1
|
Cortez JV, Hardwicke K, Cuervo-Arango J, Grupen CG. Cloning horses by somatic cell nuclear transfer: Effects of oocyte source on development to foaling. Theriogenology 2023; 203:99-108. [PMID: 37011429 DOI: 10.1016/j.theriogenology.2023.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The cloning of horses is a commercial reality, yet the availability of oocytes for cloned embryo production remains a major limitation. Immature oocytes collected from abattoir-sourced ovaries or from live mares by ovum pick-up (OPU) have both been used to generate cloned foals. However, the reported cloning efficiencies are difficult to compare due to the different somatic cell nuclear transfer (SCNT) techniques and conditions used. The objective of this retrospective study was to compare the in vitro and in vivo development of equine SCNT embryos produced using oocytes recovered from abattoir-sourced ovaries and from live mares by OPU. A total of 1,128 oocytes were obtained, of which 668 were abattoir-derived and 460 were OPU-derived. The methods used for in vitro maturation and SCNT were identical for both oocyte groups, and the embryos were cultured in Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham medium supplemented with 10% fetal calf serum. Embryo development in vitro was assessed, and Day 7 blastocysts were transferred to recipient mares. The embryos were transferred fresh when possible, and a cohort of vitrified-thawed OPU-derived blastocysts was also transferred. Pregnancy outcomes were recorded at Days 14, 42 and 90 of gestation and at foaling. The rates of cleavage (68.7 ± 3.9% vs 62.4 ± 4.7%) and development to the blastocyst stage (34.6 ± 3.3% vs 25.6 ± 2.0%) were superior for OPU-derived embryos compared with abattoir-derived embryos (P < 0.05). Following transfer of Day 7 blastocysts to a total of 77 recipient mares, the pregnancy rates at Days 14 and 42 of gestation were 37.7% and 27.3%, respectively. Beyond Day 42, the percentages of recipient mares that still had a viable conceptus at Day 90 (84.6% vs 37.5%) and gave birth to a healthy foal (61.5% vs 12.5%) were greater for the OPU group compared with the abattoir group (P < 0.05). Surprisingly, more favourable pregnancy outcomes were achieved when blastocysts were vitrified for later transfer, probably because the uterine receptivity of the recipient mares was more ideal. A total of 12 cloned foals were born, 9 of which were viable. Given the differences observed between the two oocyte groups, the use of OPU-harvested oocytes for generating cloned foals is clearly advantageous. Continued research is essential to better understand the oocyte deficiencies and increase the efficiency of equine cloning.
Collapse
|
2
|
Soltani L, Ghaneialvar H, Mahdavi AH. An overview of the role of metallic and nonmetallic nanoparticles and their salts during sperm cryopreservation and in vitro embryo manipulation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:262-279. [PMID: 36120977 DOI: 10.1080/15257770.2022.2124269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The cryopreservation of spermatozoa and the in vitro embryo production are valuable tools used in a variety of species, including humans, livestock, fish, and aquatic invertebrates. Sperm cryopreservation has been used to maintain or increase the genetic diversity of threatened species. Reactive oxygen species (ROS) are molecules derived from oxygen, being formed as byproducts of cellular metabolism. During cryopreservation of sperm and other in vitro manipulations of oocytes and embryos, ROS production is dramatically increased. In cells, low, medium, and high levels of ROS lead to different outcomes, apoptosis, auto-phagocytosis, and necrosis, respectively. ROS produced by cells can be neutralized by intracellular antioxidant systems, including enzymes as well as non-enzymatic antioxidants. Free radicals and oxidative stress can be major factors influencing in vitro manipulations. In this review, we discuss the role that metallic and nonmetallic nanoparticles and their salts play in the modulation of oxidative stress during in vitro embryo production and cryopreservation of sperm.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
3
|
