1
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Cheng J, Lau B, Thoms M, Ameismeier M, Berninghausen O, Hurt E, Beckmann R. The nucleoplasmic phase of pre-40S formation prior to nuclear export. Nucleic Acids Res 2022; 50:11924-11937. [PMID: 36321656 PMCID: PMC9723619 DOI: 10.1093/nar/gkac961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.
Collapse
Affiliation(s)
- Jingdong Cheng
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany,Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Dong’an Road 131, 200032 Shanghai, China
| | - Benjamin Lau
- BZH, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Michael Ameismeier
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Ed Hurt
- Correspondence may also be addressed to Ed Hurt.
| | - Roland Beckmann
- To whom correspondence should be addressed. Tel: +49 89 218076900; Fax: +49 89 218076945;
| |
Collapse
|
3
|
Han JH, Ryan G, Guy A, Liu L, Quinodoz M, Helbling I, Lai-Cheong JE, Barwell J, Folcher M, McGrath JA, Moss C, Rivolta C. Mutations in the ribosome biogenesis factor gene LTV1 are linked to LIPHAK syndrome, a novel poikiloderma-like disorder. Hum Mol Genet 2022; 31:1970-1978. [PMID: 34999892 PMCID: PMC9239743 DOI: 10.1093/hmg/ddab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
In the framework of the UK 100 000 Genomes Project, we investigated the genetic origin of a previously undescribed recessive dermatological condition, which we named LIPHAK (LTV1-associated Inflammatory Poikiloderma with Hair abnormalities and Acral Keratoses), in four affected individuals from two UK families of Pakistani and Indian origins, respectively. Our analysis showed that only one gene, LTV1, carried rare biallelic variants that were shared in all affected individuals, and specifically they bore the NM_032860.5:c.503A > G, p.(Asn168Ser) change, found homozygously in all of them. In addition, high-resolution homozygosity mapping revealed the presence of a small 652-kb stretch on chromosome 6, encompassing LTV1, that was haploidentical and common to all affected individuals. The c.503A > G variant was predicted by in silico tools to affect the correct splicing of LTV1's exon 5. Minigene-driven splicing assays in HEK293T cells and in a skin sample from one of the patients confirmed that this variant was indeed responsible for the creation of a new donor splice site, resulting in aberrant splicing and in a premature termination codon in exon 6 of this gene. LTV1 encodes one of the ribosome biogenesis factors that promote the assembly of the small (40S) ribosomal subunit. In yeast, defects in LTV1 alter the export of nascent ribosomal subunits to the cytoplasm; however, the role of this gene in human pathology is unknown to date. Our data suggest that LIPHAK could be a previously unrecognized ribosomopathy.
Collapse
Affiliation(s)
- Ji Hoon Han
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Central and South Genomic Laboratory Hub, Birmingham B15 2TG, UK
| | - Alyson Guy
- Viapath, St Thomas' Hospital, London SE1 7EH, UK
| | - Lu Liu
- Viapath, St Thomas' Hospital, London SE1 7EH, UK
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Ingrid Helbling
- Department of Dermatology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | | | | | - Julian Barwell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Marc Folcher
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - John A McGrath
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London SE1 9RT, UK
- St John's Institute of Dermatology, King's College London (Guy's campus), London SE1 9RT, UK
| | - Celia Moss
- Department of Paediatric Dermatology, Birmingham Women’s and Children’s Hospital NHS FT, Birmingham B4 6NH, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
4
|
