1
|
Mishima K, Hirakawa H, Iki T, Fukuda Y, Hirao T, Tamura A, Takahashi M. Comprehensive collection of genes and comparative analysis of full-length transcriptome sequences from Japanese larch (Larix kaempferi) and Kuril larch (Larix gmelinii var. japonica). BMC PLANT BIOLOGY 2022; 22:470. [PMID: 36192701 PMCID: PMC9531402 DOI: 10.1186/s12870-022-03862-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Japanese larch (Larix kaempferi) is an economically important deciduous conifer species that grows in cool-temperate forests and is endemic to Japan. Kuril larch (L. gmelinii var. japonica) is a variety of Dahurian larch that is naturally distributed in the Kuril Islands and Sakhalin. The hybrid larch (L. gmelinii var. japonica × L. kaempferi) exhibits heterosis, which manifests as rapid juvenile growth and high resistance to vole grazing. Since these superior characteristics have been valued by forestry managers, the hybrid larch is one of the most important plantation species in Hokkaido. To accelerate molecular breeding in these species, we collected and compared full-length cDNA isoforms (Iso-Seq) and RNA-Seq short-read, and merged them to construct candidate gene as reference for both Larix species. To validate the results, candidate protein-coding genes (ORFs) related to some flowering signal-related genes were screened from the reference sequences, and the phylogenetic relationship with closely related species was elucidated. RESULTS Using the isoform sequencing of PacBio RS ll and the de novo assembly of RNA-Seq short-read sequences, we identified 50,690 and 38,684 ORFs in Japanese larch and Kuril larch, respectively. BUSCO completeness values were 90.5% and 92.1% in the Japanese and Kuril larches, respectively. After comparing the collected ORFs from the two larch species, a total of 19,813 clusters, comprising 22,571 Japanese larch ORFs and 22,667 Kuril larch ORFs, were contained in the intersection of the Venn diagram. In addition, we screened several ORFs related to flowering signals (SUPPRESSER OF OVEREXPRESSION OF CO1: SOC1, LEAFY: LFY, FLOWERING Locus T: FT, CONSTANCE: CO) from both reference sequences, and very similar found in other species. CONCLUSIONS The collected ORFs will be useful as reference sequences for molecular breeding of Japanese and Kuril larches, and also for clarifying the evolution of the conifer genome and investigating functional genomics.
Collapse
Affiliation(s)
- Kentaro Mishima
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 95 Osaki, Takizawa, Iwate, 020-0621, Japan.
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 95 Osaki, Takizawa, Iwate, 020-0621, Japan
| | - Yoko Fukuda
- Hokkaido Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 561-1 Bunkyodaimidorimachi, Ebetsu, Hokkaido, 069-0836, Japan
| | - Tomonori Hirao
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Akira Tamura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| |
Collapse
|
2
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
3
|
Hurel A, de Miguel M, Dutech C, Desprez‐Loustau M, Plomion C, Rodríguez‐Quilón I, Cyrille A, Guzman T, Alía R, González‐Martínez SC, Budde KB. Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evol Appl 2021; 14:2750-2772. [PMID: 34950227 PMCID: PMC8674897 DOI: 10.1111/eva.13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2021] [Indexed: 11/30/2022] Open
Abstract
Forest ecosystems are increasingly challenged by extreme events, for example, drought, storms, pest attacks, and fungal pathogen outbreaks, causing severe ecological and economic losses. Understanding the genetic basis of adaptive traits in tree species is of key importance to preserve forest ecosystems, as genetic variation in a trait (i.e., heritability) determines its potential for human-mediated or evolutionary change. Maritime pine (Pinus pinaster Aiton), a conifer widely distributed in southwestern Europe and northwestern Africa, grows under contrasted environmental conditions promoting local adaptation. Genetic variation at adaptive phenotypes, including height, spring phenology, and susceptibility to two fungal pathogens (Diplodia sapinea and Armillaria ostoyae) and an insect pest (Thaumetopoea pityocampa), was assessed in a range-wide clonal common garden of maritime pine. Broad-sense heritability was significant for height (0.219), spring phenology (0.165-0.310), and pathogen susceptibility (necrosis length caused by D. sapinea, 0.152; and by A. ostoyae, 0.021, measured on inoculated, excised branches under controlled conditions), but not for pine processionary moth incidence in the common garden. The correlations of trait variation among populations revealed contrasting trends for pathogen susceptibility to D. sapinea and A. ostoyae with respect to height. Taller trees showed longer necrosis length caused by D. sapinea while shorter trees were more affected by A. ostoyae. Moreover, maritime pine populations from areas with high summer temperatures and frequent droughts were less susceptible to D. sapinea but more susceptible to A. ostoyae. Finally, an association study using 4227 genome-wide SNPs revealed several loci significantly associated with each trait (range of 3-26), including a possibly disease-induced translation initiation factor, eIF-5, associated with needle discoloration caused by D. sapinea. This study provides important insights to develop genetic conservation and breeding strategies integrating species responses to biotic stressors.
