1
|
Lucek K, Flury JM, Willi Y. Genomic implications of the repeated shift to self-fertilization across a species' geographic distribution. J Hered 2025; 116:43-53. [PMID: 39171640 DOI: 10.1093/jhered/esae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
The ability to self-fertilize often varies among closely related hermaphroditic plant species, though, variation can also exist within species. In the North American Arabidopsis lyrata, the shift from self-incompatibility (SI) to selfing established in multiple regions independently, mostly since recent postglacial range expansion. This has made the species an ideal model for the investigation of the genomic basis of the breakdown of SI and its population genetic consequences. By comparing nearby selfing and outcrossing populations across the entire species' geographic distribution, we investigated variation at the self-incompatibility (S-)locus and across the genome. Furthermore, a diallel crossing experiment on one mixed-mating population was performed to gain insight into the inheritance of mating system variation. We confirmed that the breakdown of SI had evolved in several S-locus backgrounds. The diallel suggested the involvement of biparental contributions with dominance relations. Though, the population-level genome-wide association study did not single out clear-cut candidate genes but several regions with one near the S-locus. On the implication side, selfing as compared to outcrossing populations had less than half of the genomic diversity, while the number and length of runs of homozygosity (ROHs) scaled with the degree of inbreeding. Selfing populations with a history of long expansion had the longest ROHs. The results highlight that mating system shift to selfing, its genetic underpinning and the likely negative genomic consequences for evolutionary potential can be strongly interlinked with past range dynamics.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Jana M Flury
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Helal M, Ahmed M, Ragab M, Ateya A, Sakr S. Association of single nucleotide polymorphisms in Neuropeptide Y (NPY) and Phosphoglycerate Mutase 2 (PGAM2) genes with growth traits in rabbits. Trop Anim Health Prod 2024; 56:239. [PMID: 39133441 PMCID: PMC11319371 DOI: 10.1007/s11250-024-04085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Genetic improvement of local rabbit breeds using modern approaches such as marker-assisted selection requires accurate and precise information about marker‒trait associations in animals with different genetic backgrounds. Therefore, this study was designed to estimate the association between two mutations located in the Neuropeptide Y (NPY, g.1778G > C) and Phosphoglycerate Mutase 2 (PGAM2, c.195 C > T) genes in New Zealand White (NZW), Baladi (BR), and V-line rabbits. The first mutation was genotyped using high-resolution melting, and the second mutation was genotyped using the PCR-RFLP method. The results revealed significant associations between the NPY mutation and body weight at 10 (V-line) and 12 weeks of age (NZW, BR, and V-line), body weight gain (BWG) from 10 to 12 weeks of age (BR), BWG from 6 to 12 weeks of age (NZW, BR, and V-line), average daily gain (NZW, BR, and V-line, and BR), growth rate (GR) from 8 to10 weeks (V-line), 10 to 12 weeks (BR), and GR from 6 to 12 weeks of age (BR, and V-line). The PGAM2 mutation was associated with body weight at 10 (V-line) and 12 (NZW, and V-line) weeks of age, with significant positive additive effects at 12 weeks of age in all breeds, and was associated with BWG from 8 to 10 and 10 to 12 in BR, and BWG from 6 to 12 weeks of age (NZW, and BR), and average daily gain (NZW, and BR), and was associated with GR form 8 to 10 weeks (BR), from10 to 12 weeks (BR, and V-line) and from 6 to 12 weeks (BR). The results highlighted the importance of the two mutations in growth development, and the possibility of considering them as candidate genes for late growth in rabbits.
Collapse
Affiliation(s)
- Mostafa Helal
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Marwa Ahmed
- Department of Animal Production, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed Ragab
- Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Animal Breeding and Genetics Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, 28040, Spain
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa Sakr
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Gallinson DG, Kozakiewicz CP, Rautsaw RM, Beer MA, Ruiz-Aravena M, Comte S, Hamilton DG, Kerlin DH, McCallum HI, Hamede R, Jones ME, Storfer A, McMinds R, Margres MJ. Intergenomic signatures of coevolution between Tasmanian devils and an infectious cancer. Proc Natl Acad Sci U S A 2024; 121:e2307780121. [PMID: 38466855 PMCID: PMC10962979 DOI: 10.1073/pnas.2307780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
Coevolution is common and frequently governs host-pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil-DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host-pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.
