1
|
Zhu R, Zhao S, Cao J, Liu Y, Liang R. Comprehensive analysis of GPN1 in human cancer and its effects on the migration of hepatocellular carcinoma cells. BIOMOLECULES & BIOMEDICINE 2025; 25:1111-1125. [PMID: 39524004 PMCID: PMC11984376 DOI: 10.17305/bb.2024.11310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
To investigate the prognostic value of GPN1 in cancer and its role in the migration of hepatocellular carcinoma (HCC or LIHC) cells, we used several databases to assess GPN1 expression levels and effects in human tumors. Furthermore, experiments were conducted to verify changes in GPN1 expression in HCC cell lines and explore its biological function. We found that GPN1 gene and protein expression were significantly increased in several tumor tissues. Higher GPN1 expression was associated with unfavorable overall survival. Additionally, there was a strong association between GPN1 expression and several clinicopathological features, according to multivariate Cox regression analysis. Moreover, GPN1 gene mutation and methylation were present in some tumors. A relationship was also found between GPN1 expression and immune infiltration. Notably, immune checkpoint analysis showed that GPN1 expression was correlated with PD-1/PDL-1 and CTLA-4, suggesting it may serve as a biomarker for predicting immune subtypes and response to immunotherapy in HCC. Enrichment analysis in HCC indicated that GPN1 is primarily involved in RNA metabolism. Additionally, drug sensitivity analysis revealed that GPN1 appeared to be responsive to 16 drugs. Finally, GPN1 upregulation was confirmed to promote the migration of HCC cells. This study provides a comprehensive overview of GPN1 in human cancer and demonstrates that GPN1 contributes to the migration of HCC cells, potentially serving as a prognostic and immunotherapy biomarker.
Collapse
Affiliation(s)
- Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Xu L, Guo J, Xie X, Wang H, Jiang A, Huang C, Yang H, Luo S, Chen L. GTPase GPN3 facilitates cell proliferation and migration in non-small cell lung cancer by impeding clathrin-mediated endocytosis of EGFR. Cell Death Discov 2025; 11:38. [PMID: 39893205 PMCID: PMC11787391 DOI: 10.1038/s41420-025-02317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Small GTPases play a critical role as regulatory molecules in signaling transduction and various cellular processes, contributing to the development of human diseases, including cancers. GPN3, an evolutionarily conserved member of the GPN-loop GTPase subfamily classified in 2007 according to its structure, has limited knowledge regarding its cellular functions and molecular mechanisms. In this study, we demonstrate that GPN3 interacts with clathrin light chain A (CLTA), a vesicle coat protein, as well as clathrin-mediated endocytosis associated modulators AP2B1 and AP2S1. Upregulation of GPN3 leads to the inhibition of clathrin-coated pit invagination. Furthermore, we discovered that GPN3 interacts with the epidermal growth factor receptor (EGFR) and regulates the co-localization of EGFR and CLTA, as well as the localization of EGFR in early endosomes upon EGF stimulation. As a result, this leads to a decrease in endocytic levels of EGFR and an increase in the accumulation of EGFR on the cell membrane surface, thereby prolonging activation of EGFR signaling. The functional effects exerted by GPN3 are dependent on cellular levels of GTP abundance. Furthermore, our findings indicate that aberrant overexpression of GPN3 is observed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues, and high expression levels of GPN3 are associated with poor prognosis for NSCLC patients. Collectively, these findings reveal that GPN3 acts as an oncogene promoting cell proliferation and migration in NSCLC through regulation of clathrin-dependent EGFR endocytosis. These results suggest that targeting GPN3 could serve as a novel prognostic biomarker and therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Linlin Xu
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiankun Guo
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Alan Jiang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Wang L, Li P, Zeng P, Xie D, Gao M, Ma L, Sohail A, Zeng F. Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast. PLoS One 2024; 19:e0313597. [PMID: 39642114 PMCID: PMC11623451 DOI: 10.1371/journal.pone.0313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated. To further explore these functions, we conducted large-scale multicopy suppressor screening in budding yeast, aiming to identify genes whose overexpression could mitigate the growth defects of a temperature-sensitive gpn2 mutant (gpn2ts) at restrictive temperatures. We screened over 30,000 colonies harboring plasmids from a multicopy genetic library and identified 31 genes that rescued the growth defects of gpn2ts to various extents. Notably, we found that PAB1, CDC5, and RGS2 reduced the drug sensitivity of gpn2ts mutants. These findings lay a theoretical foundation for future studies on the function of Gpn2 in RNAPII assembly.
Collapse
Affiliation(s)
- Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Pan Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Aamir Sohail
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
4
|
Félix-Pérez T, Mora-García M, Rebolloso-Gómez Y, DelaGarza-Varela A, Castro-Velázquez G, Peña-Gómez SG, Riego-Ruiz L, Sánchez-Olea R, Calera MR. Translation initiation factor eIF1A rescues hygromycin B sensitivity caused by deleting the carboxy-terminal tail in the GPN-loop GTPase Npa3. FEBS J 2024; 291:2191-2208. [PMID: 38431777 DOI: 10.1111/febs.17106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.
