1
|
Yeh CF, Chen CC, Lai CC, Liu JW, Tang HJ, Su WP. Synergistic effect of repurposed mitomycin C in combination with antibiotics against Aeromonas infection: In vitro and in vivo studies. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:189-197. [PMID: 39800585 DOI: 10.1016/j.jmii.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 03/18/2025]
Abstract
BACKGROUND Aeromonas infections pose a significant threat associated with high mortality rates. This study investigates the potential of mitomycin C (MMC), an anticancer drug, as a novel antimicrobial agent against Aeromonas infections. METHODS We evaluated the minimum inhibitory concentrations (MICs) of MMC and antibiotics against clinical Aeromonas isolates using broth microdilution. Synergistic effects of MMC with antibiotics were determined via time-kill studies. MMC's intracellular killing effects were analyzed using a representative Aeromonas isolate. Efficacy of combined therapies was assessed in a neutropenic mouse model. MMC-induced SOS response was evaluated using cell elongation method, and RNA extraction and quantitative real-time PCR. RESULTS Combining 1/8⨯ MIC of mitomycin C (MMC) with either 1⨯ or 1/2⨯ MIC of LVX demonstrated significant synergistic effects over 24 h in vitro. In a neutropenic mouse model, the combination of MMC (2 mg/kg or 1 mg/kg) with LVX achieved survival rates of 100 % and 80 %, respectively, compared to 0 % survival with monotherapy. MMC induced marked cell elongation and division inhibition in response to escalating doses. However, the combination therapy's enhancement did not surpass the effects of individual drug treatments. Notably, combination therapy reduced recA activator levels below those observed with either drug alone, suggesting rapid bacterial cell death curtailed further expression of recA and lexA. Alternatively, extensive DNA damage may have overwhelmed bacterial DNA repair mechanisms, rendering them ineffective. CONCLUSIONS These findings suggest that MMC may serve as a potential antimicrobial agent, particularly when used in combination with antibiotics. The integration of MMC with antibiotic therapy offers a promising approach for the treatment of Aeromonas infections and holds potential for future clinical applications.
Collapse
Affiliation(s)
- Cheng-Fa Yeh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Chung Chen
- Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jin-Wei Liu
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Bush NG, Diez-Santos I, Sankara Krishna P, Clavijo B, Maxwell A. Insights into antibiotic resistance promoted by quinolone exposure. Antimicrob Agents Chemother 2025; 69:e0099724. [PMID: 39589140 PMCID: PMC11784200 DOI: 10.1128/aac.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Quinolone-induced antibiotic resistance (QIAR) refers to the phenomenon by which bacteria exposed to sublethal levels of quinolones acquire resistance to non-quinolone antibiotics. We have explored this in Escherichia coli MG1655 using a variety of compounds and bacteria carrying a quinolone-resistance mutation in gyrase, mutations affecting the SOS response, and mutations in error-prone polymerases. The nature of the antibiotic-resistance mutations was determined by whole-genome sequencing. Exposure to low levels of most quinolones tested led to mutations conferring resistance to chloramphenicol, ampicillin, kanamycin, and tetracycline. The mutations included point mutations and deletions and could mostly be correlated with the resistance phenotype. QIAR depended upon DNA gyrase and involved the SOS response but was not dependent on error-prone polymerases. Only moxifloxacin, among the quinolones tested, did not display a significant QIAR effect. We speculate that the lack of QIAR with moxifloxacin may be attributable to it acting via a different mechanism. In addition to the concerns about antimicrobial resistance to quinolones and other compounds, QIAR presents an additional challenge in relation to the usage of quinolone antibacterials.
Collapse
Affiliation(s)
- Natassja G. Bush
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Isabel Diez-Santos
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia School of Biological Sciences, Norwich, United Kingdom
| | - Pilla Sankara Krishna
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bernardo Clavijo
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
3
|
Blattman SB, Jiang W, McGarrigle ER, Liu M, Oikonomou P, Tavazoie S. Identification and genetic dissection of convergent persister cell states. Nature 2024; 636:438-446. [PMID: 39506104 PMCID: PMC11634777 DOI: 10.1038/s41586-024-08124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Persister cells, rare phenotypic variants that survive normally lethal levels of antibiotics, present a major barrier to clearing bacterial infections1. However, understanding the precise physiological state and genetic basis of persister formation has been a longstanding challenge. Here we generated a high-resolution single-cell2 RNA atlas of Escherichia coli growth transitions, which revealed that persisters from diverse genetic and physiological models converge to transcriptional states that are distinct from standard growth phases and instead exhibit a dominant signature of translational deficiency. We then used ultra-dense CRISPR interference3 to determine how every E. coli gene contributes to persister formation across genetic models. Among critical genes with large effects, we found lon, which encodes a highly conserved protease4, and yqgE, a poorly characterized gene whose product strongly modulates the duration of post-starvation dormancy and persistence. Our work reveals key physiologic and genetic factors that underlie starvation-triggered persistence, a critical step towards targeting persisters in recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Riley McGarrigle
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Menghan Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Cho E, Kim J, Hur JI, Ryu S, Jeon B. Pleiotropic cellular responses underlying antibiotic tolerance in Campylobacter jejuni. Front Microbiol 2024; 15:1493849. [PMID: 39651349 PMCID: PMC11622253 DOI: 10.3389/fmicb.2024.1493849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Antibiotic tolerance enables antibiotic-susceptible bacteria to withstand prolonged exposure to high concentrations of antibiotics. Although antibiotic tolerance presents a major challenge for public health, its underlying molecular mechanisms remain unclear. Previously, we have demonstrated that Campylobacter jejuni develops tolerance to clinically important antibiotics, including ciprofloxacin and tetracycline. To identify cellular responses associated with antibiotic tolerance, RNA-sequencing was conducted on C. jejuni after inducing antibiotic tolerance through exposure to ciprofloxacin or tetracycline. Additionally, knockout mutants were constructed for genes exhibiting significant changes in expression levels during antibiotic tolerance. The genes involved in protein chaperones, bacterial motility, DNA repair system, drug efflux pump, and iron homeostasis were significantly upregulated during antibiotic tolerance. These mutants displayed markedly reduced viability compared to the wild-type strain, indicating the critical role of these cellular responses in sustaining antibiotic tolerance. Notably, the protein chaperone mutants exhibited increased protein aggregation under antibiotic treatment, suggesting that protein chaperones play a critical role in managing protein disaggregation and facilitating survival during antibiotic tolerance. Our findings demonstrate that various cellular defense mechanisms collectively contribute to sustaining antibiotic tolerance in C. jejuni, providing novel insights into the molecular mechanisms underlying antibiotic tolerance.
Collapse
Affiliation(s)
- Eunshin Cho
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Jeong In Hur
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
5
|
Smirnova G, Tyulenev A, Sutormina L, Kalashnikova T, Samoilova Z, Muzyka N, Ushakov V, Oktyabrsky O. Effect of H 2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium. Arch Microbiol 2024; 206:456. [PMID: 39495300 DOI: 10.1007/s00203-024-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Endogenous H2S has been proposed to be a universal defense mechanism against different antibiotics. Here, we studied the role of H2S transiently generated during ciprofloxacin (CF) treatment in M9 minimal medium with sulfate or produced by E. coli when fed with cystine. The cysM and mstA mutants did not produce H2S, while gshA generated more H2S in response to ciprofloxacin in cystine-free media. All mutants showed a reduced ability to maintain cysteine homeostasis under these conditions. We found no relationship between H2S generation, cysteine concentration and sensitivity to ciprofloxacin. Excess cysteine, which occurred during E. coli growth in cystine-fed media, triggered continuous H2S production, accelerated glutathione synthesis and cysteine export. This was accompanied by a twofold increase in ciprofloxacin tolerance in all strains except gshA, whose sensitivity increased 5-8-fold at high CF doses, indicating the importance of GSH in restoring the intracellular redox situation during growth in cystine-fed media.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia.
| | - Aleksey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Lyubov Sutormina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Tatyana Kalashnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Zoya Samoilova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Nadezda Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| |
Collapse
|
6
|
Shiraliyev R, Orman MA. Metabolic disruption impairs ribosomal protein levels, resulting in enhanced aminoglycoside tolerance. eLife 2024; 13:RP94903. [PMID: 39093940 PMCID: PMC11296704 DOI: 10.7554/elife.94903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.