Collapse
Affiliation(s)
- Agathe Hurel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | - Marina de Miguel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- EGFV, INRAEUniversity of BordeauxVillenave‐d'OrnonFrance
| | - Cyril Dutech
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | | | | | | | | | | | | | | | - Katharina B. Budde
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- Büsgen‐InstituteGeorg‐August University GöttingenGöttingenGermany
| |
Collapse
|
4
|
Looking for Local Adaptation: Convergent Microevolution in Aleppo Pine ( Pinus halepensis). Genes (Basel) 2019; 10:genes10090673. [PMID: 31487909 PMCID: PMC6771008 DOI: 10.3390/genes10090673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation.
Collapse
|
5
|
Lu M, Loopstra CA, Krutovsky KV. Detecting the genetic basis of local adaptation in loblolly pine ( Pinus taeda L.) using whole exome-wide genotyping and an integrative landscape genomics analysis approach. Ecol Evol 2019; 9:6798-6809. [PMID: 31380016 PMCID: PMC6662259 DOI: 10.1002/ece3.5225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/17/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023] Open
Abstract
In the Southern United States, the widely distributed loblolly pine contributes greatly to lumber and pulp production, as well as providing many important ecosystem services. Climate change may affect the productivity and range of loblolly pine. Nevertheless, we have insufficient knowledge of the adaptive potential and the genetics underlying the adaptability of loblolly pine. To address this, we tested the association of 2.8 million whole exome-based single nucleotide polymorphisms (SNPs) with climate and geographic variables, including temperature, precipitation, latitude, longitude, and elevation data. Using an integrative landscape genomics approach by combining multiple environmental association and outlier detection analyses, we identified 611 SNPs associated with 56 climate and geographic variables. Longitude, maximum temperature of the warm months and monthly precipitation associated with most SNPs, indicating their importance and complexity in shaping the genetic variation in loblolly pine. Functions of candidate genes related to terpenoid synthesis, pathogen defense, transcription factors, and abiotic stress response. We provided evidence that environment-associated SNPs also composed the genetic structure of adaptive phenotypic traits including height, diameter, metabolite levels, and gene transcript abundance. Our study promotes understanding of the genetic basis of local adaptation in loblolly pine and provides promising tools for selecting genotypes adapted to local environments in a changing climate.
