1
|
Dougan KE, Bellantuono AJ, Kahlke T, Abbriano RM, Chen Y, Shah S, Granados-Cifuentes C, van Oppen MJH, Bhattacharya D, Suggett DJ, Rodriguez-Lanetty M, Chan CX. Whole-genome duplication in an algal symbiont bolsters coral heat tolerance. SCIENCE ADVANCES 2024; 10:eadn2218. [PMID: 39028812 PMCID: PMC11259175 DOI: 10.1126/sciadv.adn2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.
Collapse
Affiliation(s)
- Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Camila Granados-Cifuentes
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
O'Reilly GD, Manlik O, Vardeh S, Sinclair J, Cannell B, Lawler ZP, Sherwin WB. A new method for ecologists to estimate heterozygote excess and deficit for multi-locus gene families. Ecol Evol 2024; 14:e11561. [PMID: 39045501 PMCID: PMC11264353 DOI: 10.1002/ece3.11561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/25/2024] Open
Abstract
The fixation index, F IS, has been a staple measure to detect selection, or departures from random mating in populations. However, current Next Generation Sequencing (NGS) cannot easily estimate F IS, in multi-locus gene families that contain multiple loci having similar or identical arrays of variant sequences of ≥1 kilobase (kb), which differ at multiple positions. In these families, high-quality short-read NGS data typically identify variants, but not the genomic location, which is required to calculate F IS (based on locus-specific observed and expected heterozygosity). Thus, to assess assortative mating, or selection on heterozygotes, from NGS of multi-locus gene families, we need a method that does not require knowledge of which variants are alleles at which locus in the genome. We developed such a method. Like F IS, our novel measure, 1 H IS, is based on the principle that positive assortative mating, or selection against heterozygotes, and some other processes reduce within-individual variability relative to the population. We demonstrate high accuracy of 1 H IS on a wide range of simulated scenarios and two datasets from natural populations of penguins and dolphins. 1 H IS is important because multi-locus gene families are often involved in assortative mating or selection on heterozygotes. 1 H IS is particularly useful for multi-locus gene families, such as toll-like receptors, the major histocompatibility complex in animals, homeobox genes in fungi and self-incompatibility genes in plants.
Collapse
Affiliation(s)
- Gabe D. O'Reilly
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Department of BioinformaticsUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Oliver Manlik
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Biology DepartmentUnited Arab Emirates UniversityAl Ain, Abu DhabiUAE
| | - Sandra Vardeh
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Bundesamt für NaturschutzBonnNordrhein‐WestfalenGermany
| | - Jennifer Sinclair
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Cape Bernier VineyardBream CreekTasmaniaAustralia
| | - Belinda Cannell
- Oceans Institute/School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Environmental and Conservation SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Zachary P. Lawler
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- The University of NewcastleNewcastleNew South WalesAustralia
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
3
|
Li H, Wu K, Feng Y, Gao C, Wang Y, Zhang Y, Pan J, Shen X, Zufall RA, Zhang Y, Zhang W, Sun J, Ye Z, Li W, Lynch M, Long H. Integrative analyses on the ciliates Colpoda illuminate the life history evolution of soil microorganisms. mSystems 2024; 9:e0137923. [PMID: 38819204 PMCID: PMC11237667 DOI: 10.1128/msystems.01379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 06/01/2024] Open
Abstract
Microorganisms play a central role in sustaining soil ecosystems and agriculture, and these functions are usually associated with their complex life history. Yet, the regulation and evolution of life history have remained enigmatic and poorly understood, especially in protozoa, the third most abundant group of organisms in the soil. Here, we explore the life history of a cosmopolitan species-Colpoda steinii. Our analysis has yielded a high-quality macronuclear genome for C. steinii, with size of 155 Mbp and 37,123 protein-coding genes, as well as mean intron length of ~93 bp, longer than most other studied ciliates. Notably, we identify two possible whole-genome duplication events in C. steinii, which may account for its genome being about twice the size of C. inflata's, another co-existing species. We further resolve the gene expression profiles in diverse life stages of C. steinii, which are also corroborated in C. inflata. During the resting cyst stage, genes associated with cell death and vacuole formation are upregulated, and translation-related genes are downregulated. While the translation-related genes are upregulated during the excystment of resting cysts. Reproductive cysts exhibit a significant reduction in cell adhesion. We also demonstrate that most genes expressed in specific life stages are under strong purifying selection. This study offers a deeper understanding of the life history evolution that underpins the extraordinary success and ecological functions of microorganisms in soil ecosystems.IMPORTANCEColpoda species, as a prominent group among the most widely distributed and abundant soil microorganisms, play a crucial role in sustaining soil ecosystems and promoting plant growth. This investigation reveals their exceptional macronuclear genomic features, including significantly large genome size, long introns, and numerous gene duplications. The gene expression profiles and the specific biological functions associated with the transitions between various life stages are also elucidated. The vast majority of genes linked to life stage transitions are subject to strong purifying selection, as inferred from multiple natural strains newly isolated and deeply sequenced. This substantiates the enduring and conservative nature of Colpoda's life history, which has persisted throughout the extensive evolutionary history of these highly successful protozoa in soil. These findings shed light on the evolutionary dynamics of microbial eukaryotes in the ever-fluctuating soil environments. This integrative research represents a significant advancement in understanding the life histories of these understudied single-celled eukaryotes.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| | - Kun Wu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuan Feng
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Chao Gao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuanyuan Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province, China
| | - Weipeng Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Jin Sun
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, China
| |
Collapse
|
4
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
5
|
Gao Y, Solberg T, Wang R, Yu Y, Al-Rasheid KAS, Gao F. Application of RNA interference and protein localization to investigate housekeeping and developmentally regulated genes in the emerging model protozoan Paramecium caudatum. Commun Biol 2024; 7:204. [PMID: 38374195 PMCID: PMC10876655 DOI: 10.1038/s42003-024-05906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Unicellular eukaryotes represent tremendous evolutionary diversity. However, the molecular mechanisms underlying this diversity remain largely unexplored, partly due to a limitation of genetic tools to only a few model species. Paramecium caudatum is a well-known unicellular eukaryote with an unexpectedly large germline genome, of which only two percent is retained in the somatic genome following sexual processes, revealing extensive DNA elimination. However, further progress in understanding the molecular mechanisms governing this process is hampered by a lack of suitable genetic tools. Here, we report the successful application of gene knockdown and protein localization methods to interrogate the function of both housekeeping and developmentally regulated genes in P. caudatum. Using these methods, we achieved the expected phenotypes upon RNAi by feeding, and determined the localization of these proteins by microinjection of fusion constructs containing fluorescent protein or antibody tags. Lastly, we used these methods to reveal that P. caudatum PiggyMac, a domesticated piggyBac transposase, is essential for sexual development, and is likely to be an active transposase directly involved in DNA cleavage. The application of these methods lays the groundwork for future studies of gene function in P. caudatum and can be used to answer important biological questions in the future.
