGT dimer stability determines denaturation rates, and mutations modulate stability by changes in the effective thermodynamic stability, the aggregation propensity of partially/globally unfolded states and subtle energetic changes in the rate-limiting denaturation step. In combination with our previous expression analyses in eukaryotic cells, we propose the existence of two lower limits for AGT stability, one linked to optimal folding efficiency (close to the major allele stability) and the other setting a minimal efficiency compatible with glyoxylate detoxification in vivo (close to the minor allele stability). These lower limits could explain the high prevalence of misfolding as a disease mechanism in PH1 and support the use of pharmacological ligands aimed to increase AGT stability as therapies for this disease.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, Centre for Biomedical Research on Rare Diseases (CIBERER), Tenerife E-38320, Spain
| | - Angel L Pey
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|
11
|
Lage MD, Pittman AMC, Roncador A, Cellini B, Tucker CL. Allele-specific characterization of alanine: glyoxylate aminotransferase variants associated with primary hyperoxaluria. PLoS One 2014; 9:e94338. [PMID: 24718375 PMCID: PMC3981788 DOI: 10.1371/journal.pone.0094338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.
Collapse
Affiliation(s)
| | | | - Alessandro Roncador
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Barbara Cellini
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Chandra L. Tucker
- Department of Biology, Duke University, Durham, NC, USA
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- * E-mail:
| |
Collapse
|
12
|
Oppici E, Roncador A, Montioli R, Bianconi S, Cellini B. Gly161 mutations associated with Primary Hyperoxaluria Type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2277-88. [PMID: 24055001 DOI: 10.1016/j.bbadis.2013.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022]
Abstract
Primary Hyperoxaluria Type I (PH1) is a severe rare disorder of metabolism due to inherited mutations on liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme whose deficiency causes the deposition of calcium oxalate crystals in the kidneys and urinary tract. PH1 is an extremely heterogeneous disease and there are more than 150 disease-causing mutations currently known, most of which are missense mutations. Moreover, the molecular mechanisms by which missense mutations lead to AGT deficiency span from structural, functional to subcellular localization defects. Gly161 is a highly conserved residue whose mutation to Arg, Cys or Ser is associated with PH1. Here we investigated the molecular bases of the AGT deficit caused by Gly161 mutations with expression studies in a mammalian cellular system paired with biochemical analyses on the purified recombinant proteins. Our results show that the mutations of Gly161 (i) strongly reduce the expression levels and the intracellular half-life of AGT, and (ii) make the protein in the apo-form prone to an electrostatically-driven aggregation in the cell cytosol. The coenzyme PLP, by shifting the equilibrium from the apo- to the holo-form, is able to reduce the aggregation propensity of the variants, thus partly decreasing the effect of the mutations. Altogether, these results shed light on the mechanistic details underlying the pathogenicity of Gly161 variants, thus expanding our knowledge of the enzymatic phenotypes leading to AGT deficiency.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
13
|
Mesa-Torres N, Fabelo-Rosa I, Riverol D, Yunta C, Albert A, Salido E, Pey AL. The role of protein denaturation energetics and molecular chaperones in the aggregation and mistargeting of mutants causing primary hyperoxaluria type I. PLoS One 2013; 8:e71963. [PMID: 24205397 PMCID: PMC3796444 DOI: 10.1371/journal.pone.0071963] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 11/24/2022] Open
Abstract
Primary hyperoxaluria type I (PH1) is a conformational disease which result in the loss of alanine:glyoxylate aminotransferase (AGT) function. The study of AGT has important implications for protein folding and trafficking because PH1 mutants may cause protein aggregation and mitochondrial mistargeting. We herein describe a multidisciplinary study aimed to understand the molecular basis of protein aggregation and mistargeting in PH1 by studying twelve AGT variants. Expression studies in cell cultures reveal strong protein folding defects in PH1 causing mutants leading to enhanced aggregation, and in two cases, mitochondrial mistargeting. Immunoprecipitation studies in a cell-free system reveal that most mutants enhance the interactions with Hsc70 chaperones along their folding process, while in vitro binding experiments show no changes in the interaction of folded AGT dimers with the peroxisomal receptor Pex5p. Thermal denaturation studies by calorimetry support that PH1 causing mutants often kinetically destabilize the folded apo-protein through significant changes in the denaturation free energy barrier, whereas coenzyme binding overcomes this destabilization. Modeling of the mutations on a 1.9 Å crystal structure suggests that PH1 causing mutants perturb locally the native structure. Our work support that a misbalance between denaturation energetics and interactions with chaperones underlie aggregation and mistargeting in PH1, suggesting that native state stabilizers and protein homeostasis modulators are potential drugs to restore the complex and delicate balance of AGT protein homeostasis in PH1.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Israel Fabelo-Rosa
- Centre for Biomedical Research on Rare Diseases, Instituto Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
| | - Debora Riverol
- Centre for Biomedical Research on Rare Diseases, Instituto Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
| | - Cristina Yunta
- Department of Crystallography and Structural Biology, Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Armando Albert
- Department of Crystallography and Structural Biology, Instituto de Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases, Instituto Tecnologías Biomédicas, University of La Laguna, Tenerife, Spain
- * E-mail: (ES); (ALP)
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- * E-mail: (ES); (ALP)
| |
Collapse
|
14
|
Protein homeostasis defects of alanine-glyoxylate aminotransferase: new therapeutic strategies in primary hyperoxaluria type I. BIOMED RESEARCH INTERNATIONAL 2013; 2013:687658. [PMID: 23956997 PMCID: PMC3730394 DOI: 10.1155/2013/687658] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Abstract
Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.