Collapse
Affiliation(s)
- Mengmeng Lu
- Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationTexas
- Molecular and Environmental Plant Sciences ProgramTexas A&M UniversityCollege StationTexas
- Present address:
Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Carol A. Loopstra
- Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationTexas
- Molecular and Environmental Plant Sciences ProgramTexas A&M UniversityCollege StationTexas
| | - Konstantin V. Krutovsky
- Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationTexas
- Molecular and Environmental Plant Sciences ProgramTexas A&M UniversityCollege StationTexas
- Department of Forest Genetics and Forest Tree BreedingGeorg‐August‐University of GöttingenGöttingenGermany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and BiotechnologySiberian Federal UniversityKrasnoyarskRussia
| |
Collapse
|
6
|
Piculell BJ, José Martínez-García P, Nelson CD, Hoeksema JD. Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.). Mol Ecol 2019; 28:2088-2099. [PMID: 30632641 DOI: 10.1111/mec.15013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022]
Abstract
To understand how diverse mutualisms coevolve and how species adapt to complex environments, a description of the underlying genetic basis of the traits involved must be provided. For example, in diverse coevolving mutualisms, such as the interaction of host plants with a suite of symbiotic mycorrhizal fungi, a key question is whether host plants can coevolve independently with multiple species of symbionts, which depends on whether those interactions are governed independently by separate genes or pleiotropically by shared genes. To provide insight into this question, we employed an association mapping approach in a clonally replicated field experiment of loblolly pine (Pinus taeda L.) to identify genetic components of host traits governing ectomycorrhizal (EM) symbioses (mycorrhizal traits). The relative abundances of different EM fungi as well as the total number of root tips per cm root colonized by EM fungi were analyzed as separate mycorrhizal traits of loblolly pine. Single-nucleotide polymorphisms (SNPs) within candidate genes of loblolly pine were associated with loblolly pine mycorrhizal traits, mapped to the loblolly pine genome, and their putative protein function obtained when available. The results support the hypothesis that ectomycorrhiza formation is governed by host genes of large effect that apparently have independent influences on host interactions with different symbiont species.
Collapse
Affiliation(s)
- Bridget J Piculell
- Department of Biology, University of Mississippi, University, Mississippi.,Department of Biology, College of Charleston, Charleston, South Carolina
| | | | - C Dana Nelson
- USDA Forest Service, Southern Institute of Forest Genetics, Saucier, Mississippi.,Forest Health Research and Education Center, Lexington, Kentucky
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, University, Mississippi
| |
Collapse
|
7
|
Turner GW, Parrish AN, Zager JJ, Fischedick JT, Lange BM. Assessment of flux through oleoresin biosynthesis in epithelial cells of loblolly pine resin ducts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:217-230. [PMID: 30312429 PMCID: PMC6305192 DOI: 10.1093/jxb/ery338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/12/2018] [Indexed: 05/25/2023]
Abstract
The shoot system of pines contains abundant resin ducts, which harbor oleoresins that play important roles in constitutive and inducible defenses. In a pilot study, we assessed the chemical diversity of oleoresins obtained from mature tissues of loblolly pine trees (Pinus taeda L.). Building on these data sets, we designed experiments to assess oleoresin biosynthesis in needles of 2-year-old saplings. Comparative transcriptome analyses of single cell types indicated that genes involved in the biosynthesis of oleoresins are significantly enriched in isolated epithelial cells of resin ducts, compared with those expressed in mesophyll cells. Simulations using newly developed genome-scale models of epithelial and mesophyll cells, which incorporate our data on oleoresin yield and composition as well as gene expression patterns, predicted that heterotrophic metabolism in epithelial cells involves enhanced levels of oxidative phosphorylation and fermentation (providing redox and energy equivalents). Furthermore, flux was predicted to be more evenly distributed across the metabolic network of mesophyll cells, which, in contrast to epithelial cells, do not synthesize high levels of specialized metabolites. Our findings provide novel insights into the remarkable specialization of metabolism in epithelial cells.