Collapse
Affiliation(s)
- Dylan G. Gallinson
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- College of Public Health, University of South Florida, Tampa, FL33620
| | - Christopher P. Kozakiewicz
- School of Biological Sciences, Washington State University, Pullman, WA99163
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI49060
| | - Rhett M. Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- School of Biological Sciences, Washington State University, Pullman, WA99163
| | - Marc A. Beer
- School of Biological Sciences, Washington State University, Pullman, WA99163
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY14853
| | - Sebastien Comte
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
- New South Wales Department of Primary Industries, Vertebrate Pest Research Unit, Orange, NSW2800, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
| | - Douglas H. Kerlin
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD4111, Australia
| | - Hamish I. McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD4111, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
- CANECEV Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier34394, France
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS7001, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA99163
| | - Ryan McMinds
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
- College of Public Health, University of South Florida, Tampa, FL33620
| | - Mark J. Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL33620
| |
Collapse
|
4
|
Kour A, Deb SM, Nayee N, Niranjan SK, Raina VS, Mukherjee A, Gupta ID, Patil CS. Novel insights into genome-wide associations in Bos indicus reveal genetic linkages between fertility and growth. Anim Biotechnol 2023; 34:39-55. [PMID: 34120566 DOI: 10.1080/10495398.2021.1932520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bos indicus breed Sahiwal, famous for its optimum performance, has so far been genetically improved for performance traits based on phenotypic records and the genomic knowhow regarding genes, regions and biological processes underlying the complex quantitative traits is lacking. In this context, a Genome-wide Association Study was performed for fertility and growth traits in Sahiwal cattle to shed light on its genomic profile. A total of 46 SNPs were found associated with the traits at genome-wide suggestive threshold of P ≤ 10-4. USP32, LRPPRC, PLA2G10, RRN3 and ASAP1 were identified as putative candidate genes for body weight at different ages. However, several genes mapped for growth traits like GREB1, PLA2G10, RAD51C, BIRC6, TEX14 and PEBP4 had significant physiological underpinnings in determining fertility of the animals. Moreover, Quantitative trait loci (QTL) identification revealed potential overlaps with the already reported QTLs for both fertility and growth for most of the traits. Further, candidate SNP enrichment analysis revealed an enriched biological process for birth weight with a significant reproductive role. Based on the findings, genetic linkages underlying fertility and growth could be discerned in Sahiwal population and may be utilized for improving fertility traits in future.
Collapse
Affiliation(s)
- Aneet Kour
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | - Nilesh Nayee
- National Dairy Development Board, Anand, Gujarat, India
| | | | | | | | | | | |
Collapse
|
5
|
Li LZ, Xu ZG, Chang TG, Wang L, Kang H, Zhai D, Zhang LY, Zhang P, Liu H, Zhu XG, Wang JW. Common evolutionary trajectory of short life-cycle in Brassicaceae ruderal weeds. Nat Commun 2023; 14:290. [PMID: 36653415 PMCID: PMC9849336 DOI: 10.1038/s41467-023-35966-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.
Collapse
Affiliation(s)
- Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tian-Gen Chang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Heng Kang
- Department of Computer Science and Technology, Nanjing University, Nanjing, 210093, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
7
|
Chang CW, Fridman E, Mascher M, Himmelbach A, Schmid K. Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity (Edinb) 2022; 128:107-119. [PMID: 35017679 PMCID: PMC8814169 DOI: 10.1038/s41437-021-00494-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/12/2023] Open
Abstract
Determining the extent of genetic variation that reflects local adaptation in crop-wild relatives is of interest for the purpose of identifying useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping by sequencing (GBS) of 244 accessions in the Barley 1K+ collection. The inference of population structure resulted in four genetic clusters that corresponded to eco-geographical habitats and a significant association between lower gene flow rates and geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic variation was solely attributed to environmental variation if the component confounded with spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest proportion of genomic variation (3.9%). When conditioned on population structure, soil water capacity was the most important environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association studies were conducted to identify adaptation signatures. RDA and outlier methods jointly detected selection signatures in the pericentromeric regions, which have reduced recombination, of the chromosomes 3H, 4H, and 5H. However, selection signatures mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse environments of the Southern Levant over short geographical ranges had a limited effect on the genomic diversity of wild barley. This highlighted the importance of nonselective forces in genetic differentiation.