Collapse
Affiliation(s)
- Yunyi Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, 108-8345, Japan
| | - Rui Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yueer Yu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
6
|
Maurer-Alcalá XX, Cote-L’Heureux A, Kosakovsky Pond SL, Katz LA. Somatic genome architecture and molecular evolution are decoupled in "young" linage-specific gene families in ciliates. PLoS One 2024; 19:e0291688. [PMID: 38271450 PMCID: PMC10810533 DOI: 10.1371/journal.pone.0291688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/02/2023] [Indexed: 01/27/2024] Open
Abstract
The evolution of lineage-specific gene families remains poorly studied across the eukaryotic tree of life, with most analyses focusing on the recent evolution of de novo genes in model species. Here we explore the origins of lineage-specific genes in ciliates, a ~1 billion year old clade of microeukaryotes that are defined by their division of somatic and germline functions into distinct nuclei. Previous analyses on conserved gene families have shown the effect of ciliates' unusual genome architecture on gene family evolution: extensive genome processing-the generation of thousands of gene-sized somatic chromosomes from canonical germline chromosomes-is associated with larger and more diverse gene families. To further study the relationship between ciliate genome architecture and gene family evolution, we analyzed lineage specific gene families from a set of 46 transcriptomes and 12 genomes representing x species from eight ciliate classes. We assess how the evolution lineage-specific gene families occurs among four groups of ciliates: extensive fragmenters with gene-size somatic chromosomes, non-extensive fragmenters with "large'' multi-gene somatic chromosomes, Heterotrichea with highly polyploid somatic genomes and Karyorelictea with 'paradiploid' somatic genomes. Our analyses demonstrate that: 1) most lineage-specific gene families are found at shallow taxonomic scales; 2) extensive genome processing (i.e., gene unscrambling) during development likely influences the size and number of young lineage-specific gene families; and 3) the influence of somatic genome architecture on molecular evolution is increasingly apparent in older gene families. Altogether, these data highlight the influences of genome architecture on the evolution of lineage-specific gene families in eukaryotes.
Collapse
Affiliation(s)
- Xyrus X. Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
7
|
Long H, Johri P, Gout JF, Ni J, Hao Y, Licknack T, Wang Y, Pan J, Jiménez-Marín B, Lynch M. Paramecium Genetics, Genomics, and Evolution. Annu Rev Genet 2023; 57:391-410. [PMID: 38012024 PMCID: PMC11334263 DOI: 10.1146/annurev-genet-071819-104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.
Collapse
Affiliation(s)
- Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Timothy Licknack
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Berenice Jiménez-Marín
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
8
|
Smith SA, Walker-Hale N, Parins-Fukuchi CT. Compositional shifts associated with major evolutionary transitions in plants. THE NEW PHYTOLOGIST 2023; 239:2404-2415. [PMID: 37381083 DOI: 10.1111/nph.19099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Heterogeneity in gene trees, morphological characters, and composition has been associated with several major plant clades. Here, we examine heterogeneity in composition across a large transcriptomic dataset of plants to better understand whether locations of shifts in composition are shared across gene regions and whether directions of shifts within clades are shared across gene regions. We estimate mixed models of composition for both nucleotide and amino acids across a recent large-scale transcriptomic dataset for plants. We find shifts in composition across both nucleotide and amino acid datasets, with more shifts detected in nucleotides. We find that Chlorophytes and lineages within experience the most shifts. However, many shifts occur at the origins of land, vascular, and seed plants. While genes in these clades do not typically share the same composition, they tend to shift in the same direction. We discuss potential causes of these patterns. Compositional heterogeneity has been highlighted as a potential problem for phylogenetic analysis, but the variation presented here highlights the need to further investigate these patterns for the signal of biological processes.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48103, USA
| | | | | |
Collapse
|
9
|
Gout JF, Hao Y, Johri P, Arnaiz O, Doak TG, Bhullar S, Couloux A, Guérin F, Malinsky S, Potekhin A, Sawka N, Sperling L, Labadie K, Meyer E, Duharcourt S, Lynch M. Dynamics of Gene Loss following Ancient Whole-Genome Duplication in the Cryptic Paramecium Complex. Mol Biol Evol 2023; 40:msad107. [PMID: 37154524 PMCID: PMC10195154 DOI: 10.1093/molbev/msad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Whole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the Paramecium aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and 1 additional out group, revealing aspects of post-WGD evolution in 13 species sharing a common ancestral WGD. Contrary to the morphological radiation of vertebrates that putatively followed two WGD events, members of the cryptic P. aurelia complex have remained morphologically indistinguishable after hundreds of millions of years. Biases in gene retention compatible with dosage constraints appear to play a major role opposing post-WGD gene loss across all 13 species. In addition, post-WGD gene loss has been slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. A near complete lack of recent single-gene duplications in Paramecium provides additional evidence for strong selective pressures against gene dosage changes. This exceptional data set of 13 species sharing an ancestral WGD and 2 closely related out group species will be a useful resource for future studies on Paramecium as a major model organism in the evolutionary cell biology.
Collapse
Affiliation(s)
- Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- Department of Biological Sciences, Mississippi State University, Starkville, MS
| | - Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN
| | - Simran Bhullar
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Fréderic Guérin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Sophie Malinsky
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Saint Petersburg, Russia
| | - Natalia Sawka
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Eric Meyer
- Institut de biologie de l’ENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, Université PSL, Paris, France
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| |
Collapse
|
10
|
Senra MVX, Fonseca AL. Toxicological impacts and likely protein targets of bisphenol a in Paramecium caudatum. Eur J Protistol 2023; 88:125958. [PMID: 36857848 DOI: 10.1016/j.ejop.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a widely used plasticizer agent and a well-known ubiquitous endocrine disruptor, which is frequently associated with a series of reproductive, developmental, and transgenerational effects over wildlife, livestocks, and humans. Although extensive toxicological data is available for metazoans, the impact of BPA over unicellular eukaryotes, which represents a considerable proportion of eukaryotic diversity, remains largely overlooked. Here, we used acute end-point toxicological assay and an inverted virtual-screening (IVS) approach to evaluate cellular impairments infringed by BPA over the cosmopolitan ciliated protist, Paramecium caudatum. Our data indicate a clear time-dependent effect over P. caudatum survival, which seems to be a consequence of disruptions to multiple core cellular functions, such as DNA and cell replication, transcription, translation and signaling pathways. Finally, the use of this ciliate as a biosensor to monitor BPA within environments and the relevance of bioinformatic methods to leverage our current knowledge on the impacts of emerging contaminants to biological systems are discussed.
Collapse
Affiliation(s)
- Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, São Paulo, Brazil; Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil.
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
11
|
Lynch M, Schavemaker PE, Licknack TJ, Hao Y, Pezzano A. Evolutionary bioenergetics of ciliates. J Eukaryot Microbiol 2022; 69:e12934. [PMID: 35778890 PMCID: PMC11336482 DOI: 10.1111/jeu.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Understanding why various organisms evolve alternative ways of living requires information on both the fitness advantages of phenotypic modifications and the costs of constructing and operating cellular features. Although the former has been the subject of a myriad of ecological studies, almost no attention has been given to how organisms allocate resources to alternative structures and functions. We address these matters by capitalizing on an array of observations on diverse ciliate species and from the emerging field of evolutionary bioenergetics. A relatively robust and general estimator for the total cost of a cell per cell cycle (in units of ATP equivalents) is provided, and this is then used to understand how the magnitudes of various investments scale with cell size. Among other things, we examine the costs associated with the large macronuclear genomes of ciliates, as well as ribosomes, various internal membranes, osmoregulation, cilia, and swimming activities. Although a number of uncertainties remain, the general approach taken may serve as blueprint for expanding this line of work to additional traits and phylogenetic lineages.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Paul E. Schavemaker
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Timothy J. Licknack
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Arianna Pezzano
- Ira A. Fulton Schools of Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Matsumoto S, Watanabe K, Imamura A, Tachibana M, Shimizu T, Watarai M. Comparative Analysis Between Paramecium Strains with Different Syngens Using the RAPD Method. MICROBIAL ECOLOGY 2022; 84:594-602. [PMID: 34522990 DOI: 10.1007/s00248-021-01864-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Paramecium spp. are a genus of free-living protists that live mainly in freshwater environments. They are ciliates with high motility and phagocytosis and have been used to analyze cell motility and as a host model for pathogens. Besides such biological characteristics, apart from the usual morphological and genetic classification of species, the existence of taxonomies (such as syngens) and mating types related to Paramecium's unique reproduction is known. In this study, we attempted to develop a simple method to identify Paramecium strains, which are difficult to distinguish morphologically, using random amplified polymorphic DNA (RAPD) analysis. Consequently, we can observe strain-specific band patterns. We also confirm that the presence of endosymbiotic Chlorella cells affects the band pattern of P. bursaria. Furthermore, the results of the RAPD analysis using several P. caudatum strains with different syngens show that it is possible to detect a band specific to a certain syngen. By improving the reaction conditions and random primers, based on the results of this study, RAPD analysis can be applied to the identification of Paramecium strains and their syngen confirmation tests.