Collapse
Affiliation(s)
- Glenn W Turner
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - Amber N Parrish
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - Jordan J Zager
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - Justin T Fischedick
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
- Pure Analytics, Santa Rosa, CA, USA
| | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Ruiz Daniels R, Taylor RS, Serra-Varela MJ, Vendramin GG, González-Martínez SC, Grivet D. Inferring selection in instances of long-range colonization: The Aleppo pine (Pinus halepensis) in the Mediterranean Basin. Mol Ecol 2018; 27:3331-3345. [PMID: 29972881 DOI: 10.1111/mec.14786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 01/03/2023]
Abstract
Teasing apart the effects of natural selection and demography on current allele frequencies is challenging, due to both processes leaving a similar molecular footprint. In particular, when attempting to identify selection in species that have undergone a recent range expansion, the increase in genetic drift at the edges of range expansions ("allele surfing") can be a confounding factor. To address this potential issue, we first assess the long-range colonization history of the Aleppo pine across the Mediterranean Basin, using molecular markers. We then look for single nucleotide polymorphisms (SNPs) involved in local adaptation using: (a) environmental correlation methods (bayenv2), focusing on bioclimatic variables important for the species' adaptation (i.e., temperature, precipitation and water availability); and (b) FST -related methods (pcadapt). To assess the rate of false positives caused by the allele surfing effect, these results are compared with results from simulated SNP data that mimics the species' past range expansions and the effect of genetic drift, but with no selection. We find that the Aleppo pine shows a previously unsuspected complex genetic structure across its range, as well as evidence of selection acting on SNPs involved with the response to bioclimatic variables such as drought. This study uses an original approach to disentangle the confounding effects of drift and selection in range margin populations. It also contributes to the increased evidence that plant populations are able to adapt to new environments despite the expected accumulation of deleterious mutations that takes place during long-range colonizations.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Madrid, Spain
| | | | - María Jesús Serra-Varela
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Madrid, Spain
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia, Spain
- Sustainable Forest Management Research Institute, INIA, University of Valladolid, Palencia, Spain
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, FI, Italy
| | - Santiago C González-Martínez
- Sustainable Forest Management Research Institute, INIA, University of Valladolid, Palencia, Spain
- BIOGECO, INRA, University of Bordeaux, Cestas, France
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Madrid, Spain
- Sustainable Forest Management Research Institute, INIA, University of Valladolid, Palencia, Spain
| |
Collapse
|
9
|
Casola C, Koralewski TE. Pinaceae show elevated rates of gene turnover that are robust to incomplete gene annotation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:862-876. [PMID: 29901849 DOI: 10.1111/tpj.13994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Gene duplications and gene losses are major determinants of genome evolution and phenotypic diversity. The frequency of gene turnover (gene gains and gene losses combined) is known to vary between organisms. Comparative genomic analyses of gene families can highlight such variation; however, estimates of gene turnover may be biased when using highly fragmented genome assemblies resulting in poor gene annotations. Here, we address potential biases introduced by gene annotation errors in estimates of gene turnover frequencies in a dataset including both well-annotated angiosperm genomes and the incomplete gene sets of four Pinaceae, including two pine species, Norway spruce and Douglas-fir. We show that Pinaceae experienced higher gene turnover rates than angiosperm lineages lacking recent whole-genome duplications. This finding is robust to both known major issues in Pinaceae gene sets: missing gene models and erroneous annotation of pseudogenes. A separate analysis limited to the four Pinaceae gene sets pointed to an accelerated gene turnover rate in pines compared with Norway spruce and Douglas-fir. Our results indicate that gene turnover significantly contributes to genome variation and possibly to speciation in Pinaceae, particularly in pines. Moreover, these findings indicate that reliable estimates of gene turnover frequencies can be discerned in incomplete and potentially inaccurate gene sets. Because gymnosperms are known to exhibit low overall substitution rates compared with angiosperms, our results suggest that the rate of single-base pair mutations is uncoupled from the rate of large DNA duplications and deletions associated with gene turnover in Pinaceae.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA
| | - Tomasz E Koralewski
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA
| |
Collapse
|
10
|
Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC. High rate of adaptive evolution in two widespread European pines. Mol Ecol 2017; 26:6857-6870. [PMID: 29110402 DOI: 10.1111/mec.14402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.
Collapse
Affiliation(s)
- Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain
| | - Komlan Avia
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universités, UPMC, Station Biologique Roscoff, Roscoff, France.,UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, Roscoff, France
| | - Aleksia Vaattovaara
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - Outi Savolainen
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain.,BIOGECO, INRA, Univ. Bordeaux, Cestas, France
| |
Collapse
|
11
|
Stenlid J, Oliva J. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0455. [PMID: 28080981 DOI: 10.1098/rstb.2015.0455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/30/2022] Open
Abstract
Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host-pathogen interactions when predicting disease impacts. We emphasize the need to consider host-tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host-pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host-pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 750 07 Uppsala, Sweden
| | - Jonàs Oliva
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 750 07 Uppsala, Sweden
| |
Collapse
|
12
|
De La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants. Mol Biol Evol 2017; 34:1363-1377. [PMID: 28333233 PMCID: PMC5435085 DOI: 10.1093/molbev/msx069] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes.