Collapse
Affiliation(s)
- Rauf Shiraliyev
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of HoustonHoustonUnited States
| | - Mehmet A Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of HoustonHoustonUnited States
| |
Collapse
|
7
|
Shiraliyev R, Orman MA. METABOLIC DISRUPTION IMPAIRS RIBOSOMAL PROTEIN LEVELS, RESULTING IN ENHANCED AMINOGLYCOSIDE TOLERANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572673. [PMID: 38187583 PMCID: PMC10769322 DOI: 10.1101/2023.12.20.572673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Aminoglycoside antibiotics display broad-spectrum activity against Gram-negative and Grampositive bacteria by targeting their ribosomes. Herein, we have demonstrated that energy metabolism plays a crucial role in aminoglycoside tolerance, as knockout strains associated with the tricarboxylic acid cycle (TCA) and the electron transport chain (ETC) exhibited increased tolerance to aminoglycosides in the mid-exponential growth phase of Escherichia coli cells. Given that aminoglycoside uptake relies on the energy-driven electrochemical potential across the cytoplasmic membrane, our initial expectation was that these genetic perturbations would decrease the proton motive force (PMF), subsequently affecting the uptake of aminoglycosides. However, our results did not corroborate this assumption. We found no consistent metabolic changes, ATP levels, cytoplasmic pH variations, or membrane potential differences in the mutant strains compared to the wild type. Additionally, intracellular concentrations of fluorophore-labeled gentamicin remained similar across all strains. To uncover the mechanism responsible for the observed tolerance in mutant strains, we employed untargeted mass spectrometry to quantify the proteins within these mutants and subsequently compared them to their wild-type counterparts. Our comprehensive analysis, which encompassed protein-protein association networks and functional enrichment, unveiled a noteworthy upregulation of proteins linked to the TCA cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research has the potential to uncover mechanisms behind aminoglycoside tolerance, paving the way for novel strategies to combat such cells.
Collapse
Affiliation(s)
- Rauf Shiraliyev
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204
| | - Mehmet A Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204
| |
Collapse
|
8
|
Tang J, Herzfeld AM, Leon G, Brynildsen MP. Differential impacts of DNA repair machinery on fluoroquinolone persisters with different chromosome abundances. mBio 2024; 15:e0037424. [PMID: 38564687 PMCID: PMC11077951 DOI: 10.1128/mbio.00374-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
DNA repair machinery has been found to be indispensable for fluoroquinolone (FQ) persistence of Escherichia coli. Previously, we found that cells harboring two copies of the chromosome (2Chr) in stationary-phase cultures were more likely to yield FQ persisters than those with one copy of the chromosome (1Chr). Furthermore, we found that RecA and RecB were required to observe that difference, and that loss of either more significantly impacted 2Chr persisters than 1Chr persisters. To better understand the survival mechanisms of persisters with different chromosome abundances, we examined their dependencies on different DNA repair proteins. Here, we show that lexA3 and ∆recN negatively impact the abundances of 2Chr persisters to FQs, without significant impacts on 1Chr persisters. In comparison, ∆xseA, ∆xseB, and ∆uvrD preferentially depress 1Chr persistence to levels that were near the limit of detection. Collectively, these data show that the DNA repair mechanisms used by persisters vary based on chromosome number, and suggest that efforts to eradicate FQ persisters will likely have to take heterogeneity in single-cell chromosome abundance into consideration. IMPORTANCE Persisters are rare phenotypic variants in isogenic populations that survive antibiotic treatments that kill the other cells present. Evidence has accumulated that supports a role for persisters in chronic and recurrent infections. Here, we explore how an under-appreciated phenotypic variable, chromosome copy number (#Chr), influences the DNA repair systems persisters use to survive fluoroquinolone treatments. We found that #Chr significantly biases the DNA repair systems used by persisters, which suggests that #Chr heterogeneity should be considered when devising strategies to eradicate these troublesome bacterial variants.
Collapse
Affiliation(s)
- Juechun Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Allison M. Herzfeld
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Smirnova G, Tyulenev A, Sutormina L, Kalashnikova T, Muzyka N, Ushakov V, Samoilova Z, Oktyabrsky O. Regulation of Cysteine Homeostasis and Its Effect on Escherichia coli Sensitivity to Ciprofloxacin in LB Medium. Int J Mol Sci 2024; 25:4424. [PMID: 38674008 PMCID: PMC11050555 DOI: 10.3390/ijms25084424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia; (A.T.); (L.S.); (T.K.); (N.M.); (V.U.); (Z.S.); (O.O.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sutormina LV, Bezmaternykh KV, Muzyka NG, Oktyabrsky ON, Smirnova GV. Cysteine Homeostasis Disturbance in Escherichia coli Caused by Exposure to Ciprofloxacin. Bull Exp Biol Med 2024; 176:791-795. [PMID: 38890214 DOI: 10.1007/s10517-024-06110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 06/20/2024]
Abstract
E. coli exposure to ciprofloxacin disturbs cysteine homeostasis; an increase in the intracellular concentration of cysteine is dangerous due to its ability to enhance ROS generation. Unlike wild-type bacteria, in which the cysteine content did not exceed the control level, cells of the gshA mutant lacking glutathione are characterized by increased concentration of intracellular cysteine in proportion to the concentrations of the antibiotic, despite the intensive export of cysteine into the medium. At low concentrations of ciprofloxacin, the mutant strain formed half as many colonies as the parent strain in the survival test. These findings attest to the important role of the incorporation of excess cysteine into glutathione as one of the mechanisms of cysteine homeostasis during the stress response to antibiotic.
Collapse
Affiliation(s)
- L V Sutormina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - K V Bezmaternykh
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - N G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - O N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - G V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences - Branch of Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| |
Collapse
|
12
|
Li S, Hsieh KY, Kuo CI, Lin TC, Lee SH, Chen YR, Wang CH, Ho MR, Ting SY, Zhang K, Chang CI. A 5+1 assemble-to-activate mechanism of the Lon proteolytic machine. Nat Commun 2023; 14:7340. [PMID: 37957149 PMCID: PMC10643698 DOI: 10.1038/s41467-023-43035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Many AAA+ (ATPases associated with diverse cellular activities) proteins function as protein or DNA remodelers by threading the substrate through the central pore of their hexameric assemblies. In this ATP-dependent translocating state, the substrate is gripped by the pore loops of the ATPase domains arranged in a universal right-handed spiral staircase organization. However, the process by which a AAA+ protein is activated to adopt this substrate-pore-loop arrangement remains unknown. We show here, using cryo-electron microscopy (cryo-EM), that the activation process of the Lon AAA+ protease may involve a pentameric assembly and a substrate-dependent incorporation of the sixth protomer to form the substrate-pore-loop contacts seen in the translocating state. Based on the structural results, we design truncated monomeric mutants that inhibit Lon activity by binding to the native pentamer and demonstrated that expressing these monomeric mutants in Escherichia coli cells containing functional Lon elicits specific phenotypes associated with lon deficiency, including the inhibition of persister cell formation. These findings uncover a substrate-dependent assembly process for the activation of a AAA+ protein and demonstrate a targeted approach to selectively inhibit its function within cells.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Chi Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ru Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - See-Yeun Ting
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Pan X, Liu W, Du Q, Zhang H, Han D. Recent Advances in Bacterial Persistence Mechanisms. Int J Mol Sci 2023; 24:14311. [PMID: 37762613 PMCID: PMC10531727 DOI: 10.3390/ijms241814311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The recurrence of bacterial infectious diseases is closely associated with bacterial persisters. This subpopulation of bacteria can escape antibiotic treatment by entering a metabolic status of low activity through various mechanisms, for example, biofilm, toxin-antitoxin modules, the stringent response, and the SOS response. Correspondingly, multiple new treatments are being developed. However, due to their spontaneous low abundance in populations and the lack of research on in vivo interactions between persisters and the host's immune system, microfluidics, high-throughput sequencing, and microscopy techniques are combined innovatively to explore the mechanisms of persister formation and maintenance at the single-cell level. Here, we outline the main mechanisms of persister formation, and describe the cutting-edge technology for further research. Despite the significant progress regarding study techniques, some challenges remain to be tackled.