Collapse
Affiliation(s)
| | - Eyal Fridman
- Plant Sciences Institute, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Karl Schmid
- University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
8
|
Fernández-Carrión R, Sorlí JV, Coltell O, Pascual EC, Ortega-Azorín C, Barragán R, Giménez-Alba IM, Alvarez-Sala A, Fitó M, Ordovas JM, Corella D. Sweet Taste Preference: Relationships with Other Tastes, Liking for Sugary Foods and Exploratory Genome-Wide Association Analysis in Subjects with Metabolic Syndrome. Biomedicines 2021; 10:biomedicines10010079. [PMID: 35052758 PMCID: PMC8772854 DOI: 10.3390/biomedicines10010079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Taste perception and its association with nutrition and related diseases (type 2 diabetes, obesity, metabolic syndrome, cardiovascular, etc.) are emerging fields of biomedicine. There is currently great interest in investigating the environmental and genetic factors that influence sweet taste and sugary food preferences for personalized nutrition. Our aims were: (1) to carry out an integrated analysis of the influence of sweet taste preference (both in isolation and in the context of other tastes) on the preference for sugary foods and its modulation by type 2 diabetes status; (2) as well as to explore new genetic factors associated with sweet taste preference. We studied 425 elderly white European subjects with metabolic syndrome and analyzed taste preference, taste perception, sugary-foods liking, biochemical and genetic markers. We found that type 2 diabetic subjects (38%) have a small, but statistically higher preference for sweet taste (p = 0.021) than non-diabetic subjects. No statistically significant differences (p > 0.05) in preferences for the other tastes (bitter, salty, sour or umami) were detected. For taste perception, type 2 diabetic subjects have a slightly lower perception of all tastes (p = 0.026 for the combined “total taste score”), bitter taste being statistically lower (p = 0.023). We also carried out a principal component analysis (PCA), to identify latent variables related to preferences for the five tastes. We identified two factors with eigenvalues >1. Factor 2 was the one with the highest correlation with sweet taste preference. Sweet taste preference was strongly associated with a liking for sugary foods. In the exploratory SNP-based genome-wide association study (GWAS), we identified some SNPs associated with sweet taste preference, both at the suggestive and at the genome-wide level, especially a lead SNP in the PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) gene, whose minor allele was associated with a lower sweet taste preference. The PTPRN2 gene was also a top-ranked gene obtained in the gene-based exploratory GWAS analysis. In conclusion, sweet taste preference was strongly associated with sugary food liking in this population. Our exploratory GWAS identified an interesting candidate gene related with sweet taste preference, but more studies in other populations are required for personalized nutrition.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Jose V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellon, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Carolina Ortega-Azorín
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
| | - Rocío Barragán
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Sleep Center of Excellence, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ignacio M. Giménez-Alba
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA;
- Nutritional Genomics and Epigenomics Group, IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (R.F.-C.); (J.V.S.); (E.C.P.); (C.O.-A.); (R.B.); (I.M.G.-A.); (A.A.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (M.F.)
- Correspondence: ; Tel.: +34-96-386-4800
| |
Collapse
|
9
|
Alshwairikh YA, Kroeze SL, Olsson J, Stephens‐Cardenas SA, Swain WL, Waits LP, Horn RL, Narum SR, Seaborn T. Influence of environmental conditions at spawning sites and migration routes on adaptive variation and population connectivity in Chinook salmon. Ecol Evol 2021; 11:16890-16908. [PMID: 34938480 PMCID: PMC8668735 DOI: 10.1002/ece3.8324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome-environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)-a species of important economic, social, cultural, and ecological value-in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool-seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration-specific and spawning site-specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.
Collapse
Affiliation(s)
| | | | - Jenny Olsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - William L. Swain
- Wildlife Genomics and Disease LaboratoryProgram in EcologyDepartment of Veterinary SciencesUniversity of WyomingLaramieWyomingUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | | | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | - Travis Seaborn
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
10
|
Barbosa S, Andrews KR, Goldberg AR, Gour DS, Hohenlohe PA, Conway CJ, Waits LP. The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Mol Ecol 2021; 30:4673-4694. [PMID: 34324748 DOI: 10.1111/mec.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus - NIDGS, and U. endemicus - SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both theinter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographic barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.