Fu B, Ma H, Liu D. Functions and Regulation of Endogenous Retrovirus Elements during Zygotic Genome Activation: Implications for Improving Somatic Cell Nuclear Transfer Efficiency. Biomolecules 2021; 11:829. [PMID: 34199637 PMCID: PMC8229993 DOI: 10.3390/biom11060829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs), previously viewed as deleterious relics of ancestral retrovirus infections, are silenced in the vast majority of cells to minimize the risk of retrotransposition. Counterintuitively, bursts of ERV transcription usually occur during maternal-to-zygotic transition (MZT) in preimplantation embryos; this is regarded as a major landmark event in the zygotic genome activation (ZGA) process, indicating that ERVs play an active part in ZGA. Evolutionarily, the interaction between ERVs and hosts is mutually beneficial. The endogenization of retrovirus sequences rewires the gene regulatory network during ZGA, and ERV repression may lower germline fitness. Unfortunately, owing to various limitations of somatic cell nuclear transfer (SCNT) technology, both developmental arrest and ZGA abnormalities occur in a high percentage of cloned embryos, accompanied by ERV silencing, which may be caused by the activation failure of upstream ERV inducers. In this review, we discuss the functions and regulation of ERVs during the ZGA process and the feasibility of temporal control over ERVs in cloned embryos via exogenous double homeobox (DUX). We hypothesize that further accurate characterization of the ERV-rewired gene regulatory network during ZGA may provide a novel perspective on the development of preimplantation embryos.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
4
|
Hodge MJ, de las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes (Basel) 2021; 12:genes12020203. [PMID: 33573244 PMCID: PMC7912062 DOI: 10.3390/genes12020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Reduced reproductive efficiency results in economic losses to the Australian sheep industry. Reproductive success, particularly after artificial insemination, is dependent on a number of contributing factors on both ewe and ram sides. Despite considerable emphasis placed on characterising ewe side contributions, little emphasis has been placed on characterising ram side contributions to conception success. Over 14,000 transcripts are in spermatozoa of other species, which are transferred to the ova on fertilisation. These transcripts conceivably influence early embryonic development and whether conception is successful. Semen was collected (n = 45) across three breeds; Merino, Dohne, and Poll Dorset. Following collection, each ejaculate was split in two; an aliquot was assessed utilising Computer Assisted Semen Analysis (CASA) and the remaining was utilised for RNA extraction and subsequent next-generation sequencing. Overall, 754 differentially expressed genes were identified in breed contrasts and contrast between ejaculates of different quality. Downstream analysis indicated that these genes could play significant roles in a broad range of physiological functions, including maintenance of spermatogenesis, fertilisation, conception, embryonic development, and offspring production performance. Overall results provide evidence that the spermatozoal transcriptome could be a crucial contributing factor in improving reproductive performance as well as in the overall productivity and profitability of sheep industries.
Collapse
Affiliation(s)
- Marnie J. Hodge
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia;
| | - Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia;
| | | | - Cyril P. Stephen
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
| | - Sameer D. Pant
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Correspondence:
| |
Collapse
|
5
|
Severance AL, Midic U, Latham KE. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol Genomics 2019; 52:96-109. [PMID: 31869285 DOI: 10.1152/physiolgenomics.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Uros Midic
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Midic U, Vincent KA, Wang K, Lokken A, Severance AL, Ralston A, Knott JG, Latham KE. Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development. Mol Reprod Dev 2019; 85:635-648. [PMID: 29900695 DOI: 10.1002/mrd.23001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022]
Abstract
Structural maintenance of chromosome flexible domain containing 1 (Smchd1) is a chromatin regulatory gene for which mutations are associated with facioscapulohumeral muscular dystrophy and arhinia. The contribution of oocyte- and zygote-expressed SMCHD1 to early development was examined in mice ( Mus musculus) using a small interfering RNA knockdown approach. Smchd1 knockdown compromised long-term embryo viability, with reduced embryo nuclear volumes at the morula stage, reduced blastocyst cell number, formation and hatching, and reduced viability to term. RNA sequencing analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of a small number of trophectoderm (TE)-related genes and reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 ( Skp2). Smchd1 expression was elevated in embryos deficient for Caudal-type homeobox transcription factor 2 ( Cdx2, a key regulator of TE specification), indicating that Smchd1 is normally repressed by CDX2. These results indicate that Smchd1 plays an important role in the preimplantation embryo, regulating early gene expression and contributing to long-term embryo viability. These results extend the known functions of SMCHD1 to the preimplantation period and highlight important function for maternally expressed Smchd1 messenger RNA and protein.