Collapse
Affiliation(s)
- Sonoko Matsumoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenta Watanabe
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Akiko Imamura
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masato Tachibana
- National BioResource Project Paramecium, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
13
|
Johri P, Gout JF, Doak TG, Lynch M. A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication. Mol Biol Evol 2022; 39:msac118. [PMID: 35639978 PMCID: PMC9206413 DOI: 10.1093/molbev/msac118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Whole-genome duplications (WGDs) have occurred in many eukaryotic lineages. However, the underlying evolutionary forces and molecular mechanisms responsible for the long-term retention of gene duplicates created by WGDs are not well understood. We employ a population-genomic approach to understand the selective forces acting on paralogs and investigate ongoing duplicate-gene loss in multiple species of Paramecium that share an ancient WGD. We show that mutations that abolish protein function are more likely to be segregating in retained WGD paralogs than in single-copy genes, most likely because of ongoing nonfunctionalization post-WGD. This relaxation of purifying selection occurs in only one WGD paralog, accompanied by the gradual fixation of nonsynonymous mutations and reduction in levels of expression, and occurs over a long period of evolutionary time, "marking" one locus for future loss. Concordantly, the fitness effects of new nonsynonymous mutations and frameshift-causing indels are significantly more deleterious in the highly expressed copy compared with their paralogs with lower expression. Our results provide a novel mechanistic model of gene duplicate loss following WGDs, wherein selection acts on the sum of functional activity of both duplicate genes, allowing the two to wander in expression and functional space, until one duplicate locus eventually degenerates enough in functional efficiency or expression that its contribution to total activity is too insignificant to be retained by purifying selection. Retention of duplicates by such mechanisms predicts long times to duplicate-gene loss, which should not be falsely attributed to retention due to gain/change in function.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Hao Y, Fleming J, Petterson J, Lyons E, Edger PP, Pires JC, Thorne JL, Conant GC. Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3 (BETHESDA, MD.) 2022; 12:jkac094. [PMID: 35451464 PMCID: PMC9157103 DOI: 10.1093/g3journal/jkac094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022]
Abstract
By modeling the homoeologous gene losses that occurred in 50 genomes deriving from ten distinct polyploidy events, we show that the evolutionary forces acting on polyploids are remarkably similar, regardless of whether they occur in flowering plants, ciliates, fishes, or yeasts. We show that many of the events show a relative rate of duplicate gene loss before the first postpolyploidy speciation that is significantly higher than in later phases of their evolution. The relatively weak selective constraint experienced by the single-copy genes these losses produced leads us to suggest that most of the purely selectively neutral duplicate gene losses occur in the immediate postpolyploid period. Nearly all of the events show strong evidence of biases in the duplicate losses, consistent with them being allopolyploidies, with 2 distinct progenitors contributing to the modern species. We also find ongoing and extensive reciprocal gene losses (alternative losses of duplicated ancestral genes) between these genomes. With the exception of a handful of closely related taxa, all of these polyploid organisms are separated from each other by tens to thousands of reciprocal gene losses. As a result, it is very unlikely that viable diploid hybrid species could form between these taxa, since matings between such hybrids would tend to produce offspring lacking essential genes. It is, therefore, possible that the relatively high frequency of recurrent polyploidies in some lineages may be due to the ability of new polyploidies to bypass reciprocal gene loss barriers.
Collapse
Affiliation(s)
- Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathon Fleming
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Joanna Petterson
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- International Plant Science Center, New York Botanical Garden, Bronx, NY 10458, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Matsumoto S, Watanabe K, Kiyota H, Tachibana M, Shimizu T, Watarai M. Distinction of Paramecium strains by a combination method of RAPD analysis and multiplex PCR. PLoS One 2022; 17:e0265139. [PMID: 35275953 PMCID: PMC8916638 DOI: 10.1371/journal.pone.0265139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
Paramecium is employed as a valuable model organism in various research fields since a large number of strains with different characteristics of size, morphology, degree of aging, and type of conjugation can be obtained. It is necessary to determine a method for the classification and simple identification of strains to increase their utility as a research tool. This study attempted to establish a polymerase chain reaction (PCR)-based method to differentiate strains of the same species. Genomic DNA was purified from several strains of P. caudatum, P. tetraurelia, and P. bursaria used for comparison by the random amplified polymorphic DNA (RAPD)-PCR method. In P. tetraurelia and P. bursaria, it was sufficiently possible to distinguish specific strains depending on the pattern of random primers and amplification characteristics. For the classification of P. caudatum, based on the sequence data obtained by RAPD-PCR analysis, 5 specific primer sets were designed and a multiplex PCR method was developed. The comparative analysis of 2 standard strains, 12 recommended strains, and 12 other strains of P. caudatum provided by the National BioResource Project was conducted, and specific strains were identified. This multiplex PCR method would be an effective tool for the simple identification of environmental isolates or the management of Paramecium strains.
Collapse
Affiliation(s)
- Sonoko Matsumoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenta Watanabe
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Hiroko Kiyota
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masato Tachibana
- Joint Faculty of Veterinary Medicine, National BioResource Project Paramecium, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
- * E-mail:
| |
Collapse
|
16
|
Wang Y, Yao L, Fan J, Zhao X, Zhang Q, Chen Y, Guo C. The Codon Usage Bias Analysis of Free-Living Ciliates' Macronuclear Genomes and Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Vector Construction of Stylonychia lemnae. Front Microbiol 2022; 13:785889. [PMID: 35308388 PMCID: PMC8927777 DOI: 10.3389/fmicb.2022.785889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Ciliates represent higher unicellular animals, and several species are also important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome in ciliates can not only promote a better understanding of the genetic mode and evolution history of these organisms but also help optimize codons to improve the gene editing efficiency of model ciliates. In this study, macronuclear genome sequences of nine free-living ciliates were analyzed with CodonW software to calculate the following indices: the guanine-cytosine content (GC); the frequency of the nucleotides U, C, A, and G at the third position of codons (U3s, C3s, A3s, G3s); the effective number of codons (ENC); the correlation between GC at the first and second positions (GC12); the frequency of the nucleotides G + C at the third position of synonymous codons (GC3s); the relative synonymous codon usage (RSCU). Parity rule 2 plot analysis, neutrality plot analysis, and correlation analysis were performed to explore the factors that influence codon preference. The results showed that the GC contents in nine ciliates' MAC genomes were lower than 50% and appeared AT-rich. The base compositions of GC12 and GC3s are markedly distinct and the codon usage pattern and evolution of ciliates are affected by genetic mutation and natural selection. According to the synonymous codon analysis, the codons of most ciliates ended with A or U and eight codons were the general optimal codons of nine ciliates. A clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) expression vector of Stylonychia lemnae was constructed by optimizing the macronuclear genome codon and was successfully used to knock out the Adss gene. This is the first such extensive investigation of the MAC genome CUB of ciliates and the initial successful application of the CRISPR/Cas9 technique in free-living ciliates.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Lin Yao
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China.,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, China
| | - Jinfeng Fan
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Qing Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Ying Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China.,School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, China
| |
Collapse
|
17
|
Sellis D, Guérin F, Arnaiz O, Pett W, Lerat E, Boggetto N, Krenek S, Berendonk T, Couloux A, Aury JM, Labadie K, Malinsky S, Bhullar S, Meyer E, Sperling L, Duret L, Duharcourt S. Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biol 2021; 19:e3001309. [PMID: 34324490 PMCID: PMC8354472 DOI: 10.1371/journal.pbio.3001309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/10/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression. A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.