Collapse
|
15
|
Oppici E, Fodor K, Paiardini A, Williams C, Voltattorni CB, Wilmanns M, Cellini B. Crystal structure of the S187F variant of human liver alanine: glyoxylate [corrected] aminotransferase associated with primary hyperoxaluria type I and its functional implications. Proteins 2013; 81:1457-65. [PMID: 23589421 PMCID: PMC3810726 DOI: 10.1002/prot.24300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5′-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Paiardini A, Pascarella S. Structural mimicry between SLA/LP and Rickettsia surface antigens as a driver of autoimmune hepatitis: insights from an in silico study. Theor Biol Med Model 2013; 10:25. [PMID: 23575112 PMCID: PMC3636016 DOI: 10.1186/1742-4682-10-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a chronic, progressive liver disease, characterized by continuing hepatocellular inflammation and necrosis. A subgroup of AIH patients presents specific autoantibodies to soluble liver antigen/liver-pancreas (SLA/LP) protein, which is regarded as a highly specific diagnostic marker. Autoantigenic SLA/LP peptides are targeted by CD4+ T cells, and restricted by the allele HLA-DRB1*03:01, which confers disease susceptibility in Europeans and Americans. A positively charged residue at position 71 has been indicated as critical for AIH susceptibility in all of the HLA alleles identified to date. Though the exact molecular mechanisms underlying pathogenesis of AIH are not clear, molecular mimicry between SLA/LP and viral/bacterial antigens has been invoked. METHODS The immunodominant region of SLA/LP was used as query in databank searches to identify statistically significant similarities with viral/bacterial peptides. Homology modeling and docking was used to investigate the potential interaction of HLA-DRB1*03:01 with the identified peptides. By molecular mechanics means, the interactions and energy of binding at the HLA binding site was also scrutinized. RESULTS A statistically significant structural similarity between the immunodominant regions of SLA/LP and a region of the surface antigen PS 120 from Rickettsia spp. has been detected. The interaction of the SLA/LP autoepitope and the corresponding Rickettsia sequence with the allele HLA-DRB1*03:01 has been simulated. The obtained results predict for both peptides a similar binding mode and affinity to HLA-DRB1*03:01. A "hot spot" of interaction between HLA-DRB1*03:01 and PS 120 is located at the P4 binding pocket, and is represented by a salt bridge involving Lys at position 71 of the HLA protein, and Glu 795 of PS120 peptide. CONCLUSIONS These findings strongly support the notion that a molecular mimicry mechanism can trigger AIH onset. CD4+ T cells recognizing peptides of SLA/LP could indeed cross-react with foreign Rickettsia spp. antigens. Finally, the same analysis suggests a molecular explanation for the importance of position 71 in conferring the susceptibility of the allele HLA-DRB1*03:01 to AIH. The lack of a positive charge at such position could prevent HLA alleles from binding the foreign peptides and triggering the molecular mimicry event.
Collapse
Affiliation(s)
- Alessandro Paiardini
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza - Università di Roma, Roma, 00185, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza - Università di Roma, Roma, 00185, Italy
| |
Collapse
|
17
|
Cellini B, Montioli R, Oppici E, Voltattorni CB. Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview. Open Biochem J 2012; 6:131-8. [PMID: 23264832 PMCID: PMC3528064 DOI: 10.2174/1874091x01206010131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022] Open
Abstract
Dopa decarboxylase (DDC) is a pyridoxal 5’-phosphate (PLP)-dependent enzyme that by catalyzing the decarboxylation of L-Dopa and L-5-hydroxytryptophan produces the neurotransmitters dopamine and serotonin. The functional properties of pig kidney and human DDC enzymes have been extensively characterized, and the crystal structure of the enzyme in the holo- and apo-forms has been elucidated. DDC is a clinically relevant enzyme since it is involved in Parkinson’s disease (PD) and in aromatic amino acid decarboxylase (AADC) deficiency. PD, a chronic progressive neurological disorder characterized by tremor, bradykinesia, rigidity and postural instability, results from the degeneration of dopamine-producing cells in the substantia nigra of the brain. On the other hand, AADC deficiency is a rare debilitating recessive genetic disorder due to mutations in AADC gene leading to the inability to synthesize dopamine and serotonin. Development delay, abnormal movements, oculogyric crises and vegetative symptoms characterize this severe neurometabolic disease. This article is an up to date review of the therapies currently used in the treatment of PD and AADC deficiency as well as of the recent findings that, on one hand provide precious guidelines for the drug development process necessary to PD therapy, and, on the other, suggest an aimed therapeutic approach based on the elucidation of the molecular defects of each variant associated with AADC deficiency.
Collapse
Affiliation(s)
- Barbara Cellini
- Department of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Italy
| | | | | | | |
Collapse
|
18
|
Flintoft L. Reporting on stability. Nat Rev Genet 2012; 13:677. [DOI: 10.1038/nrg3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|