Collapse
Affiliation(s)
- Uros Midic
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kailey A Vincent
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kai Wang
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Alyson Lokken
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Ashley L Severance
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Amy Ralston
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
7
|
Ruebel ML, Vincent KA, Schall PZ, Wang K, Latham KE. SMCHD1 terminates the first embryonic genome activation event in mouse two-cell embryos and contributes to a transcriptionally repressive state. Am J Physiol Cell Physiol 2019; 317:C655-C664. [PMID: 31365290 DOI: 10.1152/ajpcell.00116.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic genome activation (EGA) in mammals begins with transient expression of a large group of genes (EGA1). Importantly, entry into and exit from the 2C/EGA state is essential for viability. Dux family member genes play an integral role in EGA1 by activating other EGA marker genes such as Zscan4 family members. We previously reported that structural maintenance of chromosomes flexible hinge domain-containing protein 1 (Smchd1) is expressed at the mRNA and protein levels in mouse oocytes and early embryos and that elimination of Smchd1 expression inhibits inner cell mass formation, blastocyst formation and hatching, and term development. We extend these observations here by showing that siRNA knockdown of Smchd1 in zygotes results in overexpression of Dux and Zscan4 in two-cell embryos, with continued overexpression of Dux at least through the eight-cell stage as well as prolonged expression of Zscan4. These results are consistent with a role for SMCHD1 in promoting exit from the EGA1 state and establishing SMCHD1 as a maternal effect gene and the first chromatin regulatory factor identified with this role. Additionally, bioinformatics analysis reveals that SMCHD1 also contributes to the creation of a transcriptionally repressive state to allow correct gene regulation.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kailey A Vincent
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kai Wang
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Sun Q, Wang Y, Fan J, Li Z, Zhang J, Wang L, Fan X, Ji M, Zhu M, Dai J, Ma H, Jin G, Hu Z, Shen H. Association of expression quantitative trait loci for long noncoding RNAs with lung cancer risk in Asians. Mol Carcinog 2019; 58:1303-1313. [DOI: 10.1002/mc.23013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Qi Sun
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Jingyi Fan
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Zhihua Li
- Department of Thoracic SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjing China
| | - Jiahui Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Lijuan Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Xikang Fan
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Mengmeng Ji
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public HealthNanjing Medical UniversityNanjing China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing China
| |
Collapse
|
9
|
Choo DI, Tawfik KO, Martin DM, Raphael Y. Inner ear manifestations in CHARGE: Abnormalities, treatments, animal models, and progress toward treatments in auditory and vestibular structures. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:439-449. [PMID: 29082607 DOI: 10.1002/ajmg.c.31587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022]
Abstract
The inner ear contains the sensory organs for hearing and balance. Both hearing and balance are commonly affected in individuals with CHARGE syndrome (CS), an autosomal dominant condition caused by heterozygous pathogenic variants in the CHD7 gene. Semicircular canal dysplasia or aplasia is the single most prevalent feature in individuals with CHARGE leading to deficient gross motor skills and ambulation. Identification of CHD7 as the major gene affected in CHARGE has enabled acceleration of research in this field. Great progress has been made in understanding the role of CHD7 in the development and function of the inner ear, as well as in related organs such as the middle ear and auditory and vestibular neural pathways. The goals of current research on CHD7 and CS are to (a) improve our understanding of the pathology caused by CHD7 pathogenic variants and (b) to provide better tools for prognosis and treatment. Current studies utilize cells and whole animals, from flies to mammals. The mouse is an excellent model for exploring mechanisms of Chd7 function in the ear, given the evolutionary conservation of ear structure, function, Chd7 expression, and similarity of mutant phenotypes between mice and humans. Newly recognized developmental functions for mouse Chd7 are shedding light on how abnormalities in CHD7 might lead to CS symptoms in humans. Here we review known human inner ear phenotypes associated with CHD7 pathogenic variants and CS, summarize progress toward diagnosis and treatment of inner ear-related pathologies, and explore new avenues for treatment based on basic science discoveries.
Collapse
Affiliation(s)
- Daniel I Choo
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kareem O Tawfik
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
10
|
Jeon Y, Yoon JD, Cai L, Hwang SU, Kim E, Lee E, Jeung EB, Hyun SH, Hwang WS. Zinc supplementation during in vitro maturation increases the production efficiency of cloned pigs. J Reprod Dev 2016; 62:635-638. [PMID: 27488694 PMCID: PMC5177983 DOI: 10.1262/jrd.2016-072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc supplementation (0.8 µg/ml) in in vitro maturation (IVM) medium significantly enhances oocyte quality. In this study, we compared the
development of somatic cell nuclear transfer (SCNT) embryos produced from conventional IVM (control) and zinc-supplemented IVM oocytes. A total of 1206 and 890
SCNT embryos were produced using control and zinc-supplemented oocytes, respectively, and then were transferred to 11 and 8 recipients, respectively. Five
control recipients and three zinc-supplemented recipients became pregnant. Two live piglets and eight mummies were born from two control recipients, and ten
live piglets and six stillborn piglets were born from three zinc-supplemented recipients. The production efficiency significantly increased in the
zinc-supplemented group (0.33% vs. 3.02%). This report suggests that zinc supplementation in IVM medium improved the production efficiency of
cloned pigs.