Collapse
Affiliation(s)
- Diamantis Sellis
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Frédéric Guérin
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Walker Pett
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Emmanuelle Lerat
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Nicole Boggetto
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sascha Krenek
- TU Dresden, Institute of Hydrobiology, Dresden, Germany
| | | | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Sophie Malinsky
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Université de Paris, Paris, France
| | - Simran Bhullar
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Meyer
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laurent Duret
- Université de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- * E-mail: (LD); (SD)
| | - Sandra Duharcourt
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
- * E-mail: (LD); (SD)
| |
Collapse
|
18
|
Boatwright JL, Yeh CT, Hu HC, Susanna A, Soltis DE, Soltis PS, Schnable PS, Barbazuk WB. Trajectories of Homoeolog-Specific Expression in Allotetraploid Tragopogon castellanus Populations of Independent Origins. FRONTIERS IN PLANT SCIENCE 2021; 12:679047. [PMID: 34249049 PMCID: PMC8261302 DOI: 10.3389/fpls.2021.679047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Polyploidization can have a significant ecological and evolutionary impact by providing substantially more genetic material that may result in novel phenotypes upon which selection may act. While the effects of polyploidization are broadly reviewed across the plant tree of life, the reproducibility of these effects within naturally occurring, independently formed polyploids is poorly characterized. The flowering plant genus Tragopogon (Asteraceae) offers a rare glimpse into the intricacies of repeated allopolyploid formation with both nascent (< 90 years old) and more ancient (mesopolyploids) formations. Neo- and mesopolyploids in Tragopogon have formed repeatedly and have extant diploid progenitors that facilitate the comparison of genome evolution after polyploidization across a broad span of evolutionary time. Here, we examine four independently formed lineages of the mesopolyploid Tragopogon castellanus for homoeolog expression changes and fractionation after polyploidization. We show that expression changes are remarkably similar among these independently formed polyploid populations with large convergence among expressed loci, moderate convergence among loci lost, and stochastic silencing. We further compare and contrast these results for T. castellanus with two nascent Tragopogon allopolyploids. While homoeolog expression bias was balanced in both nascent polyploids and T. castellanus, the degree of additive expression was significantly different, with the mesopolyploid populations demonstrating more non-additive expression. We suggest that gene dosage and expression noise minimization may play a prominent role in regulating gene expression patterns immediately after allopolyploidization as well as deeper into time, and these patterns are conserved across independent polyploid lineages.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, United States
| | - Cheng-Ting Yeh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Heng-Cheng Hu
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Covance Inc., Indianapolis, IN, United States
| | - Alfonso Susanna
- Botanic Institute of Barcelona, Consejo Superior de Investigaciones Científicas, ICUB, Barcelona, Spain
| | - Douglas E. Soltis
- Department of Biology, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
| | - Pamela S. Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
| | | | - William B. Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Yano J, Wells R, Lam YW, Van Houten JL. Ciliary Ca2+ pumps regulate intraciliary Ca2+ from the action potential and may co-localize with ciliary voltage-gated Ca2+ channels. J Exp Biol 2021; 224:261763. [PMID: 33944932 DOI: 10.1242/jeb.232074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Calcium ions (Ca2+) entering cilia through the ciliary voltage-gated calcium channels (CaV) during the action potential causes reversal of the ciliary power stroke and backward swimming in Paramecium tetraurelia. How calcium is returned to the resting level is not yet clear. Our focus is on calcium pumps as a possible mechanism. There are 23 P. tetraurelia genes for calcium pumps that are members of the family of plasma membrane Ca2+ ATPases (PMCAs). They have domains homologous to those found in mammalian PMCAs. Of the 13 pump proteins previously identified in cilia, ptPMCA2a and ptPMCA2b are most abundant in the cilia. We used RNAi to examine which PMCA might be involved in regulating intraciliary Ca2+ after the action potential. RNAi for only ptPMCA2a and ptPMCA2b causes cells to significantly prolong their backward swimming, which indicates that Ca2+ extrusion in the cilia is impaired when these PMCAs are depleted. We used immunoprecipitations (IP) to find that ptPMCA2a and ptPMCA2b are co-immunoprecipitated with the CaV channel α1 subunits that are found only in the cilia. We used iodixanol (OptiPrep) density gradients to show that ptPMCA2a and ptPMCA2b and CaV1c are found in the same density fractions. These results suggest that ptPMCA2a and ptPMCA2b are located in the proximity of ciliary CaV channels.
Collapse
Affiliation(s)
- Junji Yano
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Russell Wells
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
20
|
Brette R. Integrative Neuroscience of Paramecium, a "Swimming Neuron". eNeuro 2021; 8:ENEURO.0018-21.2021. [PMID: 33952615 PMCID: PMC8208649 DOI: 10.1523/eneuro.0018-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Paramecium is a unicellular organism that swims in fresh water by beating thousands of cilia. When it is stimulated (mechanically, chemically, optically, thermally…), it often swims backward then turns and swims forward again. This "avoiding reaction" is triggered by a calcium-based action potential. For this reason, some authors have called Paramecium a "swimming neuron." This review summarizes current knowledge about the physiological basis of behavior of Paramecium.
Collapse
Affiliation(s)
- Romain Brette
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| |
Collapse
|
21
|
Jenkins BH, Maguire F, Leonard G, Eaton JD, West S, Housden BE, Milner DS, Richards TA. Characterization of the RNA-interference pathway as a tool for reverse genetic analysis in the nascent phototrophic endosymbiosis, Paramecium bursaria. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210140. [PMID: 33996132 PMCID: PMC8059543 DOI: 10.1098/rsos.210140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 05/14/2023]
Abstract
Endosymbiosis was fundamental for the evolution of eukaryotic complexity. Endosymbiotic interactions can be dissected through forward- and reverse-genetic experiments, such as RNA-interference (RNAi). However, distinguishing small (s)RNA pathways in a eukaryote-eukaryote endosymbiotic interaction is challenging. Here, we investigate the repertoire of RNAi pathway protein-encoding genes in the model nascent endosymbiotic system, Paramecium bursaria-Chlorella spp. Using comparative genomics and transcriptomics supported by phylogenetics, we identify essential proteome components of the small interfering (si)RNA, scan (scn)RNA and internal eliminated sequence (ies)RNA pathways. Our analyses reveal that copies of these components have been retained throughout successive whole genome duplication (WGD) events in the Paramecium clade. We validate feeding-induced siRNA-based RNAi in P. bursaria via knock-down of the splicing factor, u2af1, which we show to be crucial to host growth. Finally, using simultaneous knock-down 'paradox' controls to rescue the effect of u2af1 knock-down, we demonstrate that feeding-induced RNAi in P. bursaria is dependent upon a core pathway of host-encoded Dcr1, Piwi and Pds1 components. Our experiments confirm the presence of a functional, host-derived RNAi pathway in P. bursaria that generates 23-nt siRNA, validating the use of the P. bursaria-Chlorella spp. system to investigate the genetic basis of a nascent endosymbiosis.