Collapse
Affiliation(s)
- Tania Félix-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | | | | | | | | - Lina Riego-Ruiz
- División de Biología Molecular, IPICYT, San Luis Potosí, Mexico
| | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
5
|
Peña-Gómez SG, Cristóbal-Mondragón GR, Vega-Palomo CR, Mora-García M, Félix-Pérez T, Rebolloso-Gómez Y, Calera MR, Sánchez-Olea R. Nucleocytoplasmic shuttling of the GPN-loop GTPase Gpn3 is regulated by serum and cell density in MCF-12A mammary cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119685. [PMID: 38342311 DOI: 10.1016/j.bbamcr.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
The best-known function of the essential GPN-loop GTPase Gpn3 is to contribute to RNA polymerase II assembly, a prerequisite for its nuclear targeting. Although this process occurs in the cytoplasm, we have previously shown that Gpn3 enters the cell nucleus before being polyubiquitinated. Here, we show that inhibiting Crm1-mediated nuclear export with leptomycin B, or the proteasome with MG132, caused the nuclear accumulation of recombinant and endogenous Gpn3 in MCF-12A cells. When added simultaneously, leptomycin B and MG132 had an additive effect. Analysis of Gpn3 primary sequence revealed the presence of at least five nuclear export sequence (NES) motifs, with some having a higher exposure to the solvent in the GTP-bound than GDP-bound state in a Gpn3 structural model. Inactivation of any of these NESes led to some degree of Gpn3 nuclear accumulation, although mutating NES1 or NES3 had the more robust effect. MCF-12A cells expressing exclusively a NES-deficient version of Gpn3R-Flag proliferated slower than cells expressing Gpn3R-Flag wt, indicating that nuclear export is important for Gpn3 function. Next, we searched for physiological conditions regulating Gpn3 nucleocytoplasmic shuttling. Interestingly, whereas Gpn3R-Flag was both nuclear and cytoplasmic in low-density growing MCF-12A cells, it was exclusively cytoplasmic in high-density areas. Furthermore, Gpn3R-Flag was cytoplasmic, mostly perinuclear, in sparse but starved MCF-12A cells, and serum-stimulation caused a rapid, although transient, Gpn3R-Flag nuclear accumulation. We conclude that Gpn3 nucleocytoplasmic shuttling is regulated by cell density and growth factors, and propose that Gpn3 has an unknown nuclear function positively linked to cell growth and/or proliferation.
Collapse
Affiliation(s)
- Sonia G Peña-Gómez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México
| | | | | | - Martín Mora-García
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Tania Félix-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México
| | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, SLP, México.
| | | |
Collapse
|
6
|
Korf L, Ye X, Vogt MS, Steinchen W, Watad M, van der Does C, Tourte M, Sivabalasarma S, Albers SV, Essen LO. Archaeal GPN-loop GTPases involve a lock-switch-rock mechanism for GTP hydrolysis. mBio 2023; 14:e0085923. [PMID: 37962382 PMCID: PMC10746158 DOI: 10.1128/mbio.00859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE GPN-loop GTPases have been found to be crucial for eukaryotic RNA polymerase II assembly and nuclear trafficking. Despite their ubiquitous occurrence in eukaryotes and archaea, the mechanism by which these GTPases mediate their function is unknown. Our study on an archaeal representative from Sulfolobus acidocaldarius showed that these dimeric GTPases undergo large-scale conformational changes upon GTP hydrolysis, which can be summarized as a lock-switch-rock mechanism. The observed requirement of SaGPN for motility appears to be due to its large footprint on the archaeal proteome.
Collapse
Affiliation(s)
- Lukas Korf
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Xing Ye
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Marian S. Vogt
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse, Marburg, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Chris van der Does
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Maxime Tourte
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | | |
Collapse
|
7
|
Tian K, Wang R, Huang J, Wang H, Ji X. Subcellular localization shapes the fate of RNA polymerase III. Cell Rep 2023; 42:112941. [PMID: 37556328 DOI: 10.1016/j.celrep.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
RNA polymerase III (Pol III) plays a vital role in transcription and as a viral-DNA sensor, but how it is assembled and distributed within cells remains poorly understood. Here, we show that Pol III is assembled with chaperones in the cytoplasm and forms transcription-dependent protein clusters upon transport into the nucleus. The largest subunit (RPC1) depletion through an auxin-inducible degron leads to rapid degradation and disassembly of Pol III complex in the nucleus and cytoplasm, respectively. This generates a pool of partially assembled Pol III intermediates, which can be rapidly mobilized into the nucleus upon the restoration of RPC1. Our study highlights the critical role of subcellular localization in determining Pol III's fate and provides insight into the dynamic regulation of nuclear Pol III levels and the origin of cytoplasmic Pol III complexes involved in mediating viral immunity.
Collapse
Affiliation(s)
- Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Pinard M, Dastpeyman S, Poitras C, Bernard G, Gauthier MS, Coulombe B. Riluzole partially restores RNA polymerase III complex assembly in cells expressing the leukodystrophy-causative variant POLR3B R103H. Mol Brain 2022; 15:98. [PMID: 36451185 PMCID: PMC9710144 DOI: 10.1186/s13041-022-00974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/16/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanism of assembly of RNA polymerase III (Pol III), the 17-subunit enzyme that synthesizes tRNAs, 5 S rRNA, and other small-nuclear (sn) RNAs in eukaryotes, is not clearly understood. The recent discovery of the HSP90 co-chaperone PAQosome (Particle for Arrangement of Quaternary structure) revealed a function for this machinery in the biogenesis of nuclear RNA polymerases. However, the connection between Pol III subunits and the PAQosome during the assembly process remains unexplored. Here, we report the development of a mass spectrometry-based assay that allows the characterization of Pol III assembly. This assay was used to dissect the stages of Pol III assembly, to start defining the function of the PAQosome in this process, to dissect the assembly defects driven by the leukodystrophy-causative R103H substitution in POLR3B, and to discover that riluzole, an FDA-approved drug for alleviation of ALS symptoms, partly corrects these assembly defects. Together, these results shed new light on the mechanism and regulation of human nuclear Pol III biogenesis.
