1
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|
2
|
Morgan BL, Donohue K. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. ANNALS OF BOTANY 2022; 130:883-899. [PMID: 36201313 PMCID: PMC9758305 DOI: 10.1093/aob/mcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations. METHODS Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations. KEY RESULTS We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination. CONCLUSIONS Parental methylation state influences seed germination more strongly than does the progeny's own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.
Collapse
Affiliation(s)
- Britany L Morgan
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kathleen Donohue
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Biology Department, Duke University, Durham, NC 27705, USA
| |
Collapse
|
3
|
Shapturenko MN, Vakula SV, Tarutina LA, Nikitinskaya TV, Pechkovskaya TV, Mishin LA, Khotyleva LV. Allelic and epigenetic DNA variation in relation to F1 heterosis manifestation in F1 hybrids of Capsicum annuum L. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Managing F1heterosis is one of the major objectives in hybrid crop breeding programs. The classical theory considers the heterozygosity in F1hybrids to be the main factor contributing to heterosis and therefore presumes a linear relationship between the value of genetic polymorphisms in parental lines and the heterotic response of their F1offspring. Therefore, the genetic diversity information is viewed as a tool for selection of promising cross-combinations, but results published by different researchers are inconsistent. In this work, we studied the contributions of structural and nonstructural DNA polymorphisms to F1heterosis manifestation. We used SSR and methyl-sensitive AFLP (MSAP with HpaII and MspI izoshisomers) protocols for obtaining specific patterns for heterotic and nonheterotic F1hybrids of sweet pepper (Capsicum annuum L.) from a Belarusian breeding program. We found out that a certain portion of heterosis for yield-related traits might be explained by the polymorphism revealed by SSR analysis. According to our data, the total number of polymorphic SSR loci and the ratio of polymorphic and nonpolymorphic loci demonstrate a significant predictive value and can serve as additional prognostic criteria for the selection of promising cross-combinations. From the MSAP assay, we found a relationship between heterosis and the numbers of methylated and nonmethylated DNA loci for yield traits. Our results indicate that cross-hybridization may favor epiallelic modifications in F1hybrids, presumably responsible for heterosis. Thus, epigenetic DNA variation may explain the absence of a linear relationship between the level of structural DNA divergence and F1heterosis, as well as the manifestation of heterosis in crosses of related (genetically similar) accessions.
Collapse
Affiliation(s)
- M. N. Shapturenko
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| | - S. V. Vakula
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| | - L. A. Tarutina
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| | - T. V. Nikitinskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| | - T. V. Pechkovskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| | | | - L. V. Khotyleva
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| |
Collapse
|
4
|
Herrera CM, Alonso C, Medrano M, Pérez R, Bazaga P. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia. AMERICAN JOURNAL OF BOTANY 2018; 105:741-748. [PMID: 29727470 DOI: 10.1002/ajb2.1074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. METHODS We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. KEY RESULTS Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. CONCLUSIONS Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Conchita Alonso
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Mónica Medrano
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de, Sevilla, Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 26, 41092, Sevilla, Spain
| |
Collapse
|
5
|
Kronholm I, Bassett A, Baulcombe D, Collins S. Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas. Mol Biol Evol 2017; 34:2285-2306. [PMID: 28535256 DOI: 10.1093/molbev/msx166] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the amount of epigenetic variation available to populations can reduce adaptation in environments where it otherwise happens. From genomic and epigenomic sequences from a subset of the populations, we see changes in methylation patterns between the evolved populations over-represented in some functional categories of genes, which is consistent with some of these differences being adaptive. Based on whole genome sequencing of evolved clones, the majority of DNA methylation changes do not appear to be linked to cis-acting genetic mutations. Our results show that transgenerational epigenetic effects play a role in adaptive evolution, and suggest that the relationship between changes in methylation patterns and differences in evolutionary outcomes, at least for quantitative traits such as cell division rates, is complex.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, Jyväskylä, Finland