Collapse
Affiliation(s)
- Xiaozhou Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
15
|
Braetz S, Schwerk P, Figueroa-Bossi N, Tedin K, Fulde M. Prophage Gifsy-1 Induction in Salmonella enterica Serovar Typhimurium Reduces Persister Cell Formation after Ciprofloxacin Exposure. Microbiol Spectr 2023; 11:e0187423. [PMID: 37306609 PMCID: PMC10433948 DOI: 10.1128/spectrum.01874-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Persister cells are drug-tolerant bacteria capable of surviving antibiotic treatment despite the absence of heritable resistance mechanisms. It is generally thought that persister cells survive antibiotic exposure through the implementation of stress responses and/or energy-sparing strategies. Exposure to DNA gyrase-targeting antibiotics could be particularly detrimental for bacteria that carry prophages integrated in their genomes. Gyrase inhibitors are known to induce prophages to switch from their dormant lysogenic state into the lytic cycle, causing the lysis of their bacterial host. However, the influence of resident prophages on the formation of persister cells has only been recently appreciated. Here, we evaluated the effect of endogenous prophage carriage on the generation of bacterial persistence during Salmonella enterica serovar Typhimurium exposure to both gyrase-targeting antibiotics and other classes of bactericidal antibiotics. Results from the analysis of strain variants harboring different prophage combinations revealed that prophages play a major role in limiting the formation of persister cells during exposure to DNA-damaging antibiotics. In particular, we present evidence that prophage Gifsy-1 (and its encoded lysis proteins) are major factors limiting persister cell formation upon ciprofloxacin exposure. Resident prophages also appear to have a significant impact on the initial drug susceptibility, resulting in an alteration of the characteristic biphasic killing curve of persister cells into a triphasic curve. In contrast, a prophage-free derivative of S. Typhimurium showed no difference in the killing kinetics for β-lactam or aminoglycoside antibiotics. Our study demonstrates that induction of prophages increased the susceptibility toward DNA gyrase inhibitors in S. Typhimurium, suggesting that prophages have the potential for enhancing antibiotic efficacy. IMPORTANCE Bacterial infections resulting from antibiotic treatment failure can often be traced to nonresistant persister cells. Moreover, intermittent or single treatment of persister cells with β-lactam antibiotics or fluoroquinolones can lead to the formation of drug-resistant bacteria and to the emergence of multiresistant strains. It is therefore important to have a better understanding of the mechanisms that impact persister formation. Our results indicate that prophage-associated bacterial killing significantly reduces persister cell formation in lysogenic cells exposed to DNA-gyrase-targeting drugs. This suggests that therapies based on gyrase inhibitors should be favored over alternative strategies when dealing with lysogenic pathogens.
Collapse
Affiliation(s)
- Sebastian Braetz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Peter Schwerk
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Bollen C, Louwagie E, Verstraeten N, Michiels J, Ruelens P. Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Rep 2023; 24:e57309. [PMID: 37395716 PMCID: PMC10398667 DOI: 10.15252/embr.202357309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Elen Louwagie
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jan Michiels
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Philip Ruelens
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
- Laboratory of Socioecology and Social EvolutionKU LeuvenLeuvenBelgium
| |
Collapse
|
17
|
Smirnova G, Tyulenev A, Muzyka N, Ushakov V, Samoilova Z, Oktyabrsky O. Influence of Growth Medium Composition on Physiological Responses of Escherichia coli to the Action of Chloramphenicol and Ciprofloxacin. BIOTECH 2023; 12:43. [PMID: 37366791 DOI: 10.3390/biotech12020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The ability of hydrogen sulfide (H2S) to protect bacteria from bactericidal antibiotics has previously been described. The main source of H2S is the desulfurization of cysteine, which is either synthesized by cells from sulfate or transported from the medium, depending on its composition. Applying electrochemical sensors and a complex of biochemical and microbiological methods, changes in growth, respiration, membrane potential, SOS response, H2S production and bacterial survival under the action of bactericidal ciprofloxacin and bacteriostatic chloramphenicol in commonly used media were studied. Chloramphenicol caused a sharp inhibition of metabolism in all studied media. The physiological response of bacteria to ciprofloxacin strongly depended on its dose. In rich LB medium, cells retained metabolic activity at higher concentrations of ciprofloxacin than in minimal M9 medium. This decreased number of surviving cells (CFU) by 2-3 orders of magnitude in LB compared to M9 medium, and shifted optimal bactericidal concentration (OBC) from 0.3 µg/mL in M9 to 3 µg/mL in LB. Both drugs induced transient production of H2S in M9 medium. In media containing cystine, H2S was produced independently of antibiotics. Thus, medium composition significantly modifies physiological response of E. coli to bactericidal antibiotic, which should be taken into account when interpreting data and developing drugs.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Aleksey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Nadezda Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Zoya Samoilova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| |
Collapse
|
18
|
Tang K, Zhao H. Quinolone Antibiotics: Resistance and Therapy. Infect Drug Resist 2023; 16:811-820. [PMID: 36798480 PMCID: PMC9926991 DOI: 10.2147/idr.s401663] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The clinical application of quinolone antibiotics is particularly extensive. In addition to their high efficiency in infectious diseases, the treatment process brings multiple hidden dangers or side effects. In this regard, drug resistance becomes a major challenge and is almost unavoidable in the clinical application of quinolones. Both genetic and phenotypic variations contribute to bacterial survival resistance under antibiotic therapy. This review is focusing on the drug discovery history, compound structure, and bactericidal mechanism of quinolone antibiotics. Recent studies bring a more in-depth insight into the research progress of quinolone antibiotics in the causes of death, drug resistance formation, and closely related SOS response after disease treatment at this stage. Combined with the latest clinical studies, we summarize the clinical application of quinolone antibiotics and further lay a theoretical foundation for the mechanism study of resistant or sensitive bacteria in response to quinolone treatment.
Collapse
Affiliation(s)
- Kai Tang
- Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China
| | - Heng Zhao
- Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China,Correspondence: Heng Zhao, Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China, Tel +86-17689970104, Email
| |
Collapse
|
19
|
Origin and Dynamics of Mycobacterium tuberculosis Subpopulations That Predictably Generate Drug Tolerance and Resistance. mBio 2022; 13:e0279522. [PMID: 36346244 PMCID: PMC9765434 DOI: 10.1128/mbio.02795-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Initial responses to tuberculosis treatment are poor predictors of final therapeutic outcomes in drug-susceptible disease, suggesting that treatment success depends on features that are hidden within a small minority of the overall infecting Mycobacterium tuberculosis population. We developed a multitranswell robotic system to perform numerous parallel cultures of genetically barcoded M. tuberculosis exposed to steady-state concentrations of rifampicin to uncover these difficult-to-eliminate minority populations. We found that tolerance emerged repeatedly from at least two subpopulations of barcoded cells, namely, one that could not grow on solid agar media and a second that could form colonies, but whose kill curves diverged from the general bacterial population within 4 and 16 days of drug exposure, respectively. These tolerant subpopulations reproducibly passed through a phase characterized by multiple unfixed resistance mutations followed by emergent drug resistance in some cultures. Barcodes associated with drug resistance identified an especially privileged subpopulation that was rarely eliminated despite 20 days of drug treatment even in cultures that did not contain any drug-resistant mutants. The association of this evolutionary scenario with a defined subset of barcodes across multiple independent cultures suggested a transiently heritable phenotype, and indeed, glpK phase variation mutants were associated with up to 16% of the resistant cultures. Drug tolerance and resistance were eliminated in a ΔruvA mutant, consistent with the importance of bacterial stress responses. This work provides a window into the origin and dynamics of bacterial drug-tolerant subpopulations whose elimination may be critical for developing rapid and resistance-free cures. IMPORTANCE Tuberculosis is unusual among bacterial diseases in that treatments which can rapidly resolve symptoms do not predictably lead to a durable cure unless treatment is continued for months after all clinical and microbiological signs of disease have been eradicated. Using a novel steady-state antibiotic exposure system combined with chromosomal barcoding, we identified small hidden Mycobacterium tuberculosis subpopulations that repeatedly enter a state of drug tolerance with a predisposition to develop fixed drug resistance after first developing a cloud of unfixed resistance mutations. The existence of these difficult-to-eradicate subpopulations may explain the need for extended treatment regimen for tuberculosis. Their identification provides opportunities to test genetic and therapeutic approaches that may result in shorter and more effective TB treatments.