Collapse
Affiliation(s)
- Benjamin H. Jenkins
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, 6050 University Ave, Halifax, Nova Scotia, Canada B3H 1W5
| | - Guy Leonard
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Joshua D. Eaton
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
| | - Steven West
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
| | - Benjamin E. Housden
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
| | - David S. Milner
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Thomas A. Richards
- Living Systems Institute and Biosciences, University of Exeter, Devon EX4 4QD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
22
|
Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021; 113:1416-1427. [PMID: 33722656 DOI: 10.1016/j.ygeno.2021.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA; Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Sawka-Gądek N, Potekhin A, Singh DP, Grevtseva I, Arnaiz O, Penel S, Sperling L, Tarcz S, Duret L, Nekrasova I, Meyer E. Evolutionary Plasticity of Mating-Type Determination Mechanisms in Paramecium aurelia Sibling Species. Genome Biol Evol 2021; 13:evaa258. [PMID: 33313646 PMCID: PMC7900874 DOI: 10.1093/gbe/evaa258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Paramecium aurelia complex, a group of morphologically similar but sexually incompatible sibling species, is a unique example of the evolutionary plasticity of mating-type systems. Each species has two mating types, O (Odd) and E (Even). Although O and E types are homologous in all species, three different modes of determination and inheritance have been described: genetic determination by Mendelian alleles, stochastic developmental determination, and maternally inherited developmental determination. Previous work in three species of the latter kind has revealed the key roles of the E-specific transmembrane protein mtA and its highly specific transcription factor mtB: type O clones are produced by maternally inherited genome rearrangements that inactivate either mtA or mtB during development. Here we show, through transcriptome analyses in five additional species representing the three determination systems, that mtA expression specifies type E in all cases. We further show that the Mendelian system depends on functional and nonfunctional mtA alleles, and identify novel developmental rearrangements in mtA and mtB which now explain all cases of maternally inherited mating-type determination. Epistasis between these genes likely evolved from less specific interactions between paralogs in the P. aurelia common ancestor, after a whole-genome duplication, but the mtB gene was subsequently lost in three P. aurelia species which appear to have returned to an ancestral regulation mechanism. These results suggest a model accounting for evolutionary transitions between determination systems, and highlight the diversity of molecular solutions explored among sibling species to maintain an essential mating-type polymorphism in cell populations.
Collapse
Affiliation(s)
- Natalia Sawka-Gądek
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Deepankar Pratap Singh
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Inessa Grevtseva
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olivier Arnaiz
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Simon Penel
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Villeurbanne, France
| | - Linda Sperling
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Laurent Duret
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Villeurbanne, France
| | - Irina Nekrasova
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
24
|
Copley SD. Evolution of new enzymes by gene duplication and divergence. FEBS J 2021; 287:1262-1283. [PMID: 32250558 DOI: 10.1111/febs.15299] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Thousands of new metabolic and regulatory enzymes have evolved by gene duplication and divergence since the dawn of life. New enzyme activities often originate from promiscuous secondary activities that have become important for fitness due to a change in the environment or a mutation. Mutations that make a promiscuous activity physiologically relevant can occur in the gene encoding the promiscuous enzyme itself, but can also occur elsewhere, resulting in increased expression of the enzyme or decreased competition between the native and novel substrates for the active site. If a newly useful activity is inefficient, gene duplication/amplification will set the stage for divergence of a new enzyme. Even a few mutations can increase the efficiency of a new activity by orders of magnitude. As efficiency increases, amplified gene arrays will shrink to provide two alleles, one encoding the original enzyme and one encoding the new enzyme. Ultimately, genomic rearrangements eliminate co-amplified genes and move newly evolved paralogs to a distant region of the genome.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| |
Collapse
|
25
|
Cheng YH, Liu CFJ, Yu YH, Jhou YT, Fujishima M, Tsai IJ, Leu JY. Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biol 2020; 18:180. [PMID: 33250052 PMCID: PMC7702705 DOI: 10.1186/s12915-020-00912-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes. Interestingly, each ciliate species seems to have its way of processing genomes, providing a diversity of resources for studying genome plasticity and its regulation. Here, we sequenced and analyzed the macronuclear genome of different strains of Paramecium bursaria, a highly divergent species of the genus Paramecium which can stably establish endosymbioses with green algae. Results We assembled a high-quality macronuclear genome of P. bursaria and further refined genome annotation by comparing population genomic data. We identified several species-specific expansions in protein families and gene lineages that are potentially associated with endosymbiosis. Moreover, we observed an intensive chromosome breakage pattern that occurred during or shortly after sexual reproduction and contributed to highly variable gene dosage throughout the genome. However, patterns of copy number variation were highly correlated among genetically divergent strains, suggesting that copy number is adjusted by some regulatory mechanisms or natural selection. Further analysis showed that genes with low copy number variation among populations tended to function in basic cellular pathways, whereas highly variable genes were enriched in environmental response pathways. Conclusions We report programmed DNA rearrangements in the P. bursaria macronuclear genome that allow cells to adjust gene copy number globally according to individual gene functions. Our results suggest that large-scale gene copy number variation may represent an ancient mechanism for cells to adapt to different environments. Supplementary information The online version contains supplementary material available at 10.1186/s12915-020-00912-2.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chien-Fu Jeff Liu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yu-Ting Jhou
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Masahiro Fujishima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Isheng Jason Tsai
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan. .,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
26
|
Bacteria-Derived Hemolysis-Related Genes Widely Exist in Scuticociliates. Microorganisms 2020; 8:microorganisms8111838. [PMID: 33266460 PMCID: PMC7709021 DOI: 10.3390/microorganisms8111838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Scuticociliatosis is an invasive external or systemic infection caused by ciliated protozoa, mainly those within the subclass Scuticociliatia (scuticociliates). Many scuticociliates are fish pathogens, including Miamiensis avidus, Philasterides dicentrarchi, Pseudocohnilembus persalinus, and Uronema marinum. Our previous study showed that hemolysis-related genes derived from bacteria through horizontal gene transfer (HGT) may contribute to virulence in P. persalinus. Hemorrhagic lesions are a common feature of scuticociliatosis, but it is not known whether other scuticociliates also have bacteria-derived hemolysis-related genes. In this study, we constructed a high-quality macronuclear genome of another typical pathogenic scuticociliate, U. marinum. A total of 105 HGT genes were identified in this species, of which 35 were homologs of hemolysis-related genes (including hemolysin-like genes) that had previously been identified in P. persalinus. Sequencing of an additional five species from four scuticociliate families showed that bacteria-derived hemolysis-related genes (especially hemolysin-like genes) are widely distributed in scuticociliates. Based on these findings, we suggest that hemolysin-like genes may have originated before the divergence of scuticociliates.
Collapse
|
27
|
Yano D, Funadani R, Uda K, Matsuoka T, Suzuki T. Role of arginine kinase in Paramecium tetraurelia (Ciliophora, Peniculida): Subcellular localization of AK3 and phosphoarginine shuttle system in cilia. Eur J Protistol 2020; 74:125705. [DOI: 10.1016/j.ejop.2020.125705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
|
28
|
Arnaiz O, Meyer E, Sperling L. ParameciumDB 2019: integrating genomic data across the genus for functional and evolutionary biology. Nucleic Acids Res 2020; 48:D599-D605. [PMID: 31733062 PMCID: PMC7145670 DOI: 10.1093/nar/gkz948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 01/28/2023] Open
Abstract
ParameciumDB (https://paramecium.i2bc.paris-saclay.fr) is a community model organism database for the genome and genetics of the ciliate Paramecium. ParameciumDB development relies on the GMOD (www.gmod.org) toolkit. The ParameciumDB web site has been publicly available since 2006 when the P. tetraurelia somatic genome sequence was released, revealing that a series of whole genome duplications punctuated the evolutionary history of the species. The genome is linked to available genetic data and stocks. ParameciumDB has undergone major changes in its content and website since the last update published in 2011. Genomes from multiple Paramecium species, especially from the P. aurelia complex, are now included in ParameciumDB. A new modern web interface accompanies this transition to a database for the whole Paramecium genus. Gene pages have been enriched with orthology relationships, among the Paramecium species and with a panel of model organisms across the eukaryotic tree. This update also presents expert curation of Paramecium mitochondrial genomes.