Collapse
Affiliation(s)
- Amanda R De La Torre
- Department of Plant Sciences, University of California-Davis, Davis, CA.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Zhen Li
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Jordan R, Hoffmann AA, Dillon SK, Prober SM. Evidence of genomic adaptation to climate in
Eucalyptus microcarpa
: Implications for adaptive potential to projected climate change. Mol Ecol 2017; 26:6002-6020. [DOI: 10.1111/mec.14341] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rebecca Jordan
- Bio21 Institute School of BioSciences University of Melbourne Parkville Vic Australia
| | - Ary A. Hoffmann
- Bio21 Institute School of BioSciences University of Melbourne Parkville Vic Australia
| | | | | |
Collapse
|
14
|
Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, Yorke JA, Langley CH, Neale DB, Salzberg SL. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 2017; 6:1-4. [PMID: 28369353 PMCID: PMC5437942 DOI: 10.1093/gigascience/giw016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25 361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107 821, 61% larger than the previous assembly.
Collapse
Affiliation(s)
- Aleksey V Zimin
- Institute for Physical Sciences and Technology, University of Maryland, College Park, MD.,Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California, Davis, CA
| | - Marc W Crepeau
- Department of Evolution and Ecology, University of California, Davis, CA
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| | - James A Yorke
- Institute for Physical Sciences and Technology, University of Maryland, College Park, MD
| | - Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, CA
| | - Steven L Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD.,Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
15
|
Talbot B, Chen TW, Zimmerman S, Joost S, Eckert AJ, Crow TM, Semizer-Cuming D, Seshadri C, Manel S. Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes. J Hered 2016; 108:207-216. [DOI: 10.1093/jhered/esw077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/30/2016] [Indexed: 11/13/2022] Open
|
16
|
Abstract
Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome "obesity" in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements, the primary factor determining genome size. Like most North American white pines, the principal pathogen of P. lambertiana is white pine blister rust (Cronartium ribicola J.C. Fischer ex Raben.). Identification of candidate genes for resistance to this pathogen is of great ecological importance. The genome sequence afforded us the opportunity to make substantial progress on locating the major dominant gene for simple resistance hypersensitive response, Cr1 We describe new markers and gene annotation that are both tightly linked to Cr1 in a mapping population, and associated with Cr1 in unrelated sugar pine individuals sampled throughout the species' range, creating a solid foundation for future mapping. This genomic variation and annotated candidate genes characterized in our study of the Cr1 region are resources for future marker-assisted breeding efforts as well as for investigations of fundamental mechanisms of invasive disease and evolutionary response.
Collapse
|
17
|
Rajora OP, Eckert AJ, Zinck JWR. Single-Locus versus Multilocus Patterns of Local Adaptation to Climate in Eastern White Pine (Pinus strobus, Pinaceae). PLoS One 2016; 11:e0158691. [PMID: 27387485 PMCID: PMC4936701 DOI: 10.1371/journal.pone.0158691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/20/2016] [Indexed: 11/18/2022] Open
Abstract
Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation.