Collapse
Affiliation(s)
- Maxime Pinard
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Samaneh Dastpeyman
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Christian Poitras
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Geneviève Bernard
- grid.63984.300000 0000 9064 4811Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Pediatrics, McGill University, Montreal, Canada ,grid.63984.300000 0000 9064 4811Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada
| | - Marie-Soleil Gauthier
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada
| | - Benoit Coulombe
- grid.511547.30000 0001 2106 1695Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|
9
|
Ma L, Wang L, Gao M, Zhang X, Zhao X, Xie D, Zhang J, Wang Z, Hou L, Zeng F. Rtr1 is required for Rpb1-Rpb2 assembly of RNAPII and prevents their cytoplasmic clump formation. FASEB J 2022; 36:e22585. [PMID: 36190433 DOI: 10.1096/fj.202200698rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
RNA polymerase II (RNAPII) is an essential machinery for catalyzing mRNA synthesis and controlling cell fate in eukaryotes. Although the structure and function of RNAPII have been relatively defined, the molecular mechanism of its assembly process is not clear. The identification and functional analysis of assembly factors will provide new understanding to transcription regulation. In this study, we identify that RTR1, a known transcription regulator, is a new multicopy genetic suppressor of mutants of assembly factors Gpn3, Gpn2, and Rba50. We demonstrate that Rtr1 is directly required to assemble the two largest subunits of RNAPII by coordinating with Gpn3 and Npa3. Deletion of RTR1 leads to cytoplasmic clumping of RNAPII subunit and multiple copies of RTR1 can inhibit the formation of cytoplasmic clump of RNAPII subunit in gpn3-9 mutant, indicating a new layer function of Rtr1 in checking proper assembly of RNAPII. In addition, we find that disrupted activity of Rtr1 phosphatase does not trigger the formation of cytoplasmic clump of RNAPII subunit in a catalytically inactive mutant of RTR1. Based on these results, we conclude that Rtr1 cooperates with Gpn3 and Npa3 to assemble RNAPII core.
Collapse
Affiliation(s)
- Lujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xinjie Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiangdong Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jing Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Science & Technology, Hebei Agricultural University, Cangzhou, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Garrido-Godino AI, Martín-Expósito M, Gutiérrez-Santiago F, Perez-Fernandez J, Navarro F. Rpb4/7, a key element of RNA pol II to coordinate mRNA synthesis in the nucleus with cytoplasmic functions in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194846. [PMID: 35905859 DOI: 10.1016/j.bbagrm.2022.194846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - M Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - F Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| | - J Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain.
| | - F Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071, Jaén, Spain.
| |
Collapse
|
11
|
Development of a Methodology to Adapt an Equilibrium Buffer/Wash Applied to the Purification of hGPN2 Protein Expressed in Escherichia coli Using an IMAC Immobilized Metal Affinity Chromatography System. SEPARATIONS 2022. [DOI: 10.3390/separations9070164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Protein purification is a complex and non-standardized process; the fact that proteins have different structural types making it difficult to create a standard methodology to obtain them in a pure, soluble, and homogeneous form. The present study shows the selective development of a buffer suitable for proteins of interest that allows high concentrations of hGPN2 protein to be obtained with low polydispersion and high homogeneity and purity. By taking the different reagents used in the construction of different buffers as a basis and performing purifications using different additives in different concentrations to determine the optimal amounts, the developed process helps to minimize the bonds, maintain solubility, release the proteins present in inclusion bodies, and provide an adequate environment for obtaining high concentrations of pure protein. GPN proteins are of unknown function, have not been purified in high concentrations, and have been found as part of the RNA polymerase assembly; if they are not expressed, the cell dies, and overexpression of certain GPN proteins has been linked to decreased survival in patients with invasive ductal carcinoma breast cancer types ER+ and HER2+. The results of the present study show that the use of the buffer developed for recombinant hGPN2 protein expressed in Escherichia coli could be manipulated in order to isolate the protein in a totally pure form and without the use of protease inhibitor tablets. The resulting homogeneity and low polydispersion was corroborated by studies carried out using dynamic dispersion analysis. Thanks to these properties, it can be used for crystallography or structural genomics studies.
Collapse
|
12
|
Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae. Curr Genet 2022; 68:343-360. [PMID: 35660944 DOI: 10.1007/s00294-022-01243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (npa3∆C) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3∆C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.
Collapse
|
13
|
Boguta M. Assembly of RNA polymerase III complex involves a putative co-translational mechanism. Gene 2022; 824:146394. [PMID: 35278633 DOI: 10.1016/j.gene.2022.146394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
Abstract
Detailed knowledge of structures of yeast RNA polymerases (RNAPs) contrasts with the limited information that is available on the control of their assembly. RNAP enzymes are large heteromeric complexes that function in the nucleus, but they are assembled in the cytoplasm and imported to the nucleus with help from specific auxiliary factors. Here, I review a recent study that suggests that the formation of an early-stage assembly intermediate of the RNAP III complex occurs through a co-translational mechanism. According to our hypothesis, RNAP III assembly might be seeded while the Rpb10 subunit of the enzyme core is being synthesized by cytoplasmic ribosome machinery. The co-translational assembly of RNAP III is mediated by Rbs1 protein which binds to 3'-untranslated regions in mRNA in a way that depends on the R3H domain in the Rbs1 sequence.
Collapse
Affiliation(s)
- Magdalena Boguta
- Laboratory of tRNA Transcription, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
14
|
Npa3-Gpn3 cooperate to assemble RNA polymerase II and prevent clump of its subunits in the cytoplasm. Int J Biol Macromol 2022; 206:837-848. [PMID: 35314265 DOI: 10.1016/j.ijbiomac.2022.03.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 01/16/2023]
Abstract
RNA polymerase II (RNAPII) is an essential machinery in eukaryotes that catalyzes mRNA synthesis and controls cell fate. Although the structure and function of RNAPII are relatively well defined, the molecular mechanism of its assembly process is poorly understood. Three members of GPN-loop GTPase family Npa3/Gpn1, Gpn2, and Gpn3 participate in the biogenesis of RNAPII with non-redundant roles. In this study, we demonstrate that Gpn3 and Npa3 directly participate in the assembly of the two largest subunits during biogenesis of RNAPII. When Gpn3 is defective, assembly of RNAPII is disrupted, leading to cytoplasmic foci of RNAPII subunits. Long-term assembly factor defects will lead to the accumulation of different kind of newly synthesized RNAPII subunits in the cytoplasm to form foci, and this can be prevented by recovery of the defective assembly factor. Cytoplasmic foci of RNAPII subunits in mutants of these assembly factors reveals a new cellular rescue response named the 'RNAPII assembly stress response'.