Collapse
|
20
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
21
|
The physiology and genetics of bacterial responses to antibiotic combinations. Nat Rev Microbiol 2022; 20:478-490. [PMID: 35241807 DOI: 10.1038/s41579-022-00700-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
Several promising strategies based on combining or cycling different antibiotics have been proposed to increase efficacy and counteract resistance evolution, but we still lack a deep understanding of the physiological responses and genetic mechanisms that underlie antibiotic interactions and the clinical applicability of these strategies. In antibiotic-exposed bacteria, the combined effects of physiological stress responses and emerging resistance mutations (occurring at different time scales) generate complex and often unpredictable dynamics. In this Review, we present our current understanding of bacterial cell physiology and genetics of responses to antibiotics. We emphasize recently discovered mechanisms of synergistic and antagonistic drug interactions, hysteresis in temporal interactions between antibiotics that arise from microbial physiology and interactions between antibiotics and resistance mutations that can cause collateral sensitivity or cross-resistance. We discuss possible connections between the different phenomena and indicate relevant research directions. A better and more unified understanding of drug and genetic interactions is likely to advance antibiotic therapy.
Collapse
|
22
|
Transcription-coupled DNA repair underlies variation in persister awakening and the emergence of resistance. Cell Rep 2022; 38:110427. [PMID: 35235801 DOI: 10.1016/j.celrep.2022.110427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Persisters constitute a population of temporarily antibiotic-tolerant variants in an isogenic bacterial population and are considered an important cause of relapsing infections. It is currently unclear how cellular damage inflicted by antibiotic action is reversed upon persister state exit and how this relates to antibiotic resistance development at the molecular level. We demonstrate that persisters, upon fluoroquinolone treatment, accumulate oxidative DNA damage, which is repaired through nucleotide excision repair. Detection of the damage occurs via transcription-coupled repair using UvrD-mediated backtracking or Mfd-controlled displacement of the RNA polymerase. This competition results in heterogeneity in persister awakening lags. Most persisters repair the oxidative DNA damage, displaying a mutation rate equal to the untreated population. However, the promutagenic factor Mfd increases the mutation rate in a persister subpopulation. Our data provide in-depth insight into the molecular mechanisms underlying persister survival and pinpoint Mfd as an important molecular factor linking persistence to resistance development.
Collapse
|
23
|
Abstract
Bacterial persisters are nongrowing cells highly tolerant to bactericidal antibiotics. However, this tolerance is reversible and not mediated by heritable genetic changes. Lon, an ATP-dependent protease, has repeatedly been shown to play a critical role in fluoroquinolone persistence in Escherichia coli. Although lon deletion (Δlon) is thought to eliminate persister cells via accumulation of the cell division inhibitor protein SulA, the exact mechanism underlying this phenomenon is not yet elucidated. Here, we show that Lon is an important regulatory protein for the resuscitation of the fluoroquinolone persisters in E. coli, and lon deletion impairs the ability of persister cells to form colonies during recovery through a sulA- and ftsZ-dependent mechanism. Notably, this observed "viable but nonculturable" state of antibiotic-tolerant Δlon cells is transient, as environmental conditions, such as starvation, can restore their culturability. Our data further indicate that starvation-induced SulA degradation or expression of Lon during recovery facilitates Z-ring formation in Δlon persisters, and Z-ring architecture is important for persister resuscitation in both wild-type and Δlon strains. Our in-depth image analysis clearly shows that the ratio of cell length to number of FtsZ rings for each intact ofloxacin-treated cell predicts the probability of resuscitation and, hence, can be used as a potential biomarker for persisters. IMPORTANCE The ATP-dependent Lon protease is one of the most studied bacterial proteases. Although deletion of lon has been frequently shown to reduce fluoroquinolone persistence, the proposed mechanisms underlying this phenomenon are highly controversial. Here, we have shown that lon deletion in Escherichia coli impairs the ability of persister cells to form colonies during recovery and that this reduction of persister levels in lon-deficient cells can be transient. We also found that altered Z-ring architecture is a key biomarker in both wild-type and lon-deficient persister cells transitioning to a normal cell state. Collectively, our findings highlight the importance of differentiating persister formation mechanisms from resuscitation mechanisms and underscore the critical role of the nonculturable cell state in antibiotic tolerance.
Collapse
|
24
|
Yamamoto N, Ohno Y, Tsuneda S. ldhA-induced persister in Escherichia coli is formed through accidental SOS response via intracellular metabolic perturbation. Microbiol Immunol 2022; 66:225-233. [PMID: 35174526 DOI: 10.1111/1348-0421.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Persisters are a subpopulation that exhibit growth suppression, antibiotic tolerance, and regrowth post antibiotic removal, without any genetic mutations, which causes the recalcitrance and recurrence of infectious diseases. Persisters are majorly induced through the repression of energy metabolism, but some exceptions have been reported. We have previously shown that ldhA, which encodes lactate dehydrogenase, induces Escherichia coli persisters, resulting in a state of high-energy metabolism. However, the detailed mechanism of persister formation upon ldhA expression remains elusive. In the present study, we focused on the SOS response pathway via the DNA repair pathway that consumes ATP and revealed that the SOS response pathway is activated upon ldhA expression even before antimicrobial treatment. Metabolome analysis of ldhA-overexpressing cells revealed that nucleotide metabolic pathways, such as de novo purine biosynthesis, were activated to prepare a nucleotide pool, as substrate for repairing ofloxacin-induced DNA damage. We provide a novel persister model that contributes to survival as a species by "accidentally" activating the SOS response even before receiving antimicrobial stress. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yurino Ohno
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
25
|
Lemma AS, Soto-Echevarria N, Brynildsen MP. Fluoroquinolone Persistence in Escherichia coli Requires DNA Repair despite Differing between Starving Populations. Microorganisms 2022; 10:286. [PMID: 35208744 PMCID: PMC8877308 DOI: 10.3390/microorganisms10020286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
When faced with nutritional deprivation, bacteria undergo a range of metabolic, regulatory, and biosynthetic changes. Those adjustments, which can be specific or independent of the missing nutrient, often alter bacterial tolerance to antibiotics. Here, using fluoroquinolones, we quantified Escherichia coli persister levels in cultures experiencing starvation from a lack of carbon (C), nitrogen (N), phosphorous (P), or magnesium (Mg2+). Interestingly, persister levels varied significantly based on the type of starvation as well as fluoroquinolone used with N-starved populations exhibiting the highest persistence to levofloxacin, and P-starved populations exhibiting the highest persistence to moxifloxacin. However, regardless of the type of starvation or fluoroquinolone used, DNA repair was required by persisters, with ∆recA and ∆recB uniformly exhibiting the lowest persistence of the mutants assayed. These results suggest that while the type of starvation and fluoroquinolone will modulate the level of persistence, the importance of homologous recombination is consistently observed, which provides further support for efforts to target homologous recombination for anti-persister purposes.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
| | | | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| |
Collapse
|
26
|
Smirnova GV, Tyulenev AV, Muzyka NG, Oktyabrsky ON. Study of the contribution of active defense mechanisms to ciprofloxacin tolerance in Escherichia coli growing at different rates. Antonie Van Leeuwenhoek 2022; 115:233-251. [PMID: 35022927 DOI: 10.1007/s10482-021-01693-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
Using rpoS, tolC, ompF, and recA knockouts, we investigated their effect on the physiological response and lethality of ciprofloxacin in E. coli growing at different rates on glucose, succinate or acetate. We have shown that, regardless of the strain, the degree of changes in respiration, membrane potential, NAD+/NADH ratio, ATP and glutathione (GSH) strongly depends on the initial growth rate and the degree of its inhibition. The deletion of the regulator of the general stress response RpoS, although it influenced the expression of antioxidant genes, did not significantly affect the tolerance to ciprofloxacin at all growth rates. The mutant lacking TolC, which is a component of many E. coli efflux pumps, showed the same sensitivity to ciprofloxacin as the parent. The absence of porin OmpF slowed down the entry of ciprofloxacin into cells, prolonged growth and shifted the optimal bactericidal concentration towards higher values. Deficiency of RecA, a regulator of the SOS response, dramatically altered the late phase of the SOS response (SOS-dependent cell death), preventing respiratory inhibition and a drop in membrane potential. The recA mutation inverted GSH fluxes across the membrane and abolished ciprofloxacin-induced H2S production. All studied mutants showed an inverse linear relationship between logCFU ml-1 and the specific growth rate. Mutations shifted the plot of this dependence relative to the parental strain according to their significance for ciprofloxacin tolerance. The crucial role of the SOS system is confirmed by dramatic shift down of this plot in the recA mutant.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| |
Collapse
|
27
|
Phosphoproteomics of Mycobacterium-host interaction and inspirations for novel measures against tuberculosis. Cell Signal 2022; 91:110238. [PMID: 34986388 DOI: 10.1016/j.cellsig.2021.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) remains a tremendous global public health concern. Deciphering the biology of the pathogen and its interaction with host can inspire new measures against tuberculosis. Phosphorylation plays versatile and important role in the pathogen and host physiology, such as virulence, signaling and immune response. Proteome-wide phosphorylation of Mtb and its infected host cells, namely phosphoproteome, can inform the post-translational modification of the interaction network between the pathogen and the host, key targets for novel antibiotics. We summarized the phosphoproteome of Mtb, as well as the host, focusing on potential application for new measures against tuberculosis.