Collapse
Affiliation(s)
- Om P. Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
- * E-mail:
| | - Andrew J. Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John W. R. Zinck
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
18
|
Hodgins KA, Yeaman S, Nurkowski KA, Rieseberg LH, Aitken SN. Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers. Mol Biol Evol 2016; 33:1502-16. [PMID: 26873578 DOI: 10.1093/molbev/msw032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sam Yeaman
- Department of Botany, University of British Columbia, Vancouver, BC, Canada Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
De Kort H, Vandepitte K, Mergeay J, Mijnsbrugge KV, Honnay O. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales. Heredity (Edinb) 2015; 115:415-25. [PMID: 25944466 DOI: 10.1038/hdy.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 01/17/2023] Open
Abstract
The evaluation of the molecular signatures of selection in species lacking an available closely related reference genome remains challenging, yet it may provide valuable fundamental insights into the capacity of populations to respond to environmental cues. We screened 25 native populations of the tree species Frangula alnus subsp. alnus (Rhamnaceae), covering three different geographical scales, for 183 annotated single-nucleotide polymorphisms (SNPs). Standard population genomic outlier screens were combined with individual-based and multivariate landscape genomic approaches to examine the strength of selection relative to neutral processes in shaping genomic variation, and to identify the main environmental agents driving selection. Our results demonstrate a more distinct signature of selection with increasing geographical distance, as indicated by the proportion of SNPs (i) showing exceptional patterns of genetic diversity and differentiation (outliers) and (ii) associated with climate. Both temperature and precipitation have an important role as selective agents in shaping adaptive genomic differentiation in F. alnus subsp. alnus, although their relative importance differed among spatial scales. At the 'intermediate' and 'regional' scales, where limited genetic clustering and high population diversity were observed, some indications of natural selection may suggest a major role for gene flow in safeguarding adaptability. High genetic diversity at loci under selection in particular, indicated considerable adaptive potential, which may nevertheless be compromised by the combined effects of climate change and habitat fragmentation.
Collapse
Affiliation(s)
- H De Kort
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| | - K Vandepitte
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| | - J Mergeay
- Department of Genetic Diversity, Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, Belgium
| | - K V Mijnsbrugge
- Department of Genetic Diversity, Research Institute for Nature and Forest, Gaverstraat 4, Geraardsbergen, Belgium.,Department of Nature Conservation, Agency for Nature and Forest, Koning Albert II laan 20, Brussels, Belgium
| | - O Honnay
- Biology Department, University of Leuven, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, Heverlee, Belgium
| |
Collapse
|
20
|
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 2014; 7:1008-25. [PMID: 25553064 PMCID: PMC4231592 DOI: 10.1111/eva.12149] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| | | | - Paul Sunnucks
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| |
Collapse
|
21
|
Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, Holt C, Yandell M, Zimin AV, Yorke JA, Crepeau MW, Puiu D, Salzberg SL, de Jong PJ, Mockaitis K, Main D, Langley CH, Neale DB. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 2014; 196:891-909. [PMID: 24653211 PMCID: PMC3948814 DOI: 10.1534/genetics.113.159996] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023] Open
Abstract
The largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20-40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.), which comprises 20.1 Gb of sequence. The MAKER-P annotation pipeline combined evidence-based alignments and ab initio predictions to generate 50,172 gene models, of which 15,653 are classified as high confidence. Clustering these gene models with 13 other plant species resulted in 20,646 gene families, of which 1554 are predicted to be unique to conifers. Among the conifer gene families, 159 are composed exclusively of loblolly pine members. The gene models for loblolly pine have the highest median and mean intron lengths of 24 fully sequenced plant genomes. Conifer genomes are full of repetitive DNA, with the most significant contributions from long-terminal-repeat retrotransposons. In depth analysis of the tandem and interspersed repetitive content yielded a combined estimate of 82%.
Collapse
Affiliation(s)
- Jill L. Wegrzyn
- Department of Plant Sciences, University of California, Davis, California 95616
| | - John D. Liechty
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Kristian A. Stevens
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Le-Shin Wu
- National Center for Genome Analysis Support, Indiana University, Bloomington, Indiana 47405
| | - Carol A. Loopstra
- Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas 77843
| | | | - William M. Dougherty
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Brian Y. Lin
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jacob J. Zieve
- Department of Plant Sciences, University of California, Davis, California 95616
| | | | - Carson Holt
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Aleksey V. Zimin
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
| | - James A. Yorke
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
- Departments of Mathematics and Physics, University of Maryland, College Park, Maryland 20742
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Steven L. Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute, Oakland, California 94609
| | | | - Doreen Main
- Department of Horticulture, Washington State University, Pullman, Washington 99163
| | - Charles H. Langley
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David B. Neale
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|