Collapse
|
15
|
Xie D, Zhao X, Ma L, Wang L, Li P, Cheng H, Li Z, Zeng P, Zhang J, Zeng F. Rba50 and Gpn2 recruit the second largest subunits for the assembly of RNA polymerase II and III. Int J Biol Macromol 2022; 204:565-575. [PMID: 35176321 DOI: 10.1016/j.ijbiomac.2022.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Although remarkable progress has been made toward understanding the structures of eukaryotic RNA polymerases, the pathways and factors that facilitate their assembly remain unresolved. Essential proteins Rba50 and Gpn2 are required for Rpb3 subcomplex assembly, but whether they participate in subsequent assembly steps is unknown. Herein, we performed comprehensive genetic screens to explore Rba50 function. We identified two unique extragenic rba50-3-suppressing mutations that map to genes encoding the Rba50-interacting protein Gpn2, and Rpb2, the second largest subunit of RNAPII. Both gpn2-R347S and rpb2-V1171G variants bypass Rpb1 cytoplasmic arrest and temperature-sensitive growth defects of the rba50-3 mutant. GPN2 and RPB2 were also identified as novel multicopy suppressors of the rba50-3 mutant. Rapid depletion of Rba50 affected Rpb3-Rpb2 association during RNAPII assembly. Importantly, we demonstrated that Gpn2 facilitates the association of Rba50 and Rpb2. Our results imply that Rba50-Gpn2 interaction is essential for Rpb2 recruitment during RNAPII assembly following Rpb3 subcomplex assembly. Furthermore, the Rba50-Gpn2 complex appears to play a similar role in the assembly of RNAPIII. We therefore propose a model in which Rba50 interacts with Gpn2 and thereby promotes loading of the second largest subunit of RNAP II and III onto the previously assembled subcomplex.
Collapse
Affiliation(s)
- Debao Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xiangdong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Le Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hongqian Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhaoying Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Pei Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
16
|
Garrido-Godino AI, Cuevas-Bermúdez A, Gutiérrez-Santiago F, Mota-Trujillo MDC, Navarro F. The Association of Rpb4 with RNA Polymerase II Depends on CTD Ser5P Phosphatase Rtr1 and Influences mRNA Decay in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:2002. [PMID: 35216121 PMCID: PMC8875030 DOI: 10.3390/ijms23042002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Rtr1 is an RNA polymerase II (RNA pol II) CTD-phosphatase that influences gene expression during the transition from transcription initiation to elongation and during transcription termination. Rtr1 interacts with the RNA pol II and this interaction depends on the phosphorylation state of the CTD of Rpb1, which may influence dissociation of the heterodimer Rpb4/7 during transcription. In addition, Rtr1 was proposed as an RNA pol II import factor in RNA pol II biogenesis and participates in mRNA decay by autoregulating the turnover of its own mRNA. Our work shows that Rtr1 acts in RNA pol II assembly by mediating the Rpb4/7 association with the rest of the enzyme. RTR1 deletion alters RNA pol II assembly and increases the amount of RNA pol II associated with the chromatin that lacks Rpb4, decreasing Rpb4-mRNA imprinting and, consequently, increasing mRNA stability. Thus, Rtr1 interplays RNA pol II biogenesis and mRNA decay regulation. Our data also indicate that Rtr1 mediates mRNA decay regulation more broadly than previously proposed by cooperating with Rpb4. Interestingly, our data include new layers in the mechanisms of gene regulation and in the crosstalk between mRNA synthesis and decay by demonstrating how the association of Rpb4/7 to the RNA pol II influences mRNA decay.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Abel Cuevas-Bermúdez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (A.I.G.-G.); (A.C.-B.); (F.G.-S.); (M.d.C.M.-T.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
17
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
18
|
Minaker SW, Kofoed MC, Hieter P, Stirling PC. A nuclear proteome localization screen reveals the exquisite specificity of Gpn2 in RNA polymerase biogenesis. Cell Cycle 2021; 20:1361-1373. [PMID: 34180355 DOI: 10.1080/15384101.2021.1943879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The GPN proteins are a conserved family of GTP-binding proteins that are involved in the assembly and subsequent import of RNA polymerase II and III. In this study, we sought to ascertain the specificity of yeast GPN2 for RNA polymerases by screening the localization of a collection of 1350 GFP-tagged nuclear proteins in WT or GPN2 mutant cells. We found that the strongest mislocalization occurred for RNA polymerase II and III subunits and only a handful of other RNAPII associated proteins were altered in GPN2 mutant cells. Our screen identified Ess1, an Rpb1 C-terminal domain (CTD) prolyl isomerase, as mislocalized in GPN2 mutants. Building on this observation we tested for effects of mutations in other factors which regulate Rpb1-CTD phosphorylation status. This uncovered significant changes in nuclear-cytoplasmic distribution of Rpb1-GFP in strains with disrupted RNA polymerase CTD kinases or phosphatases. Overall, this screen shows the exquisite specificity of GPN2 for RNA polymerase transport, and reveals a previously unappreciated role for CTD modification in RNAPII nuclear localization.
