1
|
Paulo DF, Nguyen TNM, Ward CM, Corpuz RL, Kauwe AN, Rendon P, Ruano REY, Cardoso AAS, Gouvi G, Fung E, Crisp P, Okada A, Choo A, Stauffer C, Bourtzis K, Sim SB, Baxter SW, Geib SM. Functional genomics implicates ebony in the black pupae phenotype of tephritid fruit flies. Commun Biol 2025; 8:60. [PMID: 39814836 PMCID: PMC11736145 DOI: 10.1038/s42003-025-07489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region. Targeted knockout of ebony induced analogous bp phenotypes across six major tephritid agricultural pests, demonstrating that disruption of Ebony alone is sufficient to produce the mutant trait in distantly related species. This functional characterization further allowed a deeper exploration of Ebony's role in pigmentation and development across life stages in diverse species. Our findings offer key insights for molecular engineering of sexing strains based on the bp marker and for future evolutionary developmental biology studies in tephritids.
Collapse
Affiliation(s)
- Daniel F Paulo
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, USA
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Thu N M Nguyen
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Chris M Ward
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Renee L Corpuz
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Angela N Kauwe
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Pedro Rendon
- International Atomic Energy Agency, Technical Cooperation, Division for Latin America and the Caribbean, MOSCAMED Program, Guatemala City, Guatemala
| | | | - Amanda A S Cardoso
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Georgia Gouvi
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Elisabeth Fung
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
- South Australian Research and Development Institute, Urrbrae, Australia
| | - Peter Crisp
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
- South Australian Research and Development Institute, Urrbrae, Australia
| | - Anzu Okada
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Amanda Choo
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Christian Stauffer
- Department of Ecosystem Management, Climate and Biodiversity, Boku University, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Sheina B Sim
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA
| | - Simon W Baxter
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| | - Scott M Geib
- U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA.
| |
Collapse
|
2
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High-Quality Genome Assemblies Reveal Evolutionary Dynamics of Repetitive DNA and Structural Rearrangements in the Drosophila virilis Subgroup. Genome Biol Evol 2024; 16:evad238. [PMID: 38159044 PMCID: PMC10783647 DOI: 10.1093/gbe/evad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
High-quality genome assemblies across a range of nontraditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here, we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in Drosophila americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to Drosophila novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by 3-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High quality genome assemblies reveal evolutionary dynamics of repetitive DNA and structural rearrangements in the Drosophila virilis sub-group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553086. [PMID: 37645834 PMCID: PMC10462019 DOI: 10.1101/2023.08.13.553086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in D. americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to D. novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M. Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A. Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Yusuf LH, Tyukmaeva V, Hoikkala A, Ritchie MG. Divergence and introgression among the virilis group of Drosophila. Evol Lett 2022; 6:537-551. [PMID: 36579165 PMCID: PMC9783487 DOI: 10.1002/evl3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.
Collapse
Affiliation(s)
- Leeban H. Yusuf
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| | - Venera Tyukmaeva
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Anneli Hoikkala
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
5
|
Brent CS, Heu CC, Gross RJ, Fan B, Langhorst D, Hull JJ. RNAi-Mediated Manipulation of Cuticle Coloration Genes in Lygus hesperus Knight (Hemiptera: Miridae). INSECTS 2022; 13:986. [PMID: 36354810 PMCID: PMC9698757 DOI: 10.3390/insects13110986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cuticle coloration in insects is a consequence of the accumulation of pigments in a species-specific pattern. Numerous genes are involved in regulating the underlying processes of melanization and sclerotization, and their manipulation can be used to create externally visible markers of successful gene editing. To clarify the roles for many of these genes and examine their suitability as phenotypic markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for six genes (aaNAT, black, ebony, pale, tan, and yellow) were identified, with two variants for black. Sequence and phylogenetic analyses supported preliminary annotations as cuticle pigmentation genes. In accord with observable difference in color patterning, expression varied for each gene by developmental stage, adult age, body part, and sex. Knockdown by injection of dsRNA for each gene produced varied effects in adults, ranging from the non-detectable (black 1, yellow), to moderate decreases (pale, tan) and increases (black 2, ebony) in darkness, to extreme melanization (aaNAT). Based solely on its expression profile and highly visible phenotype, aaNAT appears to be the best marker for tracking transgenic L. hesperus.
