1
|
Rinaldi F, Schipani F, Balboni B, Catalano F, Marotta R, Myers SH, Previtali V, Veronesi M, Scietti L, Cecatiello V, Pasqualato S, Ortega JA, Girotto S, Cavalli A. Isolation and Characterization of Monomeric Human RAD51: A Novel Tool for Investigating Homologous Recombination in Cancer. Angew Chem Int Ed Engl 2023; 62:e202312517. [PMID: 37924230 DOI: 10.1002/anie.202312517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
DNA repair protein RAD51 is a key player in the homologous recombination pathway. Upon DNA damage, RAD51 is transported into the nucleus by BRCA2, where it can repair DNA double-strand breaks. Due to the structural complexity and dynamics, researchers have not yet clarified the mechanistic details of every step of RAD51 recruitment and DNA repair. RAD51 possesses an intrinsic tendency to form oligomeric structures, which make it challenging to conduct biochemical and biophysical investigations. Here, for the first time, we report on the isolation and characterization of a human monomeric RAD51 recombinant form, obtained through a double mutation, which preserves the protein's integrity and functionality. We investigated different buffers to identify the most suitable condition needed to definitively stabilize the monomer. The monomer of human RAD51 provides the community with a unique biological tool for investigating RAD51-mediated homologous recombination, and paves the way for more reliable structural, mechanistic, and drug discovery studies.
Collapse
Affiliation(s)
- Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Fabrizio Schipani
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Samuel H Myers
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marina Veronesi
- Structural Biophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Luigi Scietti
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IRCCS European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Valentina Cecatiello
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IRCCS European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
- Current address: Structural Biology Research Centre, Human Technopole Milan, Italy Palazzo Italia Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Sebastiano Pasqualato
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IRCCS European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
- Current address: Structural Biology Research Centre, Human Technopole Milan, Italy Palazzo Italia Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
2
|
Jeffries DL, Gerchen JF, Scharmann M, Pannell JR. A neutral model for the loss of recombination on sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200096. [PMID: 34247504 PMCID: PMC8273504 DOI: 10.1098/rstb.2020.0096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2021] [Indexed: 01/10/2023] Open
Abstract
The loss of recombination between sex chromosomes has occurred repeatedly throughout nature, with important implications for their subsequent evolution. Explanations for this remarkable convergence have generally invoked only adaptive processes (e.g. sexually antagonistic selection); however, there is still little evidence for these hypotheses. Here we propose a model in which recombination on sex chromosomes is lost due to the neutral accumulation of sequence divergence adjacent to (and thus, in linkage disequilibrium with) the sex determiner. Importantly, we include in our model the fact that sequence divergence, in any form, reduces the probability of recombination between any two sequences. Using simulations, we show that, under certain conditions, a region of suppressed recombination arises and expands outwards from the sex-determining locus, under purely neutral processes. Further, we show that the rate and pattern of recombination loss are sensitive to the pre-existing recombination landscape of the genome and to sex differences in recombination rates, with patterns consistent with evolutionary strata emerging under some conditions. We discuss the applicability of these results to natural systems. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jörn F. Gerchen
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathias Scharmann
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - John R. Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
The dichotomous effects of caffeine on homologous recombination in mammalian cells. DNA Repair (Amst) 2020; 88:102805. [PMID: 32062581 DOI: 10.1016/j.dnarep.2020.102805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 11/23/2022]
Abstract
This study was initiated to examine the effects of caffeine on the DNA damage response (DDR) and homologous recombination (HR) in mammalian cells. A 5 mM caffeine treatment caused the cell cycle to stall at G2/M and cells eventually underwent apoptosis. Caffeine exposure also induced a strong DDR along with subsequent activation of wildtype p53 protein. An unexpected observation was the caffeine-induced depletion of Rad51 (and Brca2) proteins. Consequently, caffeine-treated cells were expected to be inefficient in HR. However, a dichotomy in the HR response of cells to caffeine treatment was revealed. Caffeine treatment rendered cells significantly better at performing the nascent DNA synthesis that accompanies the early strand invasion steps of HR. Additionally, caffeine treatment increased chromatin accessibility and elevated the efficiency of illegitimate recombination. Conversely, the increase in nascent DNA synthesis did not translate into a higher number of gene targeting events. Thus, prolonged caffeine exposure stalls the cell cycle, induces a p53-mediated apoptotic response and a down-regulation of critical HR proteins, and for reasons discussed, stimulates early steps of HR, but not the formation of complete recombination products.