Collapse
Affiliation(s)
- Sean W Minaker
- Terry Fox Laboratories, BC Cancer Research Institute, Vancouver, Canada
| | - Megan C Kofoed
- Michael Smith Laboratory, University of British Columbia, Vancouver, Canada
| | - Philip Hieter
- Michael Smith Laboratory, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratories, BC Cancer Research Institute, Vancouver, Canada
| |
Collapse
|
19
|
Garrido-Godino AI, Gutiérrez-Santiago F, Navarro F. Biogenesis of RNA Polymerases in Yeast. Front Mol Biosci 2021; 8:669300. [PMID: 34026841 PMCID: PMC8136413 DOI: 10.3389/fmolb.2021.669300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerases (RNA pols) transcriptional processes have been extensively investigated, and the structural analysis of eukaryotic RNA pols has been explored. However, the global assembly and biogenesis of these heteromultimeric complexes have been narrowly studied. Despite nuclear transcription being carried out by three RNA polymerases in eukaryotes (five in plants) with specificity in the synthesis of different RNA types, the biogenesis process has been proposed to be similar, at least for RNA pol II, to that of bacteria, which contains only one RNA pol. The formation of three different interacting subassembly complexes to conform the complete enzyme in the cytoplasm, prior to its nuclear import, has been assumed. In Saccharomyces cerevisiae, recent studies have examined in depth the biogenesis of RNA polymerases by characterizing some elements involved in the assembly of these multisubunit complexes, some of which are conserved in humans. This study reviews the latest studies governing the mechanisms and proteins described as being involved in the biogenesis of RNA polymerases in yeast.
Collapse
Affiliation(s)
- Ana I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | | | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
20
|
Chen L, Zhao M, Wu Z, Chen S, Rojo E, Luo J, Li P, Zhao L, Chen Y, Deng J, Cheng B, He K, Gou X, Li J, Hou S. RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 230:171-189. [PMID: 33058210 DOI: 10.1111/nph.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 05/27/2023]
Abstract
RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingfeng Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongliang Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sicheng Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid, E-28049, Spain
| | - Jiangwei Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ping Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lulu Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yan Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianming Deng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoping Gou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
21
|
Cieśla M, Turowski TW, Nowotny M, Tollervey D, Boguta M. The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Res 2020; 48:12252-12268. [PMID: 33231687 PMCID: PMC7708074 DOI: 10.1093/nar/gkaa1069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 01/07/2023] Open
Abstract
The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3' untranslated regions (3'UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Liu X, Xie D, Hua Y, Zeng P, Ma L, Zeng F. Npa3 interacts with Gpn3 and assembly factor Rba50 for RNA polymerase II biogenesis. FASEB J 2020; 34:15547-15558. [PMID: 32985767 DOI: 10.1096/fj.202001523r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
RNA polymerase II is one of the most vital macromolecular complexes in eukaryotes and the assembly of such complete enzyme requires many factors. Three members of GPN-loop GTPase family Npa3/Gpn1, Gpn2, and Gpn3 participate in the biogenesis of RNA polymerase II with nonredundant roles. We show here that rapid degradation of each GPN protein in yeast leads to cytoplasmic accumulation of Rpb1 and defects in the assembly of RNA polymerase II, suggesting conserved functions of GPN paralogs for RNA polymerase II biogenesis as in humans. Taking advantage of a multicopy genetic screening, we identified GPN3 and assembly factor RBA50 among others as strong suppressors of npa3ts mutants. We further demonstrated that Npa3 interacts with Gpn3 and Rba50, similarly human Gpn1 physically interacts with Gpn3 and RPAP1 (human analog of Rba50). Moreover, a mutual dependency of protein levels of Npa3 and Gpn3 was also clearly presented in yeast using an auxin-inducible degron (AID) system. Interestingly, Rpb2, the second largest subunit of RNA polymerase II was determined to be the subunit that interacts with both Gpn1 and Rba50, indicating a close association of Npa3 and Rba50 in Rpb2 subcomplex assembly. Based on these results, we conclude that Npa3 interacts with Gpn3 and Rba50, for RNA polymerase II biogenesis. We therefore propose that multiple factors may coordinate through conserved regulatory mechanisms in the assembly of RNA polymerase complex.
Collapse
Affiliation(s)
- Xueqin Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, The College of Life Sciences, Peking University, Beijing, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, The College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Contreras R, Kallemi P, González-García MP, Lazarova A, Sánchez-Serrano JJ, Sanmartín M, Rojo E. Identification of Domains and Factors Involved in MINIYO Nuclear Import. FRONTIERS IN PLANT SCIENCE 2019; 10:1044. [PMID: 31552063 PMCID: PMC6748027 DOI: 10.3389/fpls.2019.01044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
The transition of stem cells from self-renewal into differentiation is tightly regulated to assure proper development of the organism. Arabidopsis MINIYO (IYO) and its mammalian orthologue RNA polymerase II associated protein 1 (RPAP1) are essential factors for initiating stem cell differentiation in plants and animals. Moreover, there is evidence suggesting that the translocation of IYO and RPAP1 from the cytosol into the nucleus functions as a molecular switch to initiate this cell fate transition. Identifying the determinants of IYO subcellular localization would allow testing if, indeed, nuclear IYO migration triggers cell differentiation and could provide tools to control this crucial developmental transition. Through transient and stable expression assays in Nicotiana benthamiana and Arabidopsis thaliana, we demonstrate that IYO contains two nuclear localization signals (NLSs), located at the N- and C-terminus of the protein, which mediate the interaction with the NLS-receptor IMPA4 and the import of the protein into the nucleus. Interestingly, IYO also interacts with GPN GTPases, which are involved in selective nuclear import of RNA polymerase II. This interaction is prevented when the G1 motif in GPN1 is mutated, suggesting that IYO binds specifically to the nucleotide-bound form of GPN1. In contrast, deleting the NLSs in IYO does not prevent the interaction with GPN1, but it interferes with import of GPN1 into the nucleus, indicating that IYO and GPN1 are co-transported as a complex that requires the IYO NLSs for import. This work unveils key domains and factors involved in IYO nuclear import, which may prove instrumental to determine how IYO and RPAP1 control stem cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Enrique Rojo