Collapse
|
6
|
Spana EP, Abrams AB, Ellis KT, Klein JC, Ruderman BT, Shi AH, Zhu D, Stewart A, May S. speck, First Identified in Drosophila melanogaster in 1910, Is Encoded by the Arylalkalamine N-Acetyltransferase (AANAT1) Gene. G3 (BETHESDA, MD.) 2020; 10:3387-3398. [PMID: 32709620 PMCID: PMC7466976 DOI: 10.1534/g3.120.401470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
The pigmentation mutation speck is a commonly used recombination marker characterized by a darkly pigmented region at the wing hinge. Identified in 1910 by Thomas Hunt Morgan, speck was characterized by Sturtevant as the most "workable" mutant in the rightmost region of the second chromosome and eventually localized to 2-107.0 and 60C1-2. Though the first speck mutation was isolated over 110 years ago, speck is still not associated with any gene. Here, as part of an undergraduate-led research effort, we show that speck is encoded by the Arylalkylamine N-acetyltransferase 1 (AANAT1) gene. Both alleles from the Morgan lab contain a retrotransposon in exon 1 of the RB transcript of the AANAT1 gene. We have also identified a new insertion allele and generated multiple deletion alleles in AANAT1 that all give a strong speck phenotype. In addition, expression of AANAT1 RNAi constructs either ubiquitously or in the dorsal portion of the developing wing generates a similar speck phenotype. We find that speck alleles have additional phenotypes, including ectopic pigmentation in the posterior pupal case, leg joints, cuticular sutures and overall body color. We propose that the acetylated dopamine generated by AANAT1 decreases the dopamine pool available for melanin production. When AANAT1 function is decreased, the excess dopamine enters the melanin pathway to generate the speck phenotype.
Collapse
Affiliation(s)
- Eric P Spana
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | - Jason C Klein
- Department of Biology, Duke University, Durham, NC 27708
| | | | - Alvin H Shi
- Department of Biology, Duke University, Durham, NC 27708
| | - Daniel Zhu
- Department of Biology, Duke University, Durham, NC 27708
| | - Andrea Stewart
- Department of Biology, Duke University, Durham, NC 27708
| | - Susan May
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
7
|
Wu CY, Hu IC, Yang YC, Ding WC, Lai CH, Lee YZ, Liu YC, Cheng HC, Lyu PC. An essential role of acetyl coenzyme A in the catalytic cycle of insect arylalkylamine N-acetyltransferase. Commun Biol 2020; 3:441. [PMID: 32796911 PMCID: PMC7427786 DOI: 10.1038/s42003-020-01177-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Acetyl coenzyme A (Ac-CoA)-dependent N-acetylation is performed by arylalkylamine N-acetyltransferase (AANAT) and is important in many biofunctions. AANAT catalyzes N-acetylation through an ordered sequential mechanism in which cofactor (Ac-CoA) binds first, with substrate binding afterward. No ternary structure containing AANAT, cofactor, and substrate was determined, meaning the details of substrate binding and product release remain unclear. Here, two ternary complexes of dopamine N-acetyltransferase (Dat) before and after N-acetylation were solved at 1.28 Å and 1.36 Å resolution, respectively. Combined with the structures of Dat in apo form and Ac-CoA bound form, we addressed each stage in the catalytic cycle. Isothermal titration calorimetry (ITC), crystallography, and nuclear magnetic resonance spectroscopy (NMR) were utilized to analyze the product release. Our data revealed that Ac-CoA regulates the conformational properties of Dat to form the catalytic site and substrate binding pocket, while the release of products is facilitated by the binding of new Ac-CoA.