| | - Andrew Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - David Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sinéad Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Lauria M, Echegoyen-Nava RA, Rodríguez-Ríos D, Zaina S, Lund G. Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize. BMC PLANT BIOLOGY 2017; 17:52. [PMID: 28231765 PMCID: PMC5324254 DOI: 10.1186/s12870-017-0997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/08/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND Variation in DNA methylation across distinct genetic populations, or in response to specific biotic or abiotic stimuli, has typically been studied in leaf DNA from pooled individuals using either reduced representation bisulfite sequencing, whole genome bisulfite sequencing (WGBS) or methylation sensitive amplified polymorphism (MSAP). The latter represents a useful alterative when sample size is large, or when analysing methylation changes in genomes that have yet to be sequenced. In this study we compared variation in methylation across ten individual leaf and endosperm samples from maize hybrid and inbred lines using MSAP. We also addressed the methodological implications of analysing methylation variation using pooled versus individual DNA samples, in addition to the validity of MSAP compared to WGBS. Finally, we analysed a subset of variable and non-variable fragments with respect to genomic location, vicinity to repetitive elements and expression patterns across leaf and endosperm tissues. RESULTS On average, 30% of individuals showed inter-individual methylation variation, mostly of leaf and endosperm-specific differentially methylated DNA regions. With the exception of low frequency demethylation events, the bulk of inter-individual methylation variation (84 and 80% in leaf and endosperm, respectively) was effectively captured in DNA from pooled individuals. Furthermore, available genome-wide methylation data largely confirmed MSAP leaf methylation profiles. Most variable methylation that mapped within genes was associated with CG methylation, and many of such genes showed tissue-specific expression profiles. Finally, we found that the hAT DNA transposon was the most common class II transposable element found in close proximity to variable DNA regions. CONCLUSIONS The relevance of our results with respect to future studies of methylation variation is the following: firstly, the finding that inter-individual methylation variation is largely restricted to tissue-specific differentially methylated DNA regions, underlines the importance of tissue-type when analysing the methylation response to a defined stimulus. Secondly, we show that pooled sample-based MSAP studies are methodologically appropriate to study methylation variation. Thirdly, we confirm that MSAP is a powerful tool when WGBS is not required or feasible, for example in plant species that have yet to be sequenced.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, I-20133 Milan, Italy
| | - Rodrigo Antonio Echegoyen-Nava
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Dalia Rodríguez-Ríos
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Guanajuato, Mexico
| | - Gertrud Lund
- Gertrud Lund, Department of Genetic Engineering, CINVESTAV - Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, C. P. 36500 Irapuato, GTO Mexico
| |
Collapse
|
7
|
Cao L, Yu N, Li J, Qi Z, Wang D, Chen L. Heritability and Reversibility of DNA Methylation Induced by in vitro Grafting between Brassica juncea and B. oleracea. Sci Rep 2016; 6:27233. [PMID: 27257143 PMCID: PMC4891673 DOI: 10.1038/srep27233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/17/2016] [Indexed: 01/07/2023] Open
Abstract
Grafting between tuber mustard and red cabbage produced a chimeric shoot apical meristem (SAM) of TTC, consisting of Layers I and II from Tuber mustard and Layer III from red Cabbage. Phenotypic variations, which mainly showed in leaf shape and SAM, were observed in selfed progenies GSn (GS = grafting-selfing, n = generations) of TTC. Here the heritability of phenotypic variation and its association with DNA methylation changes in GSn were investigated. Variation in leaf shape was found to be stably inherited to GS5, but SAM variation reverted over generations. Subsequent measurement of DNA methylation in GS1 revealed 5.29–6.59% methylation changes compared with tuber mustard (TTT), and 31.58% of these changes were stably transmitted to GS5, but the remainder reverted to the original status over generations, suggesting grafting-induced DNA methylation changes could be both heritable and reversible. Sequence analysis of differentially methylated fragments (DMFs) revealed methylation mainly changed within transposons and exon regions, which further affected the expression of genes, including flowering time- and gibberellin response-related genes. Interestingly, DMFs could match differentially expressed siRNA of GS1, GS3 and GS5, indicating that grafting-induced DNA methylation could be directed by siRNA changes. These results suggest grafting-induced DNA methylation may contribute to phenotypic variations induced by grafting.