- *Correspondence: Maite Sanmartín, , ; Enrique Rojo,
| |
Collapse
|
24
|
Cristóbal-Mondragón GR, Lara-Chacón B, Santiago Á, De-la-Rosa V, González-González R, Muñiz-Luna JA, Ladrón-de-Guevara E, Romero-Romero S, Rangel-Yescas GE, Fernández Velasco DA, Islas LD, Pastor N, Sánchez-Olea R, Calera MR. FRET-based analysis and molecular modeling of the human GPN-loop GTPases 1 and 3 heterodimer unveils a dominant-negative protein complex. FEBS J 2019; 286:4797-4818. [PMID: 31298811 DOI: 10.1111/febs.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
GPN-loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1-Gpn3 interaction in live HEK293-AD cells. Transiently expressed EYFP-Gpn1 and Gpn3-CFP generated a strong FRET signal, indicative of a very close proximity, in the cytoplasm of HEK293-AD cells. Molecular modeling of the human Gpn1-Gpn3 heterodimer based on the crystallographic structure of Npa3, the Saccharomyces cerevisiae Gpn1 ortholog, revealed that human Gpn1 and Gpn3 associate through a large interaction surface formed by internal α-helix 7, insertion 2, and the GPN-loop from each protein. In site-directed mutagenesis experiments of interface residues, we identified the W132D and M227D EYFP-Gpn1 mutants as defective to produce a FRET signal when coexpressed with Gpn3-CFP. Simultaneous but not individual expression of Gpn1 and Gpn3, with either or both proteins fused to EYFP, retained RNAPII in the cytoplasm and markedly inhibited global transcription in HEK293-AD cells. Interestingly, the W132D and M227D Gpn1 mutants that showed an impaired ability to interact with Gpn3 by FRET were also unable to delocalize RNAPII in this assay, indicating that an intact Gpn1-Gpn3 interaction is required to display the dominant-negative effect on endogenous Gpn1/Gpn3 function we described here. Altogether, our results suggest that a Gpn1-Gpn3 strong interaction is critical for their cellular function.
Collapse
Affiliation(s)
| | - Bárbara Lara-Chacón
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ángel Santiago
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Víctor De-la-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | | | - Julio A Muñiz-Luna
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ernesto Ladrón-de-Guevara
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Daniel Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Roberto Sánchez-Olea
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| |
Collapse
|
25
|
Burriss KH, Mosley AL. Methods review: Mass spectrometry analysis of RNAPII complexes. Methods 2019; 159-160:105-114. [PMID: 30902665 DOI: 10.1016/j.ymeth.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
RNA Polymerase II (RNAPII) is responsible for transcribing multiple RNA species throughout eukaryotes. A variety of protein-protein interactions occur throughout the transcription cycle for coordinated regulation of transcription initiation, elongation, and/or termination. Taking a proteomics approach to study RNAPII transcription thereby offers a comprehensive view of both RNAPII biology and the variety of proteins that regulate the process itself. This review will focus on how mass spectrometry (MS) methods have expanded understanding of RNAPII and its transcription-regulatory interaction partners. The application of affinity purification mass spectrometry has led to the discovery of a number of novel groups of proteins that regulate an array of RNAPII biology ranging from nuclear import to regulation of phosphorylation state. Additionally, a number of methods have been developed using mass spectrometry to measure protein subunit stoichiometry within and across protein complexes and to perform various types of architectural analysis using structural proteomics approaches. The key methods that we will focus on related to RNAPII mass spectrometry analyses include: affinity purification mass spectrometry, protein post-translational modification analysis, crosslinking mass spectrometry, and native mass spectrometry.
Collapse
Affiliation(s)
- Katlyn Hughes Burriss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46402, United States
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46402, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46402, United States.
| |
Collapse
|
26
|
Lara-Chacón B, Guerrero-Rodríguez SL, Ramírez-Hernández KJ, Robledo-Rivera AY, Velazquez MAV, Sánchez-Olea R, Calera MR. Gpn3 Is Essential for Cell Proliferation of Breast Cancer Cells Independent of Their Malignancy Degree. Technol Cancer Res Treat 2019; 18:1533033819870823. [PMID: 31431135 PMCID: PMC6704425 DOI: 10.1177/1533033819870823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Successful therapies for patients with breast cancer often lose their initial effectiveness. Thus, identifying new molecular targets is a constant goal in the fight against breast cancer. Gpn3 is a protein required for RNA polymerase II nuclear targeting in both yeast and human cells. We investigated here the effect of suppressing Gpn3 expression on cell proliferation in a progression series of isogenic cell lines derived from the nontumorigenic MCF-10A breast cells that recapitulate different stages of breast carcinogenesis. Gpn3 protein levels were comparable in all malignant derivatives of the nontumorigenic MCF-10A cells. shRNA-mediated inhibition of Gpn3 expression markedly decreased cell proliferation in all MCF-10A sublines. A fraction of the largest RNA polymerase II subunit Rpb1 was retained in the cytoplasm, but most Rpb1 remained nuclear after suppressing Gpn3 in all cell lines studied. Long-term proliferation experiments in cells with suppressed Gpn3 expression resulted in the eventual loss of all isogenic cell lines but MCF-10CA1d.cl1. In MCF-10CA1d.cl1 cells, Gpn3 knockdown reduced the proliferation of breast cancer stem cells as evaluated by mammosphere assays. After the identification that Gpn3 plays a key role in cell proliferation in mammary epithelial cells independent of the degree of transformation, we also analyzed the importance of Gpn3 in other human breast cancer cell lines from different subtypes. Gpn3 was also required for cell proliferation and nuclear translocation of RNA polymerase II in such cellular models. Altogether, our results show that Gpn3 is essential for breast cancer cell proliferation regardless of the transformation level, indicating that Gpn3 could be considered a molecular target for the development of new antiproliferative therapies. Importantly, our analysis of public data revealed that Gpn3 overexpression was associated with a significant decrease in overall survival in patients with estrogen receptor-positive and Human epidermal growth factor receptor 2 (HER2+) breast cancer, supporting our proposal that targeting Gpn3 could potentially benefit patients with breast cancer.