Martín-Villanueva S, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Boraita J, Villalobo E, de La Cruz J. Role of the 40S beak ribosomal protein eS12 in ribosome biogenesis and function in Saccharomyces cerevisiae. RNA Biol 2020; 17:1261-1276. [PMID: 32408794 DOI: 10.1080/15476286.2020.1767951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In eukaryotes, the beak structure of 40S subunits is formed by the protrusion of the 18S rRNA helix 33 and three ribosomal proteins: eS10, eS12 and eS31. The exact role of these proteins in ribosome biogenesis is not well understood. While eS10 is an essential protein encoded by two paralogous genes in Saccharomyces cerevisiae, eS12 and eS31 are not essential proteins encoded by the single-copy genes RPS12 and UBI3, respectively. Here, we have analysed the contribution of yeast eS12 to ribosome biogenesis and compared it with that of eS31. Polysome analysis reveals that deletion of either RPS12 or UBI3 results in equivalent 40S deficits. Analysis of pre-rRNA processing indicates that eS12, akin to eS31, is required for efficient processing of 20S pre-rRNA to mature 18S rRNA. Moreover, we show that the 20S pre-rRNA accumulates within cytoplasmic pre-40S particles, as deduced from FISH experiments and the lack of nuclear retention of 40S subunit reporter proteins, in rps12∆ and ubi3∆ cells. However, these particles containing 20S pre-rRNA are not efficiently incorporated into polyribosomes. We also provide evidence for a genetic interaction between eS12 or eS31 and the late-acting 40S assembly factors Enp1 and Ltv1, which appears not to be linked to the dynamics of their association with or release from pre-40S particles in the absence of either eS12 or eS31. Finally, we show that eS12- and eS31-deficient ribosomes exhibit increased levels of translational misreading. Altogether, our data highlight distinct important roles of the beak region during ribosome assembly and function.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - José Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Olga Rodríguez-Galán
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Julia Fernández-Boraita
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla , Seville, Spain
| | - Jesús de La Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| |
Collapse
|
5
|
de Vries M, Nedeljkovic I, van der Plaat DA, Zhernakova A, Lahousse L, Brusselle GG, Amin N, van Duijn CM, Vonk JM, Boezen HM. DNA methylation is associated with lung function in never smokers. Respir Res 2019; 20:268. [PMID: 31791327 PMCID: PMC6889726 DOI: 10.1186/s12931-019-1222-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Active smoking is the main risk factor for COPD. Here, epigenetic mechanisms may play a role, since cigarette smoking is associated with differential DNA methylation in whole blood. So far, it is unclear whether epigenetics also play a role in subjects with COPD who never smoked. Therefore, we aimed to identify differential DNA methylation associated with lung function in never smokers. METHODS We determined epigenome-wide DNA methylation levels of 396,243 CpG-sites (Illumina 450 K) in blood of never smokers in four independent cohorts, LifeLines COPD&C (N = 903), LifeLines DEEP (N = 166), Rotterdam Study (RS)-III (N = 150) and RS-BIOS (N = 206). We meta-analyzed the cohort-specific methylation results to identify differentially methylated CpG-sites with FEV1/FVC. Expression Quantitative Trait Methylation (eQTM) analysis was performed in the Biobank-based Integrative Omics Studies (BIOS). RESULTS A total of 36 CpG-sites were associated with FEV1/FVC in never smokers at p-value< 0.0001, but the meta-analysis did not reveal any epigenome-wide significant CpG-sites. Of interest, 35 of these 36 CpG-sites have not been associated with lung function before in studies including subjects irrespective of smoking history. Among the top hits were cg10012512, cg02885771, annotated to the gene LTV1 Ribosome Biogenesis factor (LTV1), and cg25105536, annotated to Kelch Like Family Member 32 (KLHL32). Moreover, a total of 11 eQTMS were identified. CONCLUSIONS With the identification of 35 CpG-sites that are unique for never smokers, our study shows that DNA methylation is also associated with FEV1/FVC in subjects that never smoked and therefore not merely related to smoking.
Collapse
Affiliation(s)
- Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands. .,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.
| | - Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Bioanalysis, FFW, Ghent University, Ghent, Belgium
| | - Guy G Brusselle
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
6
|
Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2019; 21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Mitterer V, Shayan R, Ferreira-Cerca S, Murat G, Enne T, Rinaldi D, Weigl S, Omanic H, Gleizes PE, Kressler D, Plisson-Chastang C, Pertschy B. Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism. Nat Commun 2019; 10:2754. [PMID: 31227701 PMCID: PMC6588571 DOI: 10.1038/s41467-019-10678-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic ribosomes are synthesized in a hierarchical process driven by a plethora of assembly factors, but how maturation events at physically distant sites on pre-ribosomes are coordinated is poorly understood. Using functional analyses and cryo-EM, we show that ribosomal protein Rps20 orchestrates communication between two multi-step maturation events across the pre-40S subunit. Our study reveals that during pre-40S maturation, formation of essential contacts between Rps20 and Rps3 permits assembly factor Ltv1 to recruit the Hrr25 kinase, thereby promoting Ltv1 phosphorylation. In parallel, a deeply buried Rps20 loop reaches to the opposite pre-40S side, where it stimulates Rio2 ATPase activity. Both cascades converge to the final maturation steps releasing Rio2 and phosphorylated Ltv1. We propose that conformational proofreading exerted via Rps20 constitutes a checkpoint permitting assembly factor release and progression of pre-40S maturation only after completion of all earlier maturation steps. The biogenesis of eukaryotic ribosomes is a multi-step process involving the action of more than 200 different ribosome assembly factors. Here the authors show that Rps20 acts as a conduit to coordinate maturation steps across the head domain of the nascent small ribosomal subunit.
Collapse
Affiliation(s)
- Valentin Mitterer
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.,Biochemistry Centre, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ramtin Shayan
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Sébastien Ferreira-Cerca
- Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Tanja Enne
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria
| | - Dana Rinaldi
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Sarah Weigl
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria
| | - Hajrija Omanic
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| | - Celia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse Cedex, France.
| | - Brigitte Pertschy
- Institute for Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
8
|
Abstract
Ribosomes, which synthesize the proteins of a cell, comprise ribosomal RNA and ribosomal proteins, which coassemble hierarchically during a process termed ribosome biogenesis. Historically, biochemical and molecular biology approaches have revealed how preribosomal particles form and mature in consecutive steps, starting in the nucleolus and terminating after nuclear export into the cytoplasm. However, only recently, due to the revolution in cryo-electron microscopy, could pseudoatomic structures of different preribosomal particles be obtained. Together with in vitro maturation assays, these findings shed light on how nascent ribosomes progress stepwise along a dynamic biogenesis pathway. Preribosomes assemble gradually, chaperoned by a myriad of assembly factors and small nucleolar RNAs, before they reach maturity and enter translation. This information will lead to a better understanding of how ribosome synthesis is linked to other cellular pathways in humans and how it can cause diseases, including cancer, if disturbed.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ed Hurt
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; ,
| |
Collapse
|
9
|
Cerezo E, Plisson-Chastang C, Henras AK, Lebaron S, Gleizes PE, O'Donohue MF, Romeo Y, Henry Y. Maturation of pre-40S particles in yeast and humans. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1516. [PMID: 30406965 DOI: 10.1002/wrna.1516] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/02/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
The synthesis of ribosomal subunits in eukaryotes requires the interplay of numerous maturation and assembly factors (AFs) that intervene in the insertion of ribosomal proteins within pre-ribosomal particles, the ribosomal subunit precursors, as well as in pre-ribosomal RNA (rRNA) processing and folding. Here, we review the intricate nuclear and cytoplasmic maturation steps of pre-40S particles, the precursors to the small ribosomal subunits, in both yeast and human cells, with particular emphasis on the timing and mechanisms of AF association with and dissociation from pre-40S particles and the roles of these AFs in the maturation process. We highlight the particularly complex pre-rRNA processing pathway in human cells, compared to yeast, to generate the mature 18S rRNA. We discuss the information gained from the recently published cryo-electron microscopy atomic models of yeast and human pre-40S particles, as well as the checkpoint/quality control systems that seem to operate to probe functional sites within yeast cytoplasmic pre-40S particles. This article is categorized under: RNA Processing > rRNA Processing Translation > Ribosome Biogenesis.
Collapse
Affiliation(s)
- Emilie Cerezo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
MacDonald C, Piper RC. Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases. J Cell Biol 2017; 216:3275-3290. [PMID: 28768685 PMCID: PMC5626546 DOI: 10.1083/jcb.201702177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
Recycling of internalized membrane proteins back to the cell surface controls diverse cellular processes. MacDonald and Piper genetically dissect a recycling pathway in yeast to reveal a cohort of novel and conserved factors, including the Rag GTPases, which contribute to metabolic control by regulating surface recycling independently of TORC1 signaling. Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface.