Collapse
Affiliation(s)
- Olivier Arnaiz
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence may also be addressed to Olivier Arnaiz.
| | - Eric Meyer
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Linda Sperling
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- To whom correspondence should be addressed.
| |
Collapse
|
29
|
Li Y, Chen X, Wu K, Pan J, Long H, Yan Y. Characterization of Simple Sequence Repeats (SSRs) in Ciliated Protists Inferred by Comparative Genomics. Microorganisms 2020; 8:microorganisms8050662. [PMID: 32370063 PMCID: PMC7285179 DOI: 10.3390/microorganisms8050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/02/2023] Open
Abstract
Simple sequence repeats (SSRs) are prevalent in the genomes of all organisms. They are widely used as genetic markers, and are insertion/deletion mutation hotspots, which directly influence genome evolution. However, little is known about such important genomic components in ciliated protists, a large group of unicellular eukaryotes with extremely long evolutionary history and genome diversity. With recent publications of multiple ciliate genomes, we start to get a chance to explore perfect SSRs with motif size 1-100 bp and at least three motif repeats in nine species of two ciliate classes, Oligohymenophorea and Spirotrichea. We found that homopolymers are the most prevalent SSRs in these A/T-rich species, with AAA (lysine, charged amino acid; also seen as an SSR with one-adenine motif repeated three times) being the codons repeated at the highest frequencies in coding SSR regions, consistent with the widespread alveolin proteins rich in lysine repeats as found in Tetrahymena. Micronuclear SSRs are universally more abundant than the macronuclear ones of the same motif-size, except for the 8-bp-motif SSRs in extensively fragmented chromosomes. Both the abundance and A/T content of SSRs decrease as motif-size increases, while the abundance is positively correlated with the A/T content of the genome. Also, smaller genomes have lower proportions of coding SSRs out of all SSRs in Paramecium species. This genome-wide and cross-species analysis reveals the high diversity of SSRs and reflects the rapid evolution of these simple repetitive elements in ciliate genomes.
Collapse
|
30
|
Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination. PLoS Genet 2020; 16:e1008723. [PMID: 32298257 PMCID: PMC7161955 DOI: 10.1371/journal.pgen.1008723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/19/2022] Open
Abstract
Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/β domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.
Collapse
|
31
|
Johri P, Marinov GK, Doak TG, Lynch M. Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection. Genome Biol Evol 2019; 11:1398-1416. [PMID: 30980669 PMCID: PMC6505448 DOI: 10.1093/gbe/evz081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
The evolution of mitochondrial genomes and their population-genetic environment among unicellular eukaryotes are understudied. Ciliate mitochondrial genomes exhibit a unique combination of characteristics, including a linear organization and the presence of multiple genes with no known function or detectable homologs in other eukaryotes. Here we study the variation of ciliate mitochondrial genomes both within and across 13 highly diverged Paramecium species, including multiple species from the P. aurelia species complex, with four outgroup species: P. caudatum, P. multimicronucleatum, and two strains that may represent novel related species. We observe extraordinary conservation of gene order and protein-coding content in Paramecium mitochondria across species. In contrast, significant differences are observed in tRNA content and copy number, which is highly conserved in species belonging to the P. aurelia complex but variable among and even within the other Paramecium species. There is an increase in GC content from ∼20% to ∼40% on the branch leading to the P. aurelia complex. Patterns of polymorphism in population-genomic data and mutation-accumulation experiments suggest that the increase in GC content is primarily due to changes in the mutation spectra in the P. aurelia species. Finally, we find no evidence of recombination in Paramecium mitochondria and find that the mitochondrial genome appears to experience either similar or stronger efficacy of purifying selection than the nucleus.
Collapse
Affiliation(s)
- Parul Johri
- Department of Biology, Indiana University, Bloomington
| | - Georgi K Marinov
- Department of Biology, Indiana University, Bloomington.,Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington.,Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
32
|
Bhullar S, Denby Wilkes C, Arnaiz O, Nowacki M, Sperling L, Meyer E. A mating-type mutagenesis screen identifies a zinc-finger protein required for specific DNA excision events in Paramecium. Nucleic Acids Res 2019; 46:9550-9562. [PMID: 30165457 PMCID: PMC6182129 DOI: 10.1093/nar/gky772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, functional genes are reconstituted during development of the somatic macronucleus through the precise excision of ∼45 000 single-copy Internal Eliminated Sequences (IESs), thought to be the degenerate remnants of ancient transposon insertions. Like introns, IESs are marked only by a weak consensus at their ends. How such a diverse set of sequences is faithfully recognized and precisely excised remains unclear: specialized small RNAs have been implicated, but in their absence up to ∼60% of IESs are still correctly excised. To get further insight, we designed a mutagenesis screen based on the hypersensitivity of a specific excision event in the mtA gene, which determines mating types. Unlike most IES-containing genes, the active form of mtA is the unexcised one, allowing the recovery of hypomorphic alleles of essential IES recognition/excision factors. Such is the case of one mutation recovered in the Piwi gene PTIWI09, a key player in small RNA-mediated IES recognition. Another mutation identified a novel protein with a C2H2 zinc finger, mtGa, which is required for excision of a small subset of IESs characterized by enrichment in a 5-bp motif. The unexpected implication of a sequence-specific factor establishes a new paradigm for IES recognition and/or excision.
Collapse
Affiliation(s)
- Simran Bhullar
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France.,Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Eric Meyer
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France
| |
Collapse
|
33
|
Jiang CQ, Wang GY, Xiong J, Yang WT, Sun ZY, Feng JM, Warren A, Miao W. Insights into the origin and evolution of Peritrichia (Oligohymenophorea, Ciliophora) based on analyses of morphology and phylogenomics. Mol Phylogenet Evol 2019; 132:25-35. [DOI: 10.1016/j.ympev.2018.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 10/29/2018] [Accepted: 11/24/2018] [Indexed: 11/30/2022]
|
34
|
Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 2019; 20:38. [PMID: 30791939 PMCID: PMC6383267 DOI: 10.1186/s13059-019-1650-2] [Citation(s) in RCA: 559] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sharp increase of plant genome and transcriptome data provide valuable resources to investigate evolutionary consequences of gene duplication in a range of taxa, and unravel common principles underlying duplicate gene retention. RESULTS We survey 141 sequenced plant genomes to elucidate consequences of gene and genome duplication, processes central to the evolution of biodiversity. We develop a pipeline named DupGen_finder to identify different modes of gene duplication in plants. Genes derived from whole-genome, tandem, proximal, transposed, or dispersed duplication differ in abundance, selection pressure, expression divergence, and gene conversion rate among genomes. The number of WGD-derived duplicate genes decreases exponentially with increasing age of duplication events-transposed duplication- and dispersed duplication-derived genes declined in parallel. In contrast, the frequency of tandem and proximal duplications showed no significant decrease over time, providing a continuous supply of variants available for adaptation to continuously changing environments. Moreover, tandem and proximal duplicates experienced stronger selective pressure than genes formed by other modes and evolved toward biased functional roles involved in plant self-defense. The rate of gene conversion among WGD-derived gene pairs declined over time, peaking shortly after polyploidization. To provide a platform for accessing duplicated gene pairs in different plants, we constructed the Plant Duplicate Gene Database. CONCLUSIONS We identify a comprehensive landscape of different modes of gene duplication across the plant kingdom by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605 USA
| |
Collapse
|
35
|
He M, Wang J, Fan X, Liu X, Shi W, Huang N, Zhao F, Miao M. Genetic basis for the establishment of endosymbiosis in Paramecium. ISME JOURNAL 2019; 13:1360-1369. [PMID: 30647459 PMCID: PMC6474222 DOI: 10.1038/s41396-018-0341-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
The single-celled ciliate Paramecium bursaria is an indispensable model for investigating endosymbiosis between protists and green-algal symbionts. To elucidate the mechanism of this type of endosymbiosis, we combined PacBio and Illumina sequencing to assemble a high-quality and near-complete macronuclear genome of P. bursaria. The genomic characteristics and phylogenetic analyses indicate that P. bursaria is the basal clade of the Paramecium genus. Through comparative genomic analyses with its close relatives, we found that P. bursaria encodes more genes related to nitrogen metabolism and mineral absorption, but encodes fewer genes involved in oxygen binding and N-glycan biosynthesis. A comparison of the transcriptomic profiles between P. bursaria with and without endosymbiotic Chlorella showed differential expression of a wide range of metabolic genes. We selected 32 most differentially expressed genes to perform RNA interference experiment in P. bursaria, and found that P. bursaria can regulate the abundance of their symbionts through glutamine supply. This study provides novel insights into Paramecium evolution and will extend our knowledge of the molecular mechanism for the induction of endosymbiosis between P. bursaria and green algae.