Collapse
|
4
|
White TB, Morales ME, Deininger PL. Alu elements and DNA double-strand break repair. Mob Genet Elements 2015; 5:81-85. [PMID: 26942043 DOI: 10.1080/2159256x.2015.1093067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022] Open
Abstract
Alu elements represent one of the most common sources of homology and homeology in the human genome. Homeologous recombination between Alu elements represents a major form of genetic instability leading to deletions and duplications. Although these types of events have been studied extensively through genomic sequencing to assess the impact of Alu elements on disease mutations and genome evolution, the overall abundance of Alu elements in the genome often makes it difficult to assess the relevance of the Alu elements to specific recombination events. We recently reported a powerful new reporter gene system that allows the assessment of various cis and trans factors on the contribution of Alu elements to various forms of genetic instability. This allowed a quantitative measurement of the influence of mismatches on Alu elements and instability. It also confirmed that homeologous Alu elements are able to stimulate non-homologous end joining events in their vicinity. This appears to be dependent on portions of the mismatch repair pathway. We are now in a position to begin to unravel the complex influences of Alu density, mismatch and location with alterations of DNA repair processes in various tissues and tumors.
Collapse
Affiliation(s)
- Travis B White
- Tulane Cancer Center; Tulane University Health Sciences Center ; New Orleans, LA USA
| | - Maria E Morales
- Tulane Cancer Center; Tulane University Health Sciences Center ; New Orleans, LA USA
| | - Prescott L Deininger
- Tulane Cancer Center; Tulane University Health Sciences Center ; New Orleans, LA USA
| |
Collapse
|
5
|
Gu S, Yuan B, Campbell IM, Beck CR, Carvalho CMB, Nagamani SCS, Erez A, Patel A, Bacino CA, Shaw CA, Stankiewicz P, Cheung SW, Bi W, Lupski JR. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 2015; 24:4061-77. [PMID: 25908615 DOI: 10.1093/hmg/ddv146] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023] Open
Abstract
Alu repetitive elements are known to be major contributors to genome instability by generating Alu-mediated copy-number variants (CNVs). Most of the reported Alu-mediated CNVs are simple deletions and duplications, and the mechanism underlying Alu-Alu-mediated rearrangement has been attributed to non-allelic homologous recombination (NAHR). Chromosome 17 at the p13.3 genomic region lacks extensive low-copy repeat architecture; however, it is highly enriched for Alu repetitive elements, with a fraction of 30% of total sequence annotated in the human reference genome, compared with the 10% genome-wide and 18% on chromosome 17. We conducted mechanistic studies of the 17p13.3 CNVs by performing high-density oligonucleotide array comparative genomic hybridization, specifically interrogating the 17p13.3 region with ∼150 bp per probe density; CNV breakpoint junctions were mapped to nucleotide resolution by polymerase chain reaction and Sanger sequencing. Studied rearrangements include 5 interstitial deletions, 14 tandem duplications, 7 terminal deletions and 13 complex genomic rearrangements (CGRs). Within the 17p13.3 region, Alu-Alu-mediated rearrangements were identified in 80% of the interstitial deletions, 46% of the tandem duplications and 50% of the CGRs, indicating that this mechanism was a major contributor for formation of breakpoint junctions. Our studies suggest that Alu repetitive elements facilitate formation of non-recurrent CNVs, CGRs and other structural aberrations of chromosome 17 at p13.3. The common observation of Alu-mediated rearrangement in CGRs and breakpoint junction sequences analysis further demonstrates that this type of mechanism is unlikely attributed to NAHR, but rather may be due to a recombination-coupled DNA replicative repair process.
Collapse
Affiliation(s)
- Shen Gu
- Department of Molecular & Human Genetics
| | - Bo Yuan
- Department of Molecular & Human Genetics
| | | | | | | | - Sandesh C S Nagamani
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | - Ayelet Erez
- Department of Molecular & Human Genetics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Carlos A Bacino
- Department of Molecular & Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA and
| | | | | | | | - Weimin Bi
- Department of Molecular & Human Genetics
| | - James R Lupski
- Department of Molecular & Human Genetics, Department of Pediatrics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA, Texas Children's Hospital, Houston, TX 77030, USA and
| |
Collapse
|
6
|
Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol 2014; 15:369-83. [PMID: 24824069 DOI: 10.1038/nrm3805] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.
Collapse
Affiliation(s)
- Jörg Renkawitz
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria. [3]
| | - Claudio A Lademann
- 1] Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2]
| | - Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|