Collapse
Affiliation(s)
- Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Kimberly R Andrews
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Digpal S Gour
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Paul A Hohenlohe
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA.,Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-3051, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research Unit, Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844-1141, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| |
Collapse
|
11
|
Stahlke AR, Epstein B, Barbosa S, Margres MJ, Patton AH, Hendricks SA, Veillet A, Fraik AK, Schönfeld B, McCallum HI, Hamede R, Jones ME, Storfer A, Hohenlohe PA. Contemporary and historical selection in Tasmanian devils ( Sarcophilus harrisii) support novel, polygenic response to transmissible cancer. Proc Biol Sci 2021; 288:20210577. [PMID: 34034517 PMCID: PMC8150010 DOI: 10.1098/rspb.2021.0577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Tasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. Here, we compared signatures of selection across temporal scales to determine whether genes or gene pathways under contemporary selection (six to eight generations) have also been subject to historical selection (65-85 Myr). First, we used targeted sequencing, RAD-capture, in approximately 2500 devils in six populations to identify genomic regions subject to rapid evolution. We documented genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. Then we used a molecular evolution approach to identify historical positive selection in devils compared to other marsupials and found evidence of selection in 1773 genes. However, we found limited overlap across time scales, with only 16 shared candidate genes, and no overlap in enriched functional gene sets. Our results are consistent with a novel, multi-locus evolutionary response of devils to DFTD. Our results can inform conservation by identifying high priority targets for genetic monitoring and guiding maintenance of adaptive potential in managed populations.
Collapse
Affiliation(s)
- Amanda R. Stahlke
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Soraia Barbosa
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Sarah A. Hendricks
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Anne Veillet
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Alexandra K. Fraik
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Barbara Schönfeld
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
12
|
Fraik AK, Margres MJ, Epstein B, Barbosa S, Jones M, Hendricks S, Schönfeld B, Stahlke AR, Veillet A, Hamede R, McCallum H, Lopez-Contreras E, Kallinen SJ, Hohenlohe PA, Kelley JL, Storfer A. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 2020; 74:1392-1408. [PMID: 32445281 DOI: 10.1111/evo.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.
Collapse
Affiliation(s)
- Alexandra K Fraik
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Mark J Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164.,Plant Biology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Soraia Barbosa
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Menna Jones
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Sarah Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Barbara Schönfeld
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Anne Veillet
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Hamish McCallum
- School of Environment, Griffith University Nathan, Nathan, QLD, 4111, Australia
| | - Elisa Lopez-Contreras
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Samantha J Kallinen
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Drive, Moscow, Idaho, 83844
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
13
|
Walden N, Lucek K, Willi Y. Lineage‐specific adaptation to climate involves flowering time in North American
Arabidopsis lyrata. Mol Ecol 2020; 29:1436-1451. [DOI: 10.1111/mec.15338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Nora Walden
- Department of Environmental Sciences University of Basel Basel Switzerland
- Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany
| | - Kay Lucek
- Department of Environmental Sciences University of Basel Basel Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences University of Basel Basel Switzerland
| |
Collapse
|
14
|
Lucek K, Hohmann N, Willi Y. Postglacial ecotype formation under outcrossing and self-fertilization in Arabidopsis lyrata. Mol Ecol 2019; 28:1043-1055. [PMID: 30719799 DOI: 10.1111/mec.15035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/01/2022]
Abstract
The formation of ecotypes has been invoked as an important driver of postglacial biodiversity, because many species colonized heterogeneous habitats and experienced divergent selection. Ecotype formation has been predominantly studied in outcrossing taxa, while far less attention has been paid to the implications of mating system shifts. Here, we addressed whether substrate-related ecotypes exist in selfing and outcrossing populations of Arabidopsis lyrata subsp. lyrata and whether the genomic footprint differs between mating systems. The North American subspecies colonized both rocky and sandy habitats during postglacial range expansion and shifted the mating system from predominantly outcrossing to predominantly selfing in a number of regions. We performed an association study on pooled whole-genome sequence data of 20 selfing or outcrossing populations, which suggested genes involved in adaptation to substrate. Motivated by enriched gene ontology terms, we compared root growth between plants from the two substrates in a common environment and found that plants originating from sand grew roots faster and produced more side roots, independent of mating system. Furthermore, single nucleotide polymorphisms associated with substrate-related ecotypes were more clustered among selfing populations. Our study provides evidence for substrate-related ecotypes in A. lyrata and divergence in the genomic footprint between mating systems. The latter is the likely result of selfing populations having experienced divergent selection on larger genomic regions due to higher genome-wide linkage disequilibrium.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Nora Hohmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Gros‐Balthazard M, Besnard G, Sarah G, Holtz Y, Leclercq J, Santoni S, Wegmann D, Glémin S, Khadari B. Evolutionary transcriptomics reveals the origins of olives and the genomic changes associated with their domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:143-157. [PMID: 31192486 PMCID: PMC6851578 DOI: 10.1111/tpj.14435] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/11/2023]
Abstract
The olive (Olea europaea L. subsp. europaea) is one of the oldest and most socio-economically important cultivated perennial crop in the Mediterranean region. Yet, its origins are still under debate and the genetic bases of the phenotypic changes associated with its domestication are unknown. We generated RNA-sequencing data for 68 wild and cultivated olive trees to study the genetic diversity and structure both at the transcription and sequence levels. To localize putative genes or expression pathways targeted by artificial selection during domestication, we employed a two-step approach in which we identified differentially expressed genes and screened the transcriptome for signatures of selection. Our analyses support a major domestication event in the eastern part of the Mediterranean basin followed by dispersion towards the West and subsequent admixture with western wild olives. While we found large changes in gene expression when comparing cultivated and wild olives, we found no major signature of selection on coding variants and weak signals primarily affected transcription factors. Our results indicated that the domestication of olives resulted in only moderate genomic consequences and that the domestication syndrome is mainly related to changes in gene expression, consistent with its evolutionary history and life history traits.