Collapse
Affiliation(s)
- Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| |
Collapse
|
11
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
12
|
Blondel M, Soubigou F, Evrard J, Nguyen PH, Hasin N, Chédin S, Gillet R, Contesse MA, Friocourt G, Stahl G, Jones GW, Voisset C. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation. Sci Rep 2016; 6:32117. [PMID: 27633137 PMCID: PMC5025663 DOI: 10.1038/srep32117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases.
Collapse
Affiliation(s)
- Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Flavie Soubigou
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Justine Evrard
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Phu hai Nguyen
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Naushaba Hasin
- Yeast Genetics Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Stéphane Chédin
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198, CEA, CNRS, Université Paris-Sud, CEA/Saclay, SBIGeM, Gif-sur-Yvette, France
| | - Reynald Gillet
- Université de Rennes 1, CNRS UMR 6290 IGDR, Translation and Folding Team, Rennes, France
| | - Marie-Astrid Contesse
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Guillaume Stahl
- Laboratoire de Biologie Moléculaire Eucaryotes, CNRS, Université de Toulouse, Toulouse, France
| | - Gary W. Jones
- Yeast Genetics Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Cécile Voisset
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
13
|
Mitterer V, Murat G, Réty S, Blaud M, Delbos L, Stanborough T, Bergler H, Leulliot N, Kressler D, Pertschy B. Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nat Commun 2016; 7:10336. [PMID: 26831757 PMCID: PMC4740875 DOI: 10.1038/ncomms10336] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic ribosomes assemble by association of ribosomal RNA with ribosomal proteins into nuclear precursor particles, which undergo a complex maturation pathway coordinated by non-ribosomal assembly factors. Here, we provide functional insights into how successive structural re-arrangements in ribosomal protein S3 promote maturation of the 40S ribosomal subunit. We show that S3 dimerizes and is imported into the nucleus with its N-domain in a rotated conformation and associated with the chaperone Yar1. Initial assembly of S3 with 40S precursors occurs via its C-domain, while the N-domain protrudes from the 40S surface. Yar1 is replaced by the assembly factor Ltv1, thereby fixing the S3 N-domain in the rotated orientation and preventing its 40S association. Finally, Ltv1 release, triggered by phosphorylation, and flipping of the S3 N-domain into its final position results in the stable integration of S3. Such a stepwise assembly may represent a new paradigm for the incorporation of ribosomal proteins.
Collapse
Affiliation(s)
- Valentin Mitterer
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Stéphane Réty
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Magali Blaud
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Lila Delbos
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Tamsyn Stanborough
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Helmut Bergler
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Brigitte Pertschy
- Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010 Graz, Austria
| |
Collapse
|
14
|
Fischer U, Schäuble N, Schütz S, Altvater M, Chang Y, Boulos Faza M, Panse VG. A non-canonical mechanism for Crm1-export cargo complex assembly. eLife 2015; 4:e05745. [PMID: 25895666 PMCID: PMC4402694 DOI: 10.7554/elife.05745] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/26/2015] [Indexed: 01/19/2023] Open
Abstract
The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Nico Schäuble
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sabina Schütz
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Molecular Life Science, Graduate School, Zurich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Molecular Life Science, Graduate School, Zurich, Switzerland
| | - Yiming Chang
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marius Boulos Faza
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Kim W, Kim HD, Jung Y, Kim J, Chung J. Drosophila Low Temperature Viability Protein 1 (LTV1) Is Required for Ribosome Biogenesis and Cell Growth Downstream of Drosophila Myc (dMyc). J Biol Chem 2015; 290:13591-604. [PMID: 25858587 DOI: 10.1074/jbc.m114.607036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 11/06/2022] Open
Abstract
During animal development, various signaling pathways converge to regulate cell growth. In this study, we identified LTV1 as a novel cell growth regulator in Drosophila. LTV1 mutant larvae exhibited developmental delays and lethality at the second larval stage. Using biochemical studies, we discovered that LTV1 interacted with ribosomal protein S3 and co-purified with free 40S ribosome subunits. We further demonstrated that LTV1 is crucial for ribosome biogenesis through 40S ribosome subunit synthesis and preribosomal RNA processing, suggesting that LTV1 is required for cell growth by regulating protein synthesis. We also demonstrated that Drosophila Myc (dMyc) directly regulates LTV1 transcription and requires LTV1 to stimulate ribosome biogenesis. Importantly, the loss of LTV1 blocked the cell growth and endoreplication induced by dMyc. Combined, these results suggest that LTV1 is a key downstream factor of dMyc-induced cell growth by properly maintaining ribosome biogenesis.