Collapse
Affiliation(s)
- Chu-Ya Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - I-Chen Hu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Chen Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-Cheng Ding
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Instrumentation Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Chung Liu
- Institute of Population Sciences, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Medical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
8
|
Lamb AM, Wang Z, Simmer P, Chung H, Wittkopp PJ. ebony Affects Pigmentation Divergence and Cuticular Hydrocarbons in Drosophila americana and D. novamexicana. Front Ecol Evol 2020; 8. [PMID: 37035752 PMCID: PMC10077920 DOI: 10.3389/fevo.2020.00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drosophila pigmentation has been a fruitful model system for understanding the genetic and developmental mechanisms underlying phenotypic evolution. For example, prior work has shown that divergence of the tan gene contributes to pigmentation differences between two members of the virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis has suggested that divergence of the ebony gene might also contribute to pigmentation differences between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome editing to generate ebony null mutants in D. americana and D. novamexicana and then using reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. We find that divergence of ebony does indeed contribute to the pigmentation divergence between species, with effects on both the overall body color as well as a difference in pigmentation along the dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC profiles between these two species. Additional transgenic resources for working with D. americana and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, were generated in the course of this work and are also described. Taken together, this study advances our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome editing tools can be used for functional testing in non-model species.
Collapse
Affiliation(s)
- Abigail M. Lamb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Patricia Simmer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Ecology and Evolutionary Biology, and Behavior Program, University of Michigan, Ann Arbor, MI, United States
- Correspondence: Patricia J Wittkopp,
| |
Collapse
|
9
|
Zhang Y, Wang XX, Feng ZJ, Cong HS, Chen ZS, Li YD, Yang WM, Zhang SQ, Shen LF, Tian HG, Feng Y, Liu TX. Superficially Similar Adaptation Within One Species Exhibits Similar Morphological Specialization but Different Physiological Regulations and Origins. Front Cell Dev Biol 2020; 8:300. [PMID: 32457902 PMCID: PMC7225305 DOI: 10.3389/fcell.2020.00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Animals have developed numerous strategies to contend with environmental pressures. We observed that the same adaptation strategy may be used repeatedly by one species in response to a certain environmental challenge. The ladybird Harmonia axyridis displays thermal phenotypic plasticity at different developmental stages. It is unknown whether these superficially similar temperature-induced specializations share similar physiological mechanisms. We performed various experiments to clarify the differences and similarities between these processes. We examined changes in the numbers and sizes of melanic spots in pupae and adults, and confirmed similar patterns for both. The dopamine pathway controls pigmentation levels at both developmental stages of H. axyridis. However, the aspartate-β-alanine pathway controls spot size and number only in the pupae. An upstream regulation analysis revealed the roles of Hox genes and elytral veins in pupal and adult spot formation. Both the pupae and the adults exhibited similar morphological responses to temperatures. However, they occurred in different body parts and were regulated by different pathways. These phenotypic adaptations are indicative of an effective thermoregulatory system in H. axyridis and explains how insects contend with certain environmental pressure based on various control mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Tong-Xian Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Al Sayad S, Yassin A. Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evol Lett 2019; 3:286-298. [PMID: 31171984 PMCID: PMC6546384 DOI: 10.1002/evl3.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.