Collapse
Affiliation(s)
- Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ningning Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Junxing Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
8
|
Herrera CM, Bazaga P. Genetic and epigenetic divergence between disturbed and undisturbed subpopulations of a Mediterranean shrub: a 20-year field experiment. Ecol Evol 2016; 6:3832-3847. [PMID: 28725357 PMCID: PMC5513313 DOI: 10.1002/ece3.2161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023] Open
Abstract
Little is known on the potential of ecological disturbance to cause genetic and epigenetic changes in plant populations. We take advantage of a long‐term field experiment initiated in 1986 to study the demography of the shrub Lavandula latifolia, and compare genetic and epigenetic characteristics of plants in two adjacent subplots, one experimentally disturbed and one left undisturbed, 20 years after disturbance. Experimental setup was comparable to an unreplicated ‘Before‐After‐Control‐Impact’ (BACI) design where a single pair of perturbed and control areas were compared. When sampled in 2005, plants in the two subplots had roughly similar ages, but they had established in contrasting environments: dense conspecific population (‘Undisturbed’ subpopulation) versus open area with all conspecifics removed (‘Disturbed’ subpopulation). Plants were characterized genetically and epigenetically using amplified fragment length polymorphism (AFLP) and two classes of methylation‐sensitive AFLP (MSAP) markers. Subpopulations were similar in genetic diversity but differed in epigenetic diversity and multilocus genetic and epigenetic characteristics. Epigenetic divergence between subpopulations was statistically unrelated to genetic divergence. Bayesian clustering revealed an abrupt linear boundary between subpopulations closely coincident with the arbitrary demarcation line between subplots drawn 20 years back, which supports that genetic and epigenetic divergence between subpopulations was caused by artificial disturbance. There was significant fine‐scale spatial structuring of MSAP markers in both subpopulations, which in the Undisturbed one was indistinguishable from that of AFLP markers. Genetic differences between subpopulations could be explained by divergent selection alone, while the concerted action of divergent selection and disturbance‐driven appearance of new methylation variants in the Disturbed subpopulation is proposed to explain epigenetic differences. This study provides the first empirical evidence to date suggesting that relatively mild disturbances could leave genetic and epigenetic signatures on the next adult generation of long‐lived plants.
Collapse
Affiliation(s)
- Carlos M Herrera
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) Avenida Américo Vespucio s/n Isla de La Cartuja Sevilla 41092 Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC) Avenida Américo Vespucio s/n Isla de La Cartuja Sevilla 41092 Spain
| |
Collapse
|
9
|
Xu J, Tanino KK, Robinson SJ. Stable Epigenetic Variants Selected from an Induced Hypomethylated Fragaria vesca Population. FRONTIERS IN PLANT SCIENCE 2016; 7:1768. [PMID: 27965682 PMCID: PMC5126047 DOI: 10.3389/fpls.2016.01768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 05/05/2023]
Abstract
Epigenetic inheritance was transmitted through selection over five generations of extreme early, but not late flowering time phenotypic lines in Fragaria vesca. Epigenetic variation was initially artificially induced using the DNA demethylation reagent 5-azacytidine (5-azaC). It is the first report to explore epigenetic variant selection and phenotypic trait inheritance in strawberry. Transmission frequency of these traits was determined across generations. The early flowering (EF4) and late stolon (LS) phenotypic traits were successfully transmitted across five and three generations through meiosis, respectively. Stable mitotic transmission of the early flowering phenotype was also demonstrated using clonal daughters derived from the 4th Generation (S4) mother plant. In order to further explore the DNA methylation patterns underlying the early flowering trait, the standard MSAP method using isoschizomers Hpa II/Msp I, and newly modified MSAP method using isoschizomers Tfi I/Pfe I which detected DNA methylation at CG, CHG, CHH sites were used in two early flowering lines, EF lines 1 (P2) and EF lines 2 (P3), and control lines (P1). A significant reduction in the number of fully-methylated bands was detected in P2 and P3 when compared to P1 using the novel MSAP method. In the standard MSAP, the symmetric CG and CHG methylation was maintained over generations in the early flowering lines based on the clustering in P2 and P3, the novel MSAP approach revealed the asymmetric CHH methylation pattern was not maintained over generations. This study provides evidence of stable selection of phenotypic traits, particularly early flowering through both meiosis and mitosis, which is meaningful to both breeding programs and commercial horticulture. The maintenance in CG and CHG methylation over generations suggests the early flowering phenotype might be related to DNA methylation alterations at the CG or CHG sites. Finally, this work provides a new approach for studying the role of epigenetics on complex quantitative trait improvement in strawberry, as well as providing a tool to expand phenotypic diversity and expedite potential new horticulture cultivar releases through either seed or vegetative propagation.