Collapse
|
28
|
Fuji N, Pichichero M, Ehrlich RL, Mell JC, Ehrlich GD, Kaur R. Transition of Serotype 35B Pneumococci From Commensal to Prevalent Virulent Strain in Children. Front Cell Infect Microbiol 2021; 11:744742. [PMID: 34765566 PMCID: PMC8577857 DOI: 10.3389/fcimb.2021.744742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
In our community-based prospective cohort study in young children, we observed a significant increase in pneumococcal serotype 35B nasopharyngeal (NP) commensal colonization during the 2011–2014 timeframe, but these strains were not associated with disease. Beginning in 2015 and continuing through to the present, the serotype 35B virulence changed, and it became the dominant bacteria isolated and associated with pneumococcal acute otitis-media (AOM) in our cohort. We performed comparative analyses of 250 35B isolates obtained from 140 children collected between 2006 and 2019. Changes in prevalence, clonal-complex composition, and antibiotic resistance were analyzed. Seventy-two (29%) of 35B isolates underwent whole-genome sequencing to investigate genomic changes associated with the shift in virulence that resulted in increased rates of 35B-associated AOM disease. 35B strains that were commensals and AOM disease-causing were mainly associated with sequence type (ST) 558. Antibiotic concentrations of β-lactams and ofloxacin necessary to inhibit growth of 35B strains rose significantly (2006–2019) (p<0.005). However, only isolates from the 35B/ST558 showed significant increases in MIC50 of penicillin and ofloxacin between the years 2006–2014 and 2015–2019 (p=0.007 and p<0.0001). One hundred thirty-eight SNPs located in 34 different genes were significantly associated with post-2015 strains. SNPs were found in nrdG (metal binding, 10%); metP and metN (ABC transporter, 9%); corA (Mg2+ transporter, 6%); priA (DNA replication, 5%); and on the enzymic gene ldcB (LD-carboxypeptidase, 3%). Pneumococcal serotype 35B strains was a common NP commensal during 2010–2014. In 2015, a shift in increasing number of AOM cases occurred in young children caused by 35B, that was associated with changes in genetic composition and antibiotic susceptibility.
Collapse
Affiliation(s)
- Naoko Fuji
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Michael Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Rachel L Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, and Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Philadelphia, PA, United States
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, and Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Philadelphia, PA, United States
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, and Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Philadelphia, PA, United States.,Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| |
Collapse
|
29
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
30
|
Lemma AS, Brynildsen MP. Toxin Induction or Inhibition of Transcription or Translation Posttreatment Increases Persistence to Fluoroquinolones. mBio 2021; 12:e0198321. [PMID: 34399616 PMCID: PMC8406316 DOI: 10.1128/mbio.01983-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
Toxin-antitoxin modules are widespread in prokaryotes, and the capacity of toxin accumulation to increase the tolerances of bacteria to antibiotics has been well documented. The conventional model for this functionality implies that an overabundance of toxin arrests bacterial growth, which inhibits processes targeted by antibiotics and thereby limits their corruption and the lethal damage that would ensue. Implicit in this model is that toxins exert their influence on antibiotic lethality before and/or during treatment, even though they are also present and functional after treatment concludes. Given recent evidence establishing that the period following antibiotic treatment (recovery) is important for the survival of nongrowing bacterial populations treated with fluoroquinolones (FQs), we assayed to what extent toxins influence bacterial survival during the recovery period. With both LdrD and MazF, toxins of type I and II systems, respectively, controlling accumulation to occur only after FQ treatment of nongrowing cultures resulted in significant increases in persisters. Further genetic investigation revealed important roles for homologous recombination and nucleotide excision repair machinery. Focusing on the wild type, we did not observe any SOS-induced toxin functioning in this manner; however, an analogous phenomenon was observed for wild-type Escherichia coli as well as uropathogenic E. coli (UPEC) when transcription or translation was inhibited during the post-FQ recovery period. Collectively, these data reveal the capacity of toxins to thwart FQ killing even after the treatment has concluded and show that FQ treatment of nongrowing bacteria can be rendered largely ineffective if bacteria cannot readily resume translation and growth at the conclusion of treatment. IMPORTANCE Overabundances of toxins have been shown to increase the antibiotic tolerances of bacteria. Largely, these effects have been attributed to the abilities of toxins to inhibit bacterial growth before and during antibiotic exposure. In this study, we assessed to what extent toxins can influence bacterial survival following antibiotic treatment, rather than before or during. Using two mechanistically distinct toxins, we show that their accumulations after antibiotic exposure have the capacity to increase the abundances of fluoroquinolone persisters from nongrowing populations. Further, we show with wild-type and uropathogenic E. coli that chemical inhibition of growth, not just that induced by toxins, produces analogous results. These observations reveal another dimension of how toxins influence antibiotic tolerance and highlight the importance of postantibiotic physiology on bacterial survival.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
31
|
Murawski AM, Brynildsen MP. Ploidy is an important determinant of fluoroquinolone persister survival. Curr Biol 2021; 31:2039-2050.e7. [PMID: 33711253 PMCID: PMC8183807 DOI: 10.1016/j.cub.2021.02.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/04/2023]
Abstract
Genetic mutants have demonstrated the importance of homologous recombination (HR) to fluoroquinolone (FQ) persistence, which suggests that single-cell chromosome (Chr) abundance might be a phenotypic variable of importance to persisters. Here, we sorted stationary-phase E. coli based on ploidy and subjected the subpopulations to tolerance assays. Subpopulations sorted to contain diploid cells harbored up to ∼40-fold more FQ persisters than those sorted to contain monoploid cells. This association was observed with distinct FQs, in independent environmental conditions, and with more than one strain of E. coli (MG1655; uropathogenic CFT073) but was abolished in HR-deficient strains (ΔrecA and ΔrecB). It was observed that the persister level of monoploid subpopulations exceeded those of ΔrecA and ΔrecB by 10-fold or more, and subsequent high-purity sorting confirmed that observation. Those data suggested the existence of distinct FQ persister subtypes: those that are and are not proficient with HR. Time-lapse microscopy revealed significant differences in initial size and growth dynamics during the post-antibiotic recovery period for persisters from monoploid- and diploid-enriched subpopulations. In addition, non-persisters in monoploid-enriched subpopulations elongated minimally following FQ treatment, resembling previous observations of HR-deficient strains, whereas non-persisters in diploid-enriched subpopulations on average filamented extensively. Together, these results identify a phenotypic variable with a significant impact on FQ persistence, establish the existence of more than one type of persister to the same antibiotic in an isogenic culture, and reveal roles for RecA and RecB in FQ persistence, even in the absence of homologous chromosomes.