Collapse
Affiliation(s)
- Bárbara Lara-Chacón
- Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| | | | - Karla J. Ramírez-Hernández
- Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| | | | - Marco Antonio Velasco Velazquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Traslacional, México city, México
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Sánchez-Olea
- Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| | - Mónica Raquel Calera
- Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| |
Collapse
|
27
|
Gpn2 and Rba50 Directly Participate in the Assembly of the Rpb3 Subcomplex in the Biogenesis of RNA Polymerase II. Mol Cell Biol 2018; 38:MCB.00091-18. [PMID: 29661922 DOI: 10.1128/mcb.00091-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023] Open
Abstract
RNA polymerase II (RNAPII) is one of the central enzymes in cell growth and organizational development. It is a large macromolecular complex consisting of 12 subunits. Relative to the clear definition of RNAPII structure and biological function, the molecular mechanism of how RNAPII is assembled is poorly understood, and thus the key assembly factors acting for the assembly of RNAPII remain elusive. In this study, we identified two factors, Gpn2 and Rba50, that directly participate in the assembly of RNAPII. Gpn2 and Rba50 were demonstrated to interact with Rpb12 and Rpb3, respectively. An interaction between Gpn2 and Rba50 was also demonstrated. When Gpn2 and Rba50 are functionally defective, the assembly of the Rpb3 subcomplex is disrupted, leading to defects in the assembly of RNAPII. Based on these results, we conclude that Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex and subsequently the biogenesis of RNAPII.
Collapse
|
28
|
Li Y, Yuan Y, Fang X, Lu X, Lian B, Zhao G, Qi Y. A Role for MINIYO and QUATRE-QUART2 in the Assembly of RNA Polymerases II, IV, and V in Arabidopsis. THE PLANT CELL 2018; 30:466-480. [PMID: 29352065 PMCID: PMC5868690 DOI: 10.1105/tpc.17.00380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 05/15/2023]
Abstract
RNA polymerases IV and V (Pol IV and Pol V) are required for the generation of noncoding RNAs in RNA-directed DNA methylation (RdDM). Their subunit compositions resemble that of Pol II. The mechanism and accessory factors involved in their assembly remain largely unknown. In this study, we identified mutant alleles of MINIYO (IYO), QUATRE-QUART2 (QQT2), and NUCLEAR RNA POLYMERASE B11/D11/E11 (NRPB/D/E11) that cause defects in RdDM in Arabidopsis thaliana We found that Pol IV-dependent small interfering RNAs and Pol V-dependent transcripts were greatly reduced in the mutants. NRPE1, the largest subunit of Pol V, failed to associate with other Pol V subunits in the iyo and qqt2 mutants, suggesting the involvement of IYO and QQT2 in Pol V assembly. In addition, we found that IYO and QQT2 were mutually dependent for their association with the NRPE3 subassembly prior to the assembly of Pol V holoenzyme. Finally, we show that IYO and QQT2 are similarly required for the assembly of Pol II and Pol IV. Our findings reveal IYO and QQT2 as cofactors for the assembly of Pol II, Pol IV, and Pol V and provide mechanistic insights into how RNA polymerases are assembled in plants.
Collapse
Affiliation(s)
- Yaoxi Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yuxiang Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiuli Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bi Lian
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Gaozhan Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
29
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
30
|
Barbosa-Camacho AA, Méndez-Hernández LE, Lara-Chacón B, Peña-Gómez SG, Romero V, González-González R, Guerra-Moreno JA, Robledo-Rivera AY, Sánchez-Olea R, Calera MR. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting. FEBS Lett 2017; 591:3555-3566. [PMID: 28940195 DOI: 10.1002/1873-3468.12856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 11/07/2022]
Abstract
Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting.
Collapse
Affiliation(s)
| | | | | | | | - Violeta Romero
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | | | | | | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
31
|
Muñoz A, Mangano S, González-García MP, Contreras R, Sauer M, De Rybel B, Weijers D, Sánchez-Serrano JJ, Sanmartín M, Rojo E. RIMA-Dependent Nuclear Accumulation of IYO Triggers Auxin-Irreversible Cell Differentiation in Arabidopsis. THE PLANT CELL 2017; 29:575-588. [PMID: 28223441 PMCID: PMC5385956 DOI: 10.1105/tpc.16.00791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 05/09/2023]
Abstract
The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we identified RPAP2 IYO Mate (RIMA), a homolog of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knockdown at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its prodifferentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analyzing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.