Collapse
Affiliation(s)
- Ming He
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaohui Liu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyu Shi
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Huang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangqing Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Zheng W, Wang C, Yan Y, Gao F, Doak TG, Song W. Insights into an Extensively Fragmented Eukaryotic Genome: De Novo Genome Sequencing of the Multinuclear Ciliate Uroleptopsis citrina. Genome Biol Evol 2018; 10:883-894. [PMID: 29608728 PMCID: PMC5863220 DOI: 10.1093/gbe/evy055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 02/04/2023] Open
Abstract
Ciliated protists are a large group of single-celled eukaryotes with separate germline and somatic nuclei in each cell. The somatic genome is developed from the zygotic nucleus through a series of chromosomal rearrangements, including fragmentation, DNA elimination, de novo telomere addition, and DNA amplification. This unique feature makes them perfect models for research in genome biology and evolution. However, genomic research of ciliates has been limited to a few species, owing to problems with DNA contamination and obstacles in cultivation. Here, we introduce a method combining telomere-primer PCR amplification and high-throughput sequencing, which can reduce DNA contamination and obtain genomic data efficiently. Based on this method, we report a draft somatic genome of a multimacronuclear ciliate, Uroleptopsis citrina. 1) The telomeric sequence in U. citrina is confirmed to be C4A4C4A4C4 by directly blunt-end cloning. 2) Genomic analysis of the resulting chromosomes shows a "one-gene one-chromosome" pattern, with a small number of multiple-gene chromosomes. 3) Amino acid usage is analyzed, and reassignment of stop codons is confirmed. 4) Chromosomal analysis shows an obvious asymmetrical GC skew and high bias between A and T in the subtelomeric regions of the sense-strand, with the detection of an 11-bp high AT motif region in the 3' subtelomeric region. 5) The subtelomeric sequence also has an obvious 40 nt strand oscillation of nucleotide ratio. 6) In the 5' subtelomeric region of the coding strand, the distribution of potential TATA-box regions is illustrated, which accumulate between 30 and 50 nt. This work provides a valuable reference for genomic research and furthers our understanding of the dynamic nature of unicellular eukaryotic genomes.
Collapse
Affiliation(s)
- Weibo Zheng
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Chundi Wang
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ying Yan
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Feng Gao
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Weibo Song
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
Bischerour J, Bhullar S, Denby Wilkes C, Régnier V, Mathy N, Dubois E, Singh A, Swart E, Arnaiz O, Sperling L, Nowacki M, Bétermier M. Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. eLife 2018; 7:37927. [PMID: 30223944 PMCID: PMC6143343 DOI: 10.7554/elife.37927] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
The domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In Paramecium, PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they rather have an architectural function within a multi-component excision complex embedding Pgm. PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage, indicating that PgmLs contribute to accurately position the complex on IES ends. DNA rearrangements in Paramecium constitute a rare example of a biological process jointly managed by six distinct domesticated transposases.
Collapse
Affiliation(s)
- Julien Bischerour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Simran Bhullar
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vinciane Régnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Univ Paris Diderot, Paris, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emeline Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aditi Singh
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Estienne Swart
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
38
|
Bright LJ, Lynch M. The Rab7 subfamily across Paramecium aurelia species; evidence of high conservation in sequence and function. Small GTPases 2018; 11:421-429. [PMID: 30156960 DOI: 10.1080/21541248.2018.1502056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We examined sequence conservation and signatures of selection in Rab7 proteins across 11 Paramecium aurelia species, and determined the localization patterns of two P. tetraurelia Rab7 paralogs when expressed as GFP fusions in live cells. We found that, while there is a variable number of Rab7 paralogs per genome, Rab7 genes are highly conserved in sequence and appear to be under strong purifying selection across aurelias. Additionally, and surprisingly based on earlier studies, we found that two P. tetraurelia Rab7 proteins have virtually identical localization patterns. Consistent with this, when we examined the gene family of a highly conserved Rab binding partner across aurelias (Rab-Interacting Lysosomal Protein, or RILP), we found that residues in key binding sites in RILPs were absolutely conserved in 13 of 21 proteins, representing genes from 9 of the 11 species examined. Of note, RILP gene number appears to be even more constrained than Rab7 gene number per genome. Abbreviation: WGD: Whole genome duplication.
Collapse
Affiliation(s)
- Lydia J Bright
- Department of Biology, State University of New York at New Paltz , New Paltz, NY, USA.,Department of Biology, Indiana University , Bloomington, IN, USA
| | - Michael Lynch
- Department of Biology, Indiana University , Bloomington, IN, USA.,Biodesign Institute, Arizona State University , Tempe, AZ, USA
| |
Collapse
|
39
|
Mattenberger F, Sabater-Muñoz B, Toft C, Sablok G, Fares MA. Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomycotina. DNA Res 2018. [PMID: 28633360 PMCID: PMC5726480 DOI: 10.1093/dnares/dsx025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression levels exhibit greater divergence between their gene copies. Duplicates that exhibit higher expression divergence are those enriched for TATA-containing promoters. These duplicates also show transcriptional plasticity, which seems to be involved in the origin of adaptations to environmental stresses in yeast. While the expression properties of genes strongly affect their duplicability, divergence and transcriptional plasticity are enhanced after gene duplication. We conclude that highly expressed genes are more likely to be preserved as duplicates due to their promoter architectures, their greater tolerance to expression noise, and their ability to reduce the noise-plasticity conflict.
Collapse
Affiliation(s)
- Florian Mattenberger
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain
| | - Beatriz Sabater-Muñoz
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Christina Toft
- Department of Genetics, University of Valencia, Burjasot, Valencia 46100, Spain.,Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Burjasot, Valencia, Spain
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Systems Biology of Molecular Interactions and Regulation Department, Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones, Científicas-Universitat de Valencia (CSIC-UV), Valencia 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
40
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
41
|
Johri P, Krenek S, Marinov GK, Doak TG, Berendonk TU, Lynch M. Population Genomics of Paramecium Species. Mol Biol Evol 2017; 34:1194-1216. [PMID: 28204679 DOI: 10.1093/molbev/msx074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium.
Collapse
Affiliation(s)
- Parul Johri
- Department of Biology, Indiana University, Bloomington, IN
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN.,National Center for Genome Analysis Support, Indiana University, Bloomington, IN
| | - Thomas U Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
42
|
Gruchota J, Denby Wilkes C, Arnaiz O, Sperling L, Nowak JK. A meiosis-specific Spt5 homolog involved in non-coding transcription. Nucleic Acids Res 2017; 45:4722-4732. [PMID: 28053118 PMCID: PMC5416832 DOI: 10.1093/nar/gkw1318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia. In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production.