Collapse
Affiliation(s)
- Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mark P Brynildsen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
32
|
Edelmann D, Leinberger FH, Schmid NE, Oberpaul M, Schäberle TF, Berghoff BA. Elevated Expression of Toxin TisB Protects Persister Cells against Ciprofloxacin but Enhances Susceptibility to Mitomycin C. Microorganisms 2021; 9:943. [PMID: 33925723 PMCID: PMC8145889 DOI: 10.3390/microorganisms9050943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
Bacterial chromosomes harbor toxin-antitoxin (TA) systems, some of which are implicated in the formation of multidrug-tolerant persister cells. In Escherichia coli, toxin TisB from the tisB/istR-1 TA system depolarizes the inner membrane and causes ATP depletion, which presumably favors persister formation. Transcription of tisB is induced upon DNA damage due to activation of the SOS response by LexA degradation. Transcriptional activation of tisB is counteracted on the post-transcriptional level by structural features of tisB mRNA and RNA antitoxin IstR-1. Deletion of the regulatory RNA elements (mutant Δ1-41 ΔistR) uncouples TisB expression from LexA-dependent SOS induction and causes a 'high persistence' (hip) phenotype upon treatment with different antibiotics. Here, we demonstrate by the use of fluorescent reporters that TisB overexpression in mutant Δ1-41 ΔistR inhibits cellular processes, including the expression of SOS genes. The failure in SOS gene expression does not affect the hip phenotype upon treatment with the fluoroquinolone ciprofloxacin, likely because ATP depletion avoids strong DNA damage. By contrast, Δ1-41 ΔistR cells are highly susceptible to the DNA cross-linker mitomycin C, likely because the expression of SOS-dependent repair systems is impeded. Hence, the hip phenotype of the mutant is conditional and strongly depends on the DNA-damaging agent.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Nicole E. Schmid
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Markus Oberpaul
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
| | - Till F. Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- Partner Site Giessen-Marburg-Langen, German Center for Infection Research (DZIF), 35392 Giessen, Germany
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| |
Collapse
|
33
|
Bacterial phenotypic heterogeneity in DNA repair and mutagenesis. Biochem Soc Trans 2021; 48:451-462. [PMID: 32196548 PMCID: PMC7200632 DOI: 10.1042/bst20190364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Genetically identical cells frequently exhibit striking heterogeneity in various phenotypic traits such as their morphology, growth rate, or gene expression. Such non-genetic diversity can help clonal bacterial populations overcome transient environmental challenges without compromising genome stability, while genetic change is required for long-term heritable adaptation. At the heart of the balance between genome stability and plasticity are the DNA repair pathways that shield DNA from lesions and reverse errors arising from the imperfect DNA replication machinery. In principle, phenotypic heterogeneity in the expression and activity of DNA repair pathways can modulate mutation rates in single cells and thus be a source of heritable genetic diversity, effectively reversing the genotype-to-phenotype dogma. Long-standing evidence for mutation rate heterogeneity comes from genetics experiments on cell populations, which are now complemented by direct measurements on individual living cells. These measurements are increasingly performed using fluorescence microscopy with a temporal and spatial resolution that enables localising, tracking, and counting proteins with single-molecule sensitivity. In this review, we discuss which molecular processes lead to phenotypic heterogeneity in DNA repair and consider the potential consequences on genome stability and dynamics in bacteria. We further inspect these concepts in the context of DNA damage and mutation induced by antibiotics.
Collapse
|
34
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
35
|
Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge. J Bacteriol 2020; 202:JB.00561-19. [PMID: 31740490 DOI: 10.1128/jb.00561-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Evolutionary trajectories and mutational landscapes of drug-resistant bacteria are influenced by cell-intrinsic and extrinsic factors. In this study, I demonstrated that loss of the Lon protease altered susceptibility of Escherichia coli to trimethoprim and that these effects were strongly contingent on the drug concentration and genetic background. Lon, an AAA+ ATPase, is a bacterial master regulator protease involved in cytokinesis, suppression of transposition events, and clearance of misfolded proteins. I show that Lon deficiency enhances intrinsic drug tolerance at sub-MIC levels of trimethoprim. As a result, loss of Lon, though disadvantageous under drug-free conditions, has a selective advantage at low concentrations of trimethoprim. At high drug concentrations, however, Lon deficiency is detrimental for E. coli I show that the former is explained by suppression of drug efflux by Lon, while the latter can be attributed to SulA-dependent hyperfilamentation. On the other hand, deletion of lon in a trimethoprim-resistant mutant E. coli strain (harboring the Trp30Gly dihydrofolate reductase [DHFR] allele) directly potentiates resistance by enhancing the in vivo stability of mutant DHFR. Using extensive mutational analysis at 3 hot spots of resistance, I show that many resistance-conferring mutations render DHFR prone to proteolysis. This trade-off between gaining resistance and losing in vivo stability limits the number of mutations in DHFR that can confer trimethoprim resistance. Loss of Lon expands the mutational capacity for acquisition of trimethoprim resistance. This paper identifies the multipronged action of Lon in trimethoprim resistance in E. coli and provides mechanistic insight into how genetic backgrounds and drug concentrations may alter the potential for antimicrobial resistance evolution.IMPORTANCE Understanding the evolutionary dynamics of antimicrobial resistance is vital to curb its emergence and spread. Being fundamentally similar to natural selection, the fitness of resistant mutants is a key parameter to consider in the evolutionary dynamics of antimicrobial resistance (AMR). Various intrinsic and extrinsic factors modulate the fitness of resistant bacteria. This study demonstrated that Lon, a bacterial master regulator protease, influences drug tolerance and resistance. Lon is a key regulator of several fundamental processes in bacteria, including cytokinesis. I demonstrated that Lon deficiency produces highly contingent phenotypes in E. coli challenged with trimethoprim and can expand the mutational repertoire available to E. coli to evolve resistance. This multipronged influence of Lon on drug resistance provides an illustrative instance of how master regulators shape the response of bacteria to antibiotics.
Collapse
|
36
|
Munther DS, Carter MQ, Aldric CV, Ivanek R, Brandl MT. Formation of Escherichia coli O157:H7 Persister Cells in the Lettuce Phyllosphere and Application of Differential Equation Models To Predict Their Prevalence on Lettuce Plants in the Field. Appl Environ Microbiol 2020; 86:e01602-19. [PMID: 31704677 PMCID: PMC6952222 DOI: 10.1128/aem.01602-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 (EcO157) infections have been recurrently associated with produce. The physiological state of EcO157 cells surviving the many stresses encountered on plants is poorly understood. EcO157 populations on plants in the field generally follow a biphasic decay in which small subpopulations survive over longer periods of time. We hypothesized that these subpopulations include persister cells, known as cells in a transient dormant state that arise through phenotypic variation in a clonal population. Using three experimental regimes (with growing, stationary at carrying capacity, and decaying populations), we measured the persister cell fractions in culturable EcO157 populations after inoculation onto lettuce plants in the laboratory. The greatest average persister cell fractions on the leaves within each regime were 0.015, 0.095, and 0.221%, respectively. The declining EcO157 populations on plants incubated under dry conditions showed the largest increase in the persister fraction (46.9-fold). Differential equation models were built to describe the average temporal dynamics of EcO157 normal and persister cell populations after inoculation onto plants maintained under low relative humidity, resulting in switch rates from a normal cell to a persister cell of 7.7 × 10-6 to 2.8 × 10-5 h-1 Applying our model equations from the decay regime, we estimated model parameters for four published field trials of EcO157 survival on lettuce and obtained switch rates similar to those obtained in our study. Hence, our model has relevance to the survival of this human pathogen on lettuce plants in the field. Given the low metabolic state of persister cells, which may protect them from sanitization treatments, these cells are important to consider in the microbial decontamination of produce.IMPORTANCE Despite causing outbreaks of foodborne illness linked to lettuce consumption, E. coli O157:H7 (EcO157) declines rapidly when applied onto plants in the field, and few cells survive over prolonged periods of time. We hypothesized that these cells are persisters, which are in a dormant state and which arise naturally in bacterial populations. When lettuce plants were inoculated with EcO157 in the laboratory, the greatest persister fraction in the population was observed during population decline on dry leaf surfaces. Using mathematical modeling, we calculated the switch rate from an EcO157 normal to persister cell on dry lettuce plants based on our laboratory data. The model was applied to published studies in which lettuce was inoculated with EcO157 in the field, and switch rates similar to those obtained in our study were obtained. Our results contribute important new knowledge about the physiology of this virulent pathogen on plants to be considered to enhance produce safety.