Collapse
Affiliation(s)
- Muriel Gros‐Balthazard
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Present address:
New York University Abu Dhabi (NYUAD), Center for Genomics and Systems BiologySaadiyat IslandAbu DhabiUnited Arab Emirates
| | | | - Gautier Sarah
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Yan Holtz
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Julie Leclercq
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Sylvain Santoni
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
| | - Sylvain Glémin
- CNRSUniversité de RennesECOBIO (Ecosystèmes, biodiversité, évolution) − UMR 6553F‐35000RennesFrance
- Department of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Bouchaib Khadari
- AGAP, University Montpellier, CIRAD, INRAMontpellier SupAgroMontpellierFrance
- Conservatoire Botanique National MéditerranéenUMR AGAPMontpellierFrance
| |
Collapse
|
16
|
Nayeri S, Schenkel F, Fleming A, Kroezen V, Sargolzaei M, Baes C, Cánovas A, Squires J, Miglior F. Genome-wide association analysis for β-hydroxybutyrate concentration in Milk in Holstein dairy cattle. BMC Genet 2019; 20:58. [PMID: 31311492 PMCID: PMC6636026 DOI: 10.1186/s12863-019-0761-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/28/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ketosis in dairy cattle has been shown to cause a high morbidity in the farm and substantial financial losses to dairy farmers. Ketosis symptoms, however, are difficult to identify, therefore, the amount of ketone bodies (mainly β-hydroxybutyric acid, BHB) is used as an indicator of subclinical ketosis in cows. It has also been shown that milk BHB concentrations have a strong correlation with ketosis in dairy cattle. Mid-infrared spectroscopy (MIR) has recently became a fast, cheap and high-throughput method for analyzing milk components. The aim of this study was to perform a genome-wide association study (GWAS) on the MIR-predicted milk BHB to identify genomic regions, genes and pathways potentially affecting subclinical ketosis in North American Holstein dairy cattle. RESULTS Several significant regions were identified associated with MIR-predicted milk BHB concentrations (indicator of subclinical ketosis) in the first lactation (SCK1) and second and later lactations (SCK2) in Holstein dairy cows. The strongest association was located on BTA6 for SCK1 and BTA14 on SCK2. Several SNPs on BTA6 were identified in regions and variants reported previously to be associated with susceptibility to ketosis and clinical mastitis in Jersey and Holstein dairy cattle, respectively. One highly significant SNP on BTA14 was found within the DGAT1 gene with known functions on fat metabolism and inflammatory response in dairy cattle. A region on BTA6 and three SNPs on BTA20 were found to overlap between SCK1 and SCK2. However, a novel region on BTA20 (55-63 Mb) for SCK2 was also identified, which was not reported in previous association studies. Enrichment analysis of the list of candidate genes within the identified regions for MIR-predicted milk BHB concentrations yielded molecular functions and biological processes that may be involved in the inflammatory response and lipid metabolism in dairy cattle. CONCLUSIONS The results of this study confirmed several SNPs and genes identified in previous studies as associated with ketosis susceptibility and immune response, and also found a novel region that can be used for further analysis to identify causal variations and key regulatory genes that affect clinical/ subclinical ketosis.