Collapse
Affiliation(s)
- Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lara-Padilla E, Miliar-Garcia A, Gomez-Lopez M, Romero-Morelos P, Bazan-Mendez C, Alfaro-Rodriguez A, Anaya-Ruiz M, Callender K, Carlos A, Bandala C. Neural Transdifferentiation: MAPTau Gene Expression in Breast Cancer Cells. Asian Pac J Cancer Prev 2016; 17:1967-71. [PMID: 27221882 DOI: 10.7314/apjcp.2016.17.4.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In tumor cells, aberrant differentiation programs have been described. Several neuronal proteins have been found associated with morphological neuronal-glial changes in breast cancer (BCa). These neuronal proteins have been related to mechanisms that are involved in carcinogenesis; however, this regulation is not well understood. Microtubule-associated protein-tau (MAP-Tau) has been describing in BCa but not its variants. This finding could partly explain the neuronal-glial morphology of BCa cells. Our aim was to determine mRNA expression of MAP-tau variants 2, 4 and 6 in breast cancer cell lines. MATERIALS AND METHODS Cultured cell lines MCF-10A, MDA-MB-231, SKBR3 and T47D were observed under phase-contrast microscopy for neural morphology and analyzed for gene expression of MAP-Tau transcript variants 2, 4 and 6 by real-time PCR. RESULTS Regarding morphology like neural/glial cells, T47D line shown more cells with these features than MDA-MB-231 and SKBR. In another hand, we found much greater mRNA expression of MAP-Tau transcript variants 2, and to a lesser extent 4 and 6, in T47D cells than the other lines. In conclusion, regulation of MAP- Tau could bring about changes in cytoskeleton, cell morphology and motility; these findings cast further light on neuronal transdifferentiation in BCa.
Collapse
Affiliation(s)
- E Lara-Padilla
- Laboratory of Molecular Oncology and Oxidative Stress, Mexico City, Mexico, E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rajput SK, Lee K, Zhenhua G, Di L, Folger JK, Smith GW. Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression. Reprod Fertil Dev 2014; 26:37-47. [PMID: 24305175 DOI: 10.1071/rd13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite several decades since the birth of the first test tube baby and the first calf derived from an in vitro-fertilised embryo, the efficiency of assisted reproductive technologies remains less than ideal. Poor oocyte competence is a major factor limiting the efficiency of in vitro embryo production. Developmental competence obtained during oocyte growth and maturation establishes the foundation for successful fertilisation and preimplantation embryonic development. Regulation of molecular and cellular events during fertilisation and embryo development is mediated, in part, by oocyte-derived factors acquired during oocyte growth and maturation and programmed by factors of follicular somatic cell origin. The available evidence supports an important intrinsic role for oocyte-derived follistatin and JY-1 proteins in mediating embryo developmental progression after fertilisation, and suggests that the paracrine and autocrine actions of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15 and follicular somatic cell-derived members of the fibroblast growth factor family impact oocyte competence and subsequent embryo developmental progression after fertilisation. An increased understanding of the molecular mechanisms mediating oocyte competence and stage-specific developmental events during early embryogenesis is crucial for further improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
13
|
Latham KE. Role of aberrant protein modification, assembly, and localization in cloned embryo phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:141-58. [PMID: 25030763 DOI: 10.1007/978-1-4939-0817-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aberrant post-translational modifications of proteins contribute markedly to the abnormal characteristics of cloned embryos. This review summarizes aberrant aspects of protein modifications and protein interactions, taking an inside-outside view to the cell. These aberrant aspects affect a range of processes including the control of chromatin structure, expression of pluripotency genes, propagation of epigenetic inheritance, protein trafficking, localization and signaling, cytoskeletal structure, mitosis, and correct localization of membrane proteins. By observing these aberrant features of cloned embryos, how they arise, and their impacts on development, it is possible to gain insight into normal development and identify novel strategies for enhancing cloning outcomes.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, College of Agriculture and Natural Resources, and The Reproductive and Developmental Sciences Program, Michigan State University, 474 S. Shaw Lane, Room 1230E, East Lansing, MI, 48824, USA,
| |
Collapse
|
14
|
Bernhardt ML, Bustamante-Marín X. Triangle Consortium for Reproductive Biology 22nd Annual Meeting. Mol Reprod Dev 2013; 80:504-7. [PMID: 23757113 DOI: 10.1002/mrd.22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Miranda L Bernhardt
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|