Collapse
Affiliation(s)
- Daniel S Munther
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Michelle Q Carter
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Claude V Aldric
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|
37
|
Thao S, Brandl MT, Carter MQ. Enhanced formation of shiga toxin-producing Escherichia coli persister variants in environments relevant to leafy greens production. Food Microbiol 2019; 84:103241. [DOI: 10.1016/j.fm.2019.103241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
|
38
|
Babin BM, Kasperkiewicz P, Janiszewski T, Yoo E, Drąg M, Bogyo M. Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. ACS Chem Biol 2019; 14:2453-2462. [PMID: 31464417 PMCID: PMC6858493 DOI: 10.1021/acschembio.9b00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lon is a widely conserved housekeeping protease found in all domains of life. Bacterial Lon is involved in recovery from various types of stress, including tolerance to fluoroquinolone antibiotics, and is linked to pathogenesis in a number of organisms. However, detailed functional studies of Lon have been limited by the lack of selective, cell-permeant inhibitors. Here, we describe the use of positional scanning libraries of hybrid peptide substrates to profile the primary sequence specificity of bacterial Lon. In addition to identifying optimal natural amino acid binding preferences, we identified several non-natural residues that were leveraged to develop optimal peptide substrates as well as a potent peptidic boronic acid inhibitor of Lon. Treatment of Escherichia coli with this inhibitor promotes UV-induced filamentation and reduces tolerance to ciprofloxacin, phenocopying established lon-deletion phenotypes. It is also nontoxic to mammalian cells due to its selectivity for Lon over the proteasome. Our results provide new insight into the primary substrate specificity of Lon and identify substrates and an inhibitor that will serve as useful tools for dissecting the diverse cellular functions of Lon.
Collapse
Affiliation(s)
- Brett M. Babin
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Tomasz Janiszewski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Euna Yoo
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Matthew Bogyo
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Zhang Y, Lei CW, Wang HN. Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China. Plasmid 2019; 105:102440. [DOI: 10.1016/j.plasmid.2019.102440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
40
|
Goormaghtigh F, Van Melderen L. Single-cell imaging and characterization of Escherichia coli persister cells to ofloxacin in exponential cultures. SCIENCE ADVANCES 2019; 5:eaav9462. [PMID: 31223653 PMCID: PMC6584399 DOI: 10.1126/sciadv.aav9462] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/10/2019] [Indexed: 06/02/2023]
Abstract
Bacterial persistence refers to the capacity of small subpopulations within clonal populations to tolerate antibiotics. Persisters are thought to originate from dormant cells in which antibiotic targets are less active and cannot be corrupted. Here, we report that in exponentially growing cultures, ofloxacin persisters originate from metabolically active cells: These cells are dividing before the addition of ofloxacin and do endure DNA damages during the treatment, similar to their nonpersister siblings. We observed that growth rate, DNA content, and SOS induction vary among persisters, as in the bulk of the population and therefore do not constitute predictive markers for persistence. Persister cells typically form long polynucleoid filaments and reach maximum SOS induction after removal of ofloxacin. Eventually, cell division resumes, giving rise to a new population. Our findings highlight the heterogeneity of persister cells and therefore the need to analyze these low-frequency phenotypic variants on a case-by-case basis at the single-cell level.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
41
|
Zinc Acetate Potentiates the Action of Tosufloxacin against Escherichia coli Biofilm Persisters. Antimicrob Agents Chemother 2019; 63:AAC.00069-19. [PMID: 30936108 DOI: 10.1128/aac.00069-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 01/31/2023] Open
Abstract
Formation of bacterial biofilms is a major health threat due to their high levels of tolerance to multiple antibiotics and the presence of persisters responsible for infection relapses. We previously showed that a combination of starvation and induction of SOS response in biofilm led to increased levels of persisters and biofilm tolerance to fluoroquinolones. In this study, we hypothesized that inhibition of the SOS response may be an effective strategy to target biofilms and fluoroquinolone persister cells. We tested the survival of Escherichia coli biofilms to different classes of antibiotics in starved and nonstarved conditions and in the presence of zinc acetate, a SOS response inhibitor. We showed that zinc acetate potentiates, albeit moderately, the activity of fluoroquinolones against E. coli persisters in starved biofilms. The efficacy of zinc acetate to increase fluoroquinolone activity, particularly that of tosufloxacin, suggests that such a combination may be a potential strategy for treating biofilm-related bacterial infections.
Collapse
|
42
|
Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells. mBio 2018; 9:mBio.00640-18. [PMID: 29895634 PMCID: PMC6016239 DOI: 10.1128/mbio.00640-18] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Persistence is a reversible and low-frequency phenomenon allowing a subpopulation of a clonal bacterial population to survive antibiotic treatments. Upon removal of the antibiotic, persister cells resume growth and give rise to viable progeny. Type II toxin-antitoxin (TA) systems were assumed to play a key role in the formation of persister cells in Escherichia coli based on the observation that successive deletions of TA systems decreased persistence frequency. In addition, the model proposed that stochastic fluctuations of (p)ppGpp levels are the basis for triggering activation of TA systems. Cells in which TA systems are activated are thought to enter a dormancy state and therefore survive the antibiotic treatment. Using independently constructed strains and newly designed fluorescent reporters, we reassessed the roles of TA modules in persistence both at the population and single-cell levels. Our data confirm that the deletion of 10 TA systems does not affect persistence to ofloxacin or ampicillin. Moreover, microfluidic experiments performed with a strain reporting the induction of the yefM-yoeB TA system allowed the observation of a small number of type II persister cells that resume growth after removal of ampicillin. However, we were unable to establish a correlation between high fluorescence and persistence, since the fluorescence of persister cells was comparable to that of the bulk of the population and none of the cells showing high fluorescence were able to resume growth upon removal of the antibiotic. Altogether, these data show that there is no direct link between induction of TA systems and persistence to antibiotics.IMPORTANCE Within a growing bacterial population, a small subpopulation of cells is able to survive antibiotic treatment by entering a transient state of dormancy referred to as persistence. Persistence is thought to be the cause of relapsing bacterial infections and is a major public health concern. Type II toxin-antitoxin systems are small modules composed of a toxic protein and an antitoxin protein counteracting the toxin activity. These systems were thought to be pivotal players in persistence until recent developments in the field. Our results demonstrate that previous influential reports had technical flaws and that there is no direct link between induction of TA systems and persistence to antibiotics.
Collapse
|
43
|
Cui P, Niu H, Shi W, Zhang S, Zhang W, Zhang Y. Identification of Genes Involved in Bacteriostatic Antibiotic-Induced Persister Formation. Front Microbiol 2018; 9:413. [PMID: 29559967 PMCID: PMC5845583 DOI: 10.3389/fmicb.2018.00413] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/21/2018] [Indexed: 11/24/2022] Open
Abstract
Persister cells are metabolically quiescent multi-drug tolerant fraction of a genetically sensitive bacterial population and are thought to be responsible for relapse of many persistent infections. Persisters can be formed naturally in the stationary phase culture, and also can be induced by bacteriostatic antibiotics. However, the molecular basis of bacteriostatic antibiotic induced persister formation is unknown. Here, we established a bacteriostatic antibiotic induced persister model and screened the Escherichia coli single gene deletion mutant library for mutants with defect in rifampin or tetracycline induced persistence to ofloxacin. Thirsty-seven and nine genes were found with defects in rifampin- and tetracycline-induced persister formation, respectively. Six mutants were found to overlap in both rifampin and tetracycline induced persister screens: recA, recC, ruvA, uvrD, fis, and acrB. Interestingly, four of these mutants (recA, recC, ruvA, and uvrD) mapped to DNA repair pathway, one mutant mapped to global transcriptional regulator (fis) and one to efflux (acrB). The stationary phase culture of the identified mutants and parent strain BW25113 were subjected to different antibiotics including ofloxacin, ampicillin, gentamicin, and stress conditions including starvation and acid pH 4.0. All the six mutants showed less tolerance to ofloxacin, but only some of them were more sensitive to other specific stress conditions. Complementation of five of the six common mutants restored the persister level to that of the parent strain in both stationary phase and static antibiotic-induced conditions. In addition to the DNA repair pathways shared by both rifampin and tetracycline induced persisters, genes involved in rifampin-induced persisters map also to transporters, LPS biosynthesis, flagella biosynthesis, metabolism (folate and energy), and translation, etc. These findings suggest that persisters generated by different ways may share common mechanisms of survival, and also shed new insight into the molecular basis of static antibiotic induced antagonism of cidal antibiotics.