Collapse
Affiliation(s)
- S. Nayeri
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - F. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - A. Fleming
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
- Canadian Dairy Network, Guelph, ON N1K 1E5 Canada
| | - V. Kroezen
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - M. Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
- Select Sires Inc., Plain City, OH 43064 USA
| | - C. Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - A. Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - J. Squires
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - F. Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
17
|
Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, Wright SI, Weigel D. Long-term balancing selection drives evolution of immunity genes in Capsella. eLife 2019; 8:e43606. [PMID: 30806624 PMCID: PMC6426441 DOI: 10.7554/elife.43606] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. By reconstructing the evolution of the disease-related locus MLO2b, we find that divergence between ancient haplotypes can be obscured by referenced based re-sequencing methods, and that trans-specific alleles can encode substantially diverged protein sequences. Our data point to long-term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.
Collapse
Affiliation(s)
- Daniel Koenig
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Jörg Hagmann
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Rachel Li
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Felix Bemm
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Tanja Slotte
- Department of Ecology,Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Barbara Neuffer
- Department of BiologyUniversity of OsnabrückOsnabrückGermany
| | - Stephen I Wright
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
18
|
Guggisberg A, Liu X, Suter L, Mansion G, Fischer MC, Fior S, Roumet M, Kretzschmar R, Koch MA, Widmer A. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol Ecol 2018; 27:5088-5103. [PMID: 30411828 DOI: 10.1111/mec.14930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Edaphic conditions are important determinants of plant fitness. While much has been learnt in recent years about plant adaptation to heavy metal contaminated soils, the genomic basis underlying adaptation to calcareous and siliceous substrates remains largely unknown. We performed a reciprocal germination experiment and whole-genome resequencing in natural calcareous and siliceous populations of diploid Arabidopsis lyrata to test for edaphic adaptation and detect signatures of selection at loci associated with soil-mediated divergence. In parallel, genome scans on respective diploid ecotypes from the Arabidopsis arenosa species complex were undertaken, to search for shared patterns of adaptive genetic divergence. Soil ecotypes of A. lyrata display significant genotype-by-treatment responses for seed germination. Sequence (SNPs) and copy-number variants (CNVs) point towards loci involved in ion transport as the main targets of adaptive genetic divergence. Two genes exhibiting high differentiation among soil types in A. lyrata further share trans-specific single nucleotide polymorphisms with A. arenosa. This work applies experimental and genomic approaches to study edaphic adaptation in A. lyrata and suggests that physiological response to elemental toxicity and deficiency underlies the evolution of calcareous and siliceous ecotypes. The discovery of shared adaptive variation between sister species indicates that ancient polymorphisms contribute to adaptive evolution.
Collapse
Affiliation(s)
| | - Xuanyu Liu
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Léonie Suter
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Guilhem Mansion
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Martin C Fischer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Marie Roumet
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Ruben Kretzschmar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Marcus A Koch
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Chhatre VE, Evans LM, DiFazio SP, Keller SR. Adaptive introgression and maintenance of a trispecies hybrid complex in range‐edge populations of
Populus. Mol Ecol 2018; 27:4820-4838. [DOI: 10.1111/mec.14820] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Vikram E. Chhatre
- Department of Plant Biology University of Vermont Burlington Vermont
| | - Luke M. Evans
- Department of Ecology and Evolutionary Biology Institute of Behavioral Genetics University of Colorado Boulder Colorado
| | | | - Stephen R. Keller
- Department of Plant Biology University of Vermont Burlington Vermont
| |
Collapse
|
20
|
Abo-Ismail MK, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, Plastow G, Stothard P, Nayeri S, Schenkel FS. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genet Sel Evol 2017; 49:82. [PMID: 29115939 PMCID: PMC6389134 DOI: 10.1186/s12711-017-0356-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/23/2017] [Indexed: 11/23/2022] Open
Abstract
Background Our aim was to identify genomic regions via genome-wide association studies (GWAS) to improve the predictability of genetic merit in Holsteins for 10 calving and 28 body conformation traits. Animals were genotyped using the Illumina Bovine 50 K BeadChip and imputed to the Illumina BovineHD BeadChip (HD). GWAS were performed on 601,717 real and imputed single nucleotide polymorphism (SNP) genotypes using a single-SNP mixed linear model on 4841 Holstein bulls with breeding value predictions and followed by gene identification and in silico functional analyses. The association results were further validated using five scenarios with different numbers of SNPs. Results Seven hundred and eighty-two SNPs were significantly associated with calving performance at a genome-wise false discovery rate (FDR) of 5%. Most of these significant SNPs were on chromosomes 18 (71.9%), 17 (7.4%), 5 (6.8%) and 7 (2.4%) and mapped to 675 genes, among which 142 included at least one significant SNP and 532 were nearby one (100 kbp). For body conformation traits, 607 SNPs were significant at a genome-wise FDR of 5% and most of them were located on chromosomes 5 (30%), 18 (27%), 20 (13%), 6 (6%), 7 (5%), 14 (5%) and 13 (3%). SNP enrichment functional analyses for calving traits at a FDR of 1% suggested potential biological processes including musculoskeletal movement, meiotic cell cycle, oocyte