Collapse
Affiliation(s)
- Wonho Kim
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea, National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, and
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Jongkyeong Chung
- National Creative Research Initiatives Center for Energy Homeostasis Regulation, Institute of Molecular Biology and Genetics and School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, and
| |
Collapse
|
16
|
Ghalei H, Schaub FX, Doherty JR, Noguchi Y, Roush WR, Cleveland JL, Stroupe ME, Karbstein K. Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. J Cell Biol 2015; 208:745-59. [PMID: 25778921 PMCID: PMC4362465 DOI: 10.1083/jcb.201409056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/02/2015] [Indexed: 11/25/2022] Open
Abstract
Casein kinase 1δ/ε (CK1δ/ε) and their yeast homologue Hrr25 are essential for cell growth. Further, CK1δ is overexpressed in several malignancies, and CK1δ inhibitors have shown promise in several preclinical animal studies. However, the substrates of Hrr25 and CK1δ/ε that are necessary for cell growth and survival are unknown. We show that Hrr25 is essential for ribosome assembly, where it phosphorylates the assembly factor Ltv1, which causes its release from nascent 40S subunits and allows subunit maturation. Hrr25 inactivation or expression of a nonphosphorylatable Ltv1 variant blocked Ltv1 release in vitro and in vivo, and prevented entry into the translation-like quality control cycle. Conversely, phosphomimetic Ltv1 variants rescued viability after Hrr25 depletion. Finally, Ltv1 knockdown in human breast cancer cells impaired apoptosis induced by CK1δ/ε inhibitors, establishing that the antiproliferative activity of these inhibitors is due, at least in part, to disruption of ribosome assembly. These findings validate the ribosome assembly pathway as a novel target for the development of anticancer therapeutics.
Collapse
Affiliation(s)
- Homa Ghalei
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - Franz X Schaub
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458 Department of Tumor Biology, Moffitt Cancer and Research Institute, Tampa, FL 33612
| | - Joanne R Doherty
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - Yoshihiko Noguchi
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - William R Roush
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| | - John L Cleveland
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458 Department of Tumor Biology, Moffitt Cancer and Research Institute, Tampa, FL 33612
| | - M Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Katrin Karbstein
- Department of Cancer Biology and Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
17
|
Edwalds-Gilbert G. Location is everything: an educational primer for use with "genetic analysis of the ribosome biogenesis factor Ltv1 of Saccharomyces cerevisiae". Genetics 2015; 199:307-13. [PMID: 25657348 PMCID: PMC4317645 DOI: 10.1534/genetics.114.173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The article by Merwin et al. in the November 2014 issue of GENETICS provides insight into ribosome biogenesis, an essential multistep process that involves myriad factors and three cellular compartments. The specific protein of interest in this study is low-temperature viability protein (Ltv1), which functions as a small ribosomal subunit maturation factor. The authors investigated its possible additional function in small-subunit nuclear export. This Primer provides information for students to help them analyze the paper by Merwin et al. (2014), including an overview of the authors' research question and methods.
Collapse
Affiliation(s)
- Gretchen Edwalds-Gilbert
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711
| |
Collapse
|
18
|
Nerurkar P, Altvater M, Gerhardy S, Schütz S, Fischer U, Weirich C, Panse VG. Eukaryotic Ribosome Assembly and Nuclear Export. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:107-40. [DOI: 10.1016/bs.ircmb.2015.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|