Collapse
Affiliation(s)
- Jihua Xu
- Department of Plant Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Karen K Tanino
- Department of Plant Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Stephen J Robinson
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada; Agriculture and Agri-Food Canada, Saskatoon Research CentreSaskatoon, SK, Canada
| |
Collapse
|
10
|
How to Isolate a Plant's Hypomethylome in One Shot. BIOMED RESEARCH INTERNATIONAL 2015; 2015:570568. [PMID: 26421293 PMCID: PMC4573423 DOI: 10.1155/2015/570568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
Abstract
Genome assembly remains a challenge for large and/or complex plant genomes due to their abundant repetitive regions resulting in studies focusing on gene space instead of the whole genome. Thus, DNA enrichment strategies facilitate the assembly by increasing the coverage and simultaneously reducing the complexity of the whole genome. In this paper we provide an easy, fast, and cost-effective variant of MRE-seq to obtain a plant's hypomethylome by an optimized methyl filtration protocol followed by next generation sequencing. The method is demonstrated on three plant species with knowingly large and/or complex (polyploid) genomes: Oryza sativa, Picea abies, and Crocus sativus. The identified hypomethylomes show clear enrichment for genes and their flanking regions and clear reduction of transposable elements. Additionally, genomic sequences around genes are captured including regulatory elements in introns and up- and downstream flanks. High similarity of the results obtained by a de novo assembly approach with a reference based mapping in rice supports the applicability for studying and understanding the genomes of nonmodel organisms. Hence we show the high potential of MRE-seq in a wide range of scenarios for the direct analysis of methylation differences, for example, between ecotypes, individuals, within or across species harbouring large, and complex genomes.
Collapse
|
11
|
Kronholm I, Collins S. Epigenetic mutations can both help and hinder adaptive evolution. Mol Ecol 2015; 25:1856-68. [PMID: 26139359 DOI: 10.1111/mec.13296] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Epigenetic variation is being integrated into our understanding of adaptation, yet we lack models on how epigenetic mutations affect evolution that includes de novo genetic change. We model the effects of epigenetic mutations on the dynamics and endpoints of adaptive walks-a process where a series of beneficial mutations move a population towards a fitness optimum. We use an individual-based model of an asexual population, where mutational effects are drawn from Fisher's geometric model. We find cases where epigenetic mutations speed adaptation or result in populations with higher fitness. However, we also find cases where they slow adaptation or result in populations with lower fitness. The effect of epigenetic mutations on adaptive walks depends crucially on their stability and fitness effects relative to genetic mutations, with small-effect epigenetic mutations generally speeding adaptation, and epigenetic mutations with the same fitness effects as genetic mutations slowing adaptation. Our work reveals a complex relationship between epigenetic mutations and natural selection and highlights the need for empirical data.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK.,Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Sinéad Collins
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, Edinburgh, UK
| |
Collapse
|
12
|
Abstract
Some species exhibit very high levels of DNA sequence variability; there is also evidence for the existence of heritable epigenetic variants that experience state changes at a much higher rate than sequence variants. In both cases, the resulting high diversity levels within a population (hyperdiversity) mean that standard population genetics methods are not trustworthy. We analyze a population genetics model that incorporates purifying selection, reversible mutations, and genetic drift, assuming a stationary population size. We derive analytical results for both population parameters and sample statistics and discuss their implications for studies of natural genetic and epigenetic variation. In particular, we find that (1) many more intermediate-frequency variants are expected than under standard models, even with moderately strong purifying selection, and (2) rates of evolution under purifying selection may be close to, or even exceed, neutral rates. These findings are related to empirical studies of sequence and epigenetic variation.
Collapse
|