Collapse
Affiliation(s)
- Alfonso Muñoz
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Silvina Mangano
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | | | - Ramón Contreras
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Michael Sauer
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Bert De Rybel
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | - Maite Sanmartín
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
32
|
Guerrero-Serrano G, Castanedo L, Cristóbal-Mondragón GR, Montalvo-Arredondo J, Riego-Ruíz L, DeLuna A, De Las Peñas A, Castaño I, Calera MR, Sánchez-Olea R. Npa3/ScGpn1 carboxy-terminal tail is dispensable for cell viability and RNA polymerase II nuclear targeting but critical for microtubule stability and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:451-462. [PMID: 27965115 DOI: 10.1016/j.bbamcr.2016.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
Genetic deletion of the essential GTPase Gpn1 or replacement of the endogenous gene by partial loss of function mutants in yeast is associated with multiple cellular phenotypes, including in all cases a marked cytoplasmic retention of RNA polymerase II (RNAPII). Global inhibition of RNAPII-mediated transcription due to malfunction of Gpn1 precludes the identification and study of other cellular function(s) for this GTPase. In contrast to the single Gpn protein present in Archaea, eukaryotic Gpn1 possesses an extension of approximately 100 amino acids at the C-terminal end of the GTPase domain. To determine the importance of this C-terminal extension in Saccharomyces cerevisiae Gpn1, we generated yeast strains expressing either C-terminal truncated (gpn1ΔC) or full-length ScGpn1. We found that ScGpn1ΔC was retained in the cell nucleus, an event physiologically relevant as gpn1ΔC cells contained a higher nuclear fraction of the RNAPII CTD phosphatase Rtr1. gpn1ΔC cells displayed an increased size, a delay in mitosis exit, and an increased sensitivity to the microtubule polymerization inhibitor benomyl at the cell proliferation level and two cellular events that depend on microtubule function: RNAPII nuclear targeting and vacuole integrity. These phenotypes were not caused by inhibition of RNAPII, as in gpn1ΔC cells RNAPII nuclear targeting and transcriptional activity were unaffected. These data, combined with our description here of a genetic interaction between GPN1 and BIK1, a microtubule plus-end tracking protein with a mitotic function, strongly suggest that the ScGpn1 C-terminal tail plays a critical role in microtubule dynamics and mitotic progression in an RNAPII-independent manner.
Collapse
Affiliation(s)
- Gehenna Guerrero-Serrano
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Univesitaria, C.P. 78290, San Luis Potosí, San Luis Potosí, Mexico
| | - Leonardo Castanedo
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Univesitaria, C.P. 78290, San Luis Potosí, San Luis Potosí, Mexico
| | - Gema R Cristóbal-Mondragón
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Univesitaria, C.P. 78290, San Luis Potosí, San Luis Potosí, Mexico
| | - Javier Montalvo-Arredondo
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico
| | - Lina Riego-Ruíz
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico
| | - Alexander DeLuna
- LANGEBIO: Laboratorio Nacional de Genomica para la Biodiversidad, Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Guanajuato, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, C.P. 78216, San Luis Potosí, San Luis Potosí, Mexico
| | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Univesitaria, C.P. 78290, San Luis Potosí, San Luis Potosí, Mexico.
| | - Roberto Sánchez-Olea
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Univesitaria, C.P. 78290, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
33
|
Structure of GPN-Loop GTPase Npa3 and Implications for RNA Polymerase II Assembly. Mol Cell Biol 2015; 36:820-31. [PMID: 26711263 DOI: 10.1128/mcb.01009-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Biogenesis of the 12-subunit RNA polymerase II (Pol II) transcription complex requires so-called GPN-loop GTPases, but the function of these enzymes is unknown. Here we report the first crystal structure of a eukaryotic GPN-loop GTPase, the Saccharomyces cerevisiae enzyme Npa3 (a homolog of human GPN1, also called RPAP4, XAB1, and MBDin), and analyze its catalytic mechanism. The enzyme was trapped in a GDP-bound closed conformation and in a novel GTP analog-bound open conformation displaying a conserved hydrophobic pocket distant from the active site. We show that Npa3 has chaperone activity and interacts with hydrophobic peptide regions of Pol II subunits that form interfaces in the assembled Pol II complex. Biochemical results are consistent with a model that the hydrophobic pocket binds peptides and that this can allosterically stimulate GTPase activity and subsequent peptide release. These results suggest that GPN-loop GTPases are assembly chaperones for Pol II and other protein complexes.
Collapse
|
34
|
Vernekar DV, Bhargava P. Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1340-53. [PMID: 26423792 DOI: 10.1016/j.bbagrm.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Yeast Bud27, an unconventional prefoldin is reported to affect the expression of nutrient-responsive genes, translation initiation and assembly of the multi-subunit eukaryotic RNA polymerases (pols), at a late step. We found that Bud27 associates with pol III in active as well as repressed states. Pol III transcription and occupancy at the target genes reduce with the deletion of BUD27. It promotes the interaction of pol III with the chromatin remodeler RSC found on most of the pol III targets, and with the heat shock protein Ssa4, which helps in nuclear import of the assembled pol III. Under nutrient-starvation, Ssa4-pol III interaction increases, while pol III remains inside the nucleus. Bud27 but not Ssa4 is required for RSC-pol III interaction, which reduces under nutrient-starvation. In the bud27Δ cells, total protein level of the largest pol III subunit Rpc160 but not of Rpc128, Rpc34 and Rpc53 subunits is reduced. This is accompanied by lower transcription of RPC128 gene and lower RPC160 translation due to reduced association of mRNA with the ribosomes. The resultant alteration in the normal cellular ratio of the two largest subunits of pol III core leads to reduced association of other pol III subunits and hampers the normal assembly of pol III at an early step in the cytoplasm. Our results show that Bud27 is required in multiple activities responsible for pol III biogenesis and activity.
Collapse
Affiliation(s)
- Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
35
|
An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes. G3-GENES GENOMES GENETICS 2015; 5:1879-87. [PMID: 26175450 PMCID: PMC4555224 DOI: 10.1534/g3.115.019174] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes.
Collapse
|
36
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
37
|
Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol 2015; 35:1169-81. [PMID: 25605335 DOI: 10.1128/mcb.01230-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation, rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased in rpc128-1007 cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of the rpc128-1007 mutation and selected the Rbs1 gene, whose overexpression enhanced de novo tRNA transcription in rpc128-1007 cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. The rpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating that rpc128-1007 and rbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus.
Collapse
|
38
|
Gpn1 and Gpn3 associate tightly and their protein levels are mutually dependent in mammalian cells. FEBS Lett 2014; 588:3823-9. [DOI: 10.1016/j.febslet.2014.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/03/2014] [Accepted: 08/28/2014] [Indexed: 11/24/2022]
|
39
|
Cieśla M, Mierzejewska J, Adamczyk M, Farrants AKÖ, Boguta M. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1103-10. [DOI: 10.1016/j.bbamcr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|