Collapse
Affiliation(s)
- Julita Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, University of Paris Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, University of Paris Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, University of Paris Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Jacek K Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
43
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
44
|
Orias E, Singh DP, Meyer E. Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena. Annu Rev Microbiol 2017; 71:133-156. [PMID: 28715961 DOI: 10.1146/annurev-micro-090816-093342] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While sex is an ancient and highly conserved eukaryotic invention, self-incompatibility systems such as mating types or sexes appear to be derived limitations that show considerable evolutionary plasticity. Within a single class of ciliates, Paramecium and Tetrahymena species have long been known to present a wide variety of mating type numbers and modes of inheritance, but only recently have the genes involved been identified. Although similar transmembrane proteins mediate self/nonself recognition in both ciliates, the mechanisms of mating type determination differ widely, ranging from Mendelian systems to developmental nuclear differentiation, either stochastic or maternally inherited. The non-Mendelian systems rely on programmed editing of the germline genome that occurs during differentiation of the somatic nucleus, and they have co-opted different DNA recombination mechanisms-some previously unknown. Here we review the recent molecular advances and some remaining unsolved questions and discuss the possible implications of these diverse mechanisms for inbreeding/outbreeding balance regulation.
Collapse
Affiliation(s)
- Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93105;
| | - Deepankar Pratap Singh
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, F-75005 Paris, France; .,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, F-75005 Paris, France;
| |
Collapse
|
45
|
Arnaiz O, Van Dijk E, Bétermier M, Lhuillier-Akakpo M, de Vanssay A, Duharcourt S, Sallet E, Gouzy J, Sperling L. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression. BMC Genomics 2017; 18:483. [PMID: 28651633 PMCID: PMC5485702 DOI: 10.1186/s12864-017-3887-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. Results We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. Conclusions We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3′ and 5′ UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB (http://paramecium.i2bc.paris-saclay.fr). TrUC software is freely distributed under a GNU GPL v3 licence (https://github.com/oarnaiz/TrUC). Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3887-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Erwin Van Dijk
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.,Current address: IRCM, CEA, INSERM UMR 967, Université Paris Diderot, Université Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France
| | - Augustin de Vanssay
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Erika Sallet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
46
|
Aubusson-Fleury A, Balavoine G, Lemullois M, Bouhouche K, Beisson J, Koll F. Centrin diversity and basal body patterning across evolution: new insights from Paramecium. Biol Open 2017; 6:765-776. [PMID: 28432105 PMCID: PMC5483020 DOI: 10.1242/bio.024273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
First discovered in unicellular eukaryotes, centrins play crucial roles in basal body duplication and anchoring mechanisms. While the evolutionary status of the founding members of the family, Centrin2/Vfl2 and Centrin3/cdc31 has long been investigated, the evolutionary origin of other members of the family has received less attention. Using a phylogeny of ciliate centrins, we identify two other centrin families, the ciliary centrins and the centrins present in the contractile filaments (ICL centrins). In this paper, we carry on the functional analysis of still not well-known centrins, the ICL1e subfamily identified in Paramecium, and show their requirement for correct basal body anchoring through interactions with Centrin2 and Centrin3. Using Paramecium as well as a eukaryote-wide sampling of centrins from completely sequenced genomes, we revisited the evolutionary story of centrins. Their phylogeny shows that the centrins associated with the ciliate contractile filaments are widespread in eukaryotic lineages and could be as ancient as Centrin2 and Centrin3. Summary: Functional and phylogenetic analyses reveal the existence of five centrin families and show that basal body patterning in Paramecium requires a third centrin present in many eukaryote lineages.
Collapse
Affiliation(s)
- Anne Aubusson-Fleury
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| | - Guillaume Balavoine
- Institut Jacques Monod, Evolution and development of Metazoa, UMR 7592, CNRS/Université Paris Diderot, 15 rue Hélène Brion, Paris 75013, France
| | - Michel Lemullois
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| | - Khaled Bouhouche
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, Limoges 87060, France
| | - Janine Beisson
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| |
Collapse
|
47
|
Shi L, Koll F, Arnaiz O, Cohen J. The Ciliary Protein IFT57 in the Macronucleus of Paramecium. J Eukaryot Microbiol 2017; 65:12-27. [DOI: 10.1111/jeu.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Lei Shi
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
- Department of Biochemical and Molecular Biology; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang 453003 China
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Jean Cohen
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| |
Collapse
|
48
|
Bengueddach H, Lemullois M, Aubusson-Fleury A, Koll F. Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3. Cilia 2017; 6:6. [PMID: 28367320 PMCID: PMC5374602 DOI: 10.1186/s13630-017-0050-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Background The development of a ciliary axoneme requires the correct docking of the basal body at cytoplasmic vesicles or plasma membrane. In the multiciliated cell Paramecium, three conserved proteins, FOR20, Centrin 2, and Centrin 3 participate in this process, FOR20 and Centrin 2 being involved in the assembly of the transition zone. We investigated the function of two other evolutionary conserved proteins, OFD1 and VFL3, likely involved in this process. Results In Paramecium tetraurelia, a single gene encodes OFD1, while four genes encode four isoforms of VFL3, grouped into two families, VFL3-A and VFL3-B. Depletion of OFD1 and the sole VFL3-A family impairs basal body docking. Loss of OFD1 yields a defective assembly of the basal body distal part. Like FOR20, OFD1 is recruited early during basal body assembly and localizes at the transition zone between axoneme and membrane at the level of the microtubule doublets. While the recruitment of OFD1 and Centrin 2 proceed independently, the localizations of OFD1 and FOR20 at the basal body are interdependent. In contrast, in VFL3-A depleted cells, the unanchored basal bodies harbor a fully organized distal part but display an abnormal distribution of their associated rootlets which mark their rotational asymmetry. VFL3-A, which is required for the recruitment of Centrin 3, is transiently present near the basal bodies at an early step of their duplication. VFL3-A localizes at the junction between the striated rootlet and the basal body. Conclusion Our results demonstrate the conserved role of OFD1 in the anchoring mechanisms of motile cilia and establish its relations with FOR20 and Centrin 2. They support the hypothesis of its association with microtubule doublets. They suggest that the primary defect of VFL3 depletion is a loss of the rotational asymmetry of the basal body which specifies the sites of assembly of the appendages which guide the movement of basal bodies toward the cell surface. The localization of VFL3 outside of the basal body suggests that extrinsic factors could control this asymmetry. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0050-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hakim Bengueddach
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Michel Lemullois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Anne Aubusson-Fleury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
49
|
Bright LJ, Gout JF, Lynch M. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species. Mol Biol Cell 2017; 28:1101-1110. [PMID: 28251922 PMCID: PMC5391186 DOI: 10.1091/mbc.e16-06-0361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rab GTPase family members in Paramecium have higher retention rates and more-divergent expression levels than other genes after whole-genome duplications, consistent with early steps in functional diversification. Localization analysis also uncovers functionally diversifying Rab11 genes. New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins.
Collapse
Affiliation(s)
- Lydia J Bright
- Department of Biology, Indiana University, Bloomington, IN 47405 .,Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561
| | | | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
50
|
Pires JC, Conant GC. Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes. Annu Rev Genet 2016; 50:113-131. [PMID: 27617972 DOI: 10.1146/annurev-genet-120215-035400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complex manner in which organisms respond to changes in their gene dosage has long fascinated geneticists. Oddly, although the existence of dominance implies that dosage reductions often have mild phenotypes, extra copies of whole chromosomes (aneuploidy) are generally strongly deleterious. Even more paradoxically, an extra copy of the genome is better tolerated than is aneuploidy. We review the resolution of this paradox, highlighting the roles of biochemistry, protein aggregation, and disruption of cellular microstructure in that explanation. Returning to life's curious combination of robustness and sensitivity to dosage changes, we argue that understanding how biological robustness evolved makes these observations less inexplicable. We propose that noise in gene expression and evolutionary strategies for its suppression play a role in generating dosage phenotypes. Finally, we outline an unappreciated mechanism for the preservation of duplicate genes, namely preservation to limit expression noise, arguing that it is particularly relevant in polyploid organisms.
Collapse
Affiliation(s)
- J Chris Pires
- Division of Biological Sciences.,Informatics Institute, and
| | - Gavin C Conant
- Informatics Institute, and.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, 65211-5300;
| |
Collapse
|