Collapse
Affiliation(s)
- Sinan Al Sayad
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| | - Amir Yassin
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| |
Collapse
|
11
|
Genetic Basis of Body Color and Spotting Pattern in Redheaded Pine Sawfly Larvae ( Neodiprion lecontei). Genetics 2018; 209:291-305. [PMID: 29496749 DOI: 10.1534/genetics.118.300793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/22/2018] [Indexed: 11/18/2022] Open
Abstract
Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild. However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the redheaded pine sawfly (Neodiprion lecontei): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits, our QTL models explained a substantial proportion of phenotypic variation and suggested a genetic architecture that is neither monogenic nor highly polygenic. Additionally, we used our linkage map to anchor the current N. lecontei genome assembly. With these data, we identified promising candidate genes underlying (1) a loss of yellow pigmentation in populations in the mid-Atlantic/northeastern United States [C locus-associated membrane protein homologous to a mammalian HDL receptor-2 gene (Cameo2) and lipid transfer particle apolipoproteins II and I gene (apoLTP-II/I)], and (2) a pronounced reduction in black spotting in Great Lakes populations [members of the yellow gene family, tyrosine hydroxylase gene (pale), and dopamine N-acetyltransferase gene (Dat)]. Several of these genes also contribute to color variation in other wild and domesticated taxa. Overall, our findings are consistent with the hypothesis that predictable genes of large effect contribute to color evolution in nature.
Collapse
|
12
|
Multiple Genes Cause Postmating Prezygotic Reproductive Isolation in the Drosophila virilis Group. G3-GENES GENOMES GENETICS 2016; 6:4067-4076. [PMID: 27729433 PMCID: PMC5144975 DOI: 10.1534/g3.116.033340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the genetic basis of speciation is a central problem in evolutionary biology. Studies of reproductive isolation have provided several insights into the genetic causes of speciation, especially in taxa that lend themselves to detailed genetic scrutiny. Reproductive barriers have usually been divided into those that occur before zygote formation (prezygotic) and after (postzygotic), with the latter receiving a great deal of attention over several decades. Reproductive barriers that occur after mating but before zygote formation [postmating prezygotic (PMPZ)] are especially understudied at the genetic level. Here, I present a phenotypic and genetic analysis of a PMPZ reproductive barrier between two species of the Drosophila virilis group: D. americana and D. virilis This species pair shows strong PMPZ isolation, especially when D. americana males mate with D. virilis females: ∼99% of eggs laid after these heterospecific copulations are not fertilized. Previous work has shown that the paternal loci contributing to this incompatibility reside on two chromosomes, one of which (chromosome 5) likely carries multiple factors. The other (chromosome 2) is fixed for a paracentric inversion that encompasses nearly half the chromosome. Here, I present two results. First, I show that PMPZ in this species cross is largely due to defective sperm storage in heterospecific copulations. Second, using advanced intercross and backcross mapping approaches, I identify genomic regions that carry genes capable of rescuing heterospecific fertilization. I conclude that paternal incompatibility between D. americana males and D. virilis females is underlain by four or more genes on chromosomes 2 and 5.
Collapse
|
13
|
Massey JH, Wittkopp PJ. The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species. Curr Top Dev Biol 2016; 119:27-61. [PMID: 27282023 DOI: 10.1016/bs.ctdb.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, as well as in many other plants and animals, pigmentation is highly variable both within and between species. This variability, combined with powerful genetic and transgenic tools as well as knowledge of how pigment patterns are formed biochemically and developmentally, has made Drosophila pigmentation a premier system for investigating the genetic and molecular mechanisms responsible for phenotypic evolution. In this chapter, we review and synthesize findings from a rapidly growing body of case studies examining the genetic basis of pigmentation differences in the abdomen, thorax, wings, and pupal cases within and between Drosophila species. A core set of genes, including genes required for pigment synthesis (eg, yellow, ebony, tan, Dat) as well as developmental regulators of these genes (eg, bab1, bab2, omb, Dll, and wg), emerge as the primary sources of this variation, with most genes having been shown to contribute to pigmentation differences both within and between species. In cases where specific genetic changes contributing to pigmentation divergence were identified in these genes, the changes were always located in noncoding sequences and affected cis-regulatory activity. We conclude this chapter by discussing these and other lessons learned from evolutionary genetic studies of Drosophila pigmentation and identify topics we think should be the focus of future work with this model system.
Collapse
Affiliation(s)
- J H Massey
- University of Michigan, Ann Arbor, MI, United States
| | - P J Wittkopp
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|