maturation and skeletal muscle contraction. Furthermore, pathway analyses suggested potential pathways associated with calving performance traits including tight junction, oxytocin signaling, and MAPK signaling (P < 0.10). The prediction ability of the 1206 significant SNPs was between 78 and 83% of the prediction ability of the BovineSNP50 SNPs for calving performance traits and between 35 and 79% for body conformation traits. Conclusions Various SNPs that are significantly associated with calving performance are located within or nearby genes with potential roles in tight junction, oxytocin signaling, and MAPK signaling. Combining the significant SNPs or SNPs within or nearby gene(s) from the HD panel with the BovineSNP50 panel yielded a marginal increase in the accuracy of prediction of genomic estimated breeding values for all traits compared to the use of the BovineSNP50 panel alone. Electronic supplementary material The online version of this article (10.1186/s12711-017-0356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammed K Abo-Ismail
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Department of Animal and Poultry Production, Damanhour University, Damanhour, Egypt
| | - Luiz F Brito
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Stephen P Miller
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,The Angus Genetics Inc, Saint Joseph, MO, USA
| | - Mehdi Sargolzaei
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,The Semex Alliance, Guelph, ON, Canada
| | - Daniela A Grossi
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
21
|
Kaiser TS, Poehn B, Szkiba D, Preussner M, Sedlazeck FJ, Zrim A, Neumann T, Nguyen LT, Betancourt AJ, Hummel T, Vogel H, Dorner S, Heyd F, von Haeseler A, Tessmar-Raible K. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 2016; 540:69-73. [PMID: 27871090 PMCID: PMC5133387 DOI: 10.1038/nature20151] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing. Genomic and molecular analyses of Clunio marinus timing strains suggest that modulation of alternative splicing of Ca2+/calmodulin-dependent kinase II represents a mechanism for evolutionary adaptation of circadian timing. Kristin Tessmar-Raible and colleagues report the genome of Clunio marinus, a marine midge whose reproduction is timed to the tides by circadian and circalunar clocks. To identify genetic variation associated with timing differences, the authors report genetic mapping in a selection of C. marinus strains with a range of circadian and circalunar timing. They suggest that circalunar and circadian timing are regulated by separate pathways, do not find involvement of core clock genes, and implicate calcium/calmodulin-dependent kinase II.1 in the regulation of circadian timing.
Collapse
Affiliation(s)
- Tobias S Kaiser
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria
| | - Birgit Poehn
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria
| | - David Szkiba
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Marco Preussner
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, FU Berlin, D-14195 Berlin, Germany
| | - Fritz J Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Alexander Zrim
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Tobias Neumann
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Lam-Tung Nguyen
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1030 Vienna, Austria
| | - Andrea J Betancourt
- Institute of Population Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Josef-Baumann-Gasse 1, A-1210 Vienna, Austria
| | - Thomas Hummel
- Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria.,Department of Neurobiology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Dorner
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, FU Berlin, D-14195 Berlin, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.,Research Platform 'Rhythms of Life', University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
22
|
Granata I, Sangiovanni M, Maiorano F, Miele M, Guarracino MR. Var2GO: a web-based tool for gene variants selection. BMC Bioinformatics 2016; 17:376. [PMID: 28185576 PMCID: PMC5123234 DOI: 10.1186/s12859-016-1197-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background One of the most challenging issue in the variant calling process is handling the resulting data, and filtering the genes retaining only the ones strictly related to the topic of interest. Several tools permit to gather annotations at different levels of complexity for the detected genes and to group them according to the pathways and/or processes they belong to. However, it might be a time consuming and frustrating task. This is partly due to the size of the file, that might contain many thousands of genes, and to the search of associated variants that requires a gene-by-gene investigation and annotation approach. As a consequence, the initial gene list is often reduced exploiting the knowledge of variants effect, novelty and genotype, with the potential risk of losing meaningful pieces of information. Results Here we present Var2GO, a new web-based tool to support the annotation and filtering of variants and genes coming from variant calling of high-throughput sequencing data. Var2GO permits to upload either the unprocessed Variant Calling Format file or a table containing the annotated variants. The raw data undergo a preliminary step of variants annotation, using the SnpEff tool, and are converted to a table format. The table is then uploaded into an on the fly generated database. Genes associated to the variants are automatically annotated with the corresponding Gene Ontology terms covering the three GO domains. Using the web interface it is then possible to filter and extract, from the whole list, genes having annotations in the domain of interest, by simply specifying filtering parameters and one or more keywords. The relevance of this tool is demonstrated on exome sequencing data. Conclusions Var2GO is a novel tool that implements a topic-based approach, expressly designed to help biologists in narrowing the search of relevant genes coming from variant calling analysis. Its main purpose is to support non-bioinformaticians in handling and processing raw variant calling data through an intuitive web interface. Furthermore, Var2GO offers a complete pipeline that, starting from the raw VCF file, allows to annotate both variants and associated genes and supports the extraction of relevant biological knowledge.