Collapse
Affiliation(s)
- Peng Cui
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research – Institute of Pathogenic Biology – Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wanliang Shi
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Shuo Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Wenhong Zhang
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
44
|
Abstract
Bacterial persisters are phenotypic variants that survive antibiotic treatment in a dormant state and can be formed by multiple pathways. We recently proposed that the second messenger (p)ppGpp drives Escherichia coli persister formation through protease Lon and activation of toxin-antitoxin (TA) modules. This model found considerable support among researchers studying persisters but also generated controversy as part of recent debates in the field. In this study, we therefore used our previous work as a model to critically examine common experimental procedures to understand and overcome the inconsistencies often observed between results of different laboratories. Our results show that seemingly simple antibiotic killing assays are very sensitive to variations in culture conditions and bacterial growth phase. Additionally, we found that some assay conditions cause the killing of antibiotic-tolerant persisters via induction of cryptic prophages. Similarly, the inadvertent infection of mutant strains with bacteriophage ϕ80, a notorious laboratory contaminant, apparently caused several of the phenotypes that we reported in our previous studies. We therefore reconstructed all infected mutants and probed the validity of our model of persister formation in a refined assay setup that uses robust culture conditions and unravels the dynamics of persister cells through all bacterial growth stages. Our results confirm the importance of (p)ppGpp and Lon but no longer support a role of TA modules in E. coli persister formation under unstressed conditions. We anticipate that the results and approaches reported in our study will lay the ground for future work in the field.IMPORTANCE The recalcitrance of antibiotic-tolerant persister cells is thought to cause relapsing infections and antibiotic treatment failure in various clinical setups. Previous studies identified multiple genetic pathways involved in persister formation but also revealed reproducibility problems that sparked controversies about adequate tools to study persister cells. In this study, we unraveled how typical antibiotic killing assays often fail to capture the biology of persisters and instead give widely differing results based on poorly controlled experimental parameters and artifacts caused by cryptic as well as contaminant prophages. We therefore established a new, robust assay that enabled us to follow the dynamics of persister cells through all growth stages of bacterial cultures without distortions by bacteriophages. This system also favored adequate comparisons of mutant strains with aberrant growth phenotypes. We anticipate that our results will contribute to a robust, common basis for future studies on the formation and eradication of antibiotic-tolerant persisters.
Collapse
|
45
|
Libardo MDJ, Bahar AA, Ma B, Fu R, McCormick LE, Zhao J, McCallum SA, Nussinov R, Ren D, Angeles-Boza AM, Cotten ML. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J 2017; 284:3662-3683. [PMID: 28892294 PMCID: PMC6361529 DOI: 10.1111/febs.14263] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
Host-defense peptides (HDPs) feature evolution-tested potency against life-threatening pathogens. While piscidin 1 (p1) and piscidin 3 (p3) are homologous and potent fish HDPs, only p1 is strongly membranolytic. Here, we hypothesize that another mechanism imparts p3 strong potency. We demonstrate that the N-termini of both peptides coordinate Cu2+ and p3-Cu cleaves isolated DNA at a rate on par with free Cu2+ but significantly faster than p1-Cu. On planktonic bacteria, p1 is more antimicrobial but only p3 features copper-dependent DNA cleavage. On biofilms and persister cells, p3-Cu is more active than p1-Cu, commensurate with stronger peptide-induced DNA damage. Molecular dynamics and NMR show that more DNA-peptide interactions exist with p3 than p1, and the peptides adopt conformations simultaneously poised for metal- and DNA-binding. These results generate several important conclusions. First, homologous HDPs cannot be assumed to have identical mechanisms since p1 and p3 eradicate bacteria through distinct relative contributions of membrane and DNA-disruptive effects. Second, the nuclease and membrane activities of p1 and p3 show that naturally occurring HDPs can inflict not only physicochemical but also covalent damage. Third, strong nuclease activity is essential for biofilm and persister cell eradication, as shown by p3, the homolog more specific toward bacteria and more expressed in vascularized tissues. Fourth, p3 combines several physicochemical properties (e.g., Amino Terminal Copper and Nickel binding motif; numerous arginines; moderate hydrophobicity) that confer low membranolytic effects, robust copper-scavenging capability, strong interactions with DNA, and fast nuclease activity. This new knowledge could help design novel therapeutics active against hard-to-treat persister cells and biofilms.
Collapse
Affiliation(s)
| | - Ali A Bahar
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | | | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Scott A McCallum
- Rennselaer Polytechnic Institute, Center for Biotechnology & Interdisciplinary Studies, Troy, NY, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Israel
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, NY, USA
- Department of Civil and Environmental Engineering, Syracuse University, NY, USA
- Department of Biology, Syracuse University, NY, USA
| | | | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
46
|
Abstract
Many bacteria can infect and persist inside their hosts for long periods of time. This can be due to immunosuppression of the host, immune evasion by the pathogen and/or ineffective killing by antibiotics. Bacteria can survive antibiotic treatment if they are resistant or tolerant to a drug. Persisters are a subpopulation of transiently antibiotic-tolerant bacterial cells that are often slow-growing or growth-arrested, and are able to resume growth after a lethal stress. The formation of persister cells establishes phenotypic heterogeneity within a bacterial population and has been hypothesized to be important for increasing the chances of successfully adapting to environmental change. The presence of persister cells can result in the recalcitrance and relapse of persistent bacterial infections, and it has been linked to an increase in the risk of the emergence of antibiotic resistance during treatment. If the mechanisms of the formation and regrowth of these antibiotic-tolerant cells were better understood, it could lead to the development of new approaches for the eradication of persistent bacterial infections. In this Review, we discuss recent developments in our understanding of bacterial persisters and their potential implications for the treatment of persistent infections.
Collapse
Affiliation(s)
- Robert A Fisher
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Bridget Gollan
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
47
|
Pu Y, Zhao Z, Li Y, Zou J, Ma Q, Zhao Y, Ke Y, Zhu Y, Chen H, Baker MAB, Ge H, Sun Y, Xie XS, Bai F. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells. Mol Cell 2017; 62:284-294. [PMID: 27105118 PMCID: PMC4850422 DOI: 10.1016/j.molcel.2016.03.035] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/28/2015] [Accepted: 03/30/2016] [Indexed: 11/30/2022]
Abstract
Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. Persisters accumulate fewer antibiotics as a direct result of increased efflux rate Persisters show higher expression of efflux-associated genes High expression of tolC is critical to promote persister formation Persisters combine active efflux and passive dormancy to survive antibiotic attack
Collapse
Affiliation(s)
- Yingying Pu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Zhilun Zhao
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Yingxing Li
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Jin Zou
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Qi Ma
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Yanna Zhao
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Yuehua Ke
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Yun Zhu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Huiyi Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew A B Baker
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871; Beijing International Center for Mathematical Research, Peking University, Beijing, China, 100871
| | - Yujie Sun
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871
| | - Xiaoliang Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Fan Bai
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China, 100871.
| |
Collapse
|
48
|
Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2017; 354:354/6318/aaf4268. [PMID: 27980159 DOI: 10.1126/science.aaf4268] [Citation(s) in RCA: 577] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.
Collapse
Affiliation(s)
- Alexander Harms
- Center of Excellence for Bacterial Stress Response and Persistence (BASP), Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Etienne Maisonneuve
- Center of Excellence for Bacterial Stress Response and Persistence (BASP), Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kenn Gerdes
- Center of Excellence for Bacterial Stress Response and Persistence (BASP), Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
49
|
Myka KK, Hawkins M, Syeda AH, Gupta MK, Meharg C, Dillingham MS, Savery NJ, Lloyd RG, McGlynn P. Inhibiting translation elongation can aid genome duplication in Escherichia coli. Nucleic Acids Res 2017; 45:2571-2584. [PMID: 27956500 PMCID: PMC5389703 DOI: 10.1093/nar/gkw1254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.
Collapse
Affiliation(s)
- Kamila K. Myka
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Aisha H. Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Milind K. Gupta
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, UK
| | - Mark S. Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Nigel J. Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Robert G. Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
50
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|