Collapse
Affiliation(s)
- Ilaria Granata
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy.
| | - Mara Sangiovanni
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy
| | - Francesco Maiorano
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy
| | - Marco Miele
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy
| | - Mario Rosario Guarracino
- High Performance Computing and Networking Institute, National Research Council of Italy, Via P. Castellino, 111, Napoli, 80131, Italy
| |
Collapse
|
23
|
Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids. Proc Natl Acad Sci U S A 2016; 113:E7317-E7326. [PMID: 27803326 DOI: 10.1073/pnas.1615268113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.
Collapse
|
24
|
eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Sci Rep 2016; 6:30595. [PMID: 27470167 PMCID: PMC4965794 DOI: 10.1038/srep30595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWASs) have mined many common genetic variants associated with human complex traits like diseases. After that, the functional annotation and enrichment analysis of significant SNPs are important tasks. Classic methods are always based on physical positions of SNPs and genes. Expression quantitative trait loci (eQTLs) are genomic loci that contribute to variation in gene expression levels and have been proven efficient to connect SNPs and genes. In this work, we integrated the eQTL data and Gene Ontology (GO), constructed associations between SNPs and GO terms, then performed functional enrichment analysis. Finally, we constructed an eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Taking Parkinson Disease (PD) as an example, the proposed platform and method are efficient. We believe eSNPO will be a useful resource for SNP functional annotation and enrichment analysis after we have got significant disease related SNPs.
Collapse
|
25
|
Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genet 2016; 17:75. [PMID: 27287773 PMCID: PMC4901445 DOI: 10.1186/s12863-016-0386-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are a powerful tool for detecting genomic regions explaining variation in phenotype. The objectives of the present study were to identify or refine the positions of genomic regions affecting milk production, milk components and fertility traits in Canadian Holstein cattle, and to use these positions to identify genes and pathways that may influence these traits. RESULT Several QTL regions were detected for milk production (MILK), fat production (FAT), protein production (PROT) and fat and protein deviation (FATD, PROTD respectively). The identified QTL regions for production traits (including milk production) support previous findings and some overlap with genes with known relevant biological functions identified in earlier studies such as DGAT1 and CPSF1. A significant region on chromosome 21 overlapping with the gene FAM181A and not previous linked to fertility in dairy cattle was identified for the calving to first service interval and days open. A functional enrichment analysis of the GWAS results yielded GO terms consistent with the specific phenotypes tested, for example GO terms GO:0007595 (lactation) and GO:0043627 (response to estrogen) for milk production (MILK), GO:0051057 (positive regulation of small GTPase mediated signal transduction) for fat production (FAT), GO:0040019 (positive regulation of embryonic development) for first service to calving interval (CTFS) and GO:0043268 (positive regulation of potassium ion transport) for days open (DO). In other cases the connection between the enriched GO terms and the traits were less clear, for example GO:0003279 (cardiac septum development) for FAT and GO:0030903 (notochord development) for DO trait. CONCLUSION The chromosomal regions and enriched pathways identified in this study confirm several previous findings and highlight new regions and pathways that may contribute to variation in production or fertility traits in dairy cattle.
Collapse
|