1
|
Guo B, Rowley E, O'Connor TD, Takala-Harrison S. Potential and pitfalls of using identity-by-descent for malaria genomic surveillance. Trends Parasitol 2025; 41:387-400. [PMID: 40263027 PMCID: PMC12070291 DOI: 10.1016/j.pt.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
The ability to genotype malaria parasites on an epidemiological scale is crucial for genomic surveillance as it aids in understanding malaria transmission dynamics and parasite demography changes in response to antimalarial interventions. Identity-by-descent (IBD)-based methods have demonstrated potential in various aspects of malaria genomic surveillance. However, there is a need for validation of existing approaches and development of new techniques to address challenges posed by the parasites' unique evolutionary dynamics and complex biological characteristics, which differ markedly from organisms like humans. This review examines current IBD use cases, identifies limitations of IBD-based methods, and explores promising future directions to enhance malaria genomic surveillance.
Collapse
Affiliation(s)
- Bing Guo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma Rowley
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Strütt S, Excoffier L, Peischl S. A generalized structured coalescent for purifying selection without recombination. Genetics 2025; 229:iyaf013. [PMID: 39862229 DOI: 10.1093/genetics/iyaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent. In this study, we extend an existing approach, the fitness-class coalescent, to incorporate arbitrary levels of purifying selection in haploid populations. This model offers a comprehensive framework for exploring the influence of purifying selection in a wide range of demographic scenarios. Moreover, our research reveals potential sources of qualitative and quantitative biases in demographic inference, highlighting the significant risk of attributing genetic patterns to past demographic events rather than purifying selection. This work expands our understanding of the complex interplay between selection, drift, and population dynamics, and how purifying selection distorts demographic inference.
Collapse
Affiliation(s)
- Stefan Strütt
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Murray CS, Karram M, Bass DJ, Doceti M, Becker D, Nunez JCB, Ratan A, Bergland AO. Trans-Specific Polymorphisms Between Cryptic Daphnia Species Affect Fitness and Behavior. Mol Ecol 2025; 34:e17632. [PMID: 39716959 PMCID: PMC11754708 DOI: 10.1111/mec.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
Shared polymorphisms, loci with identical alleles across species, are of unique interest in evolutionary biology as they may represent cases of selection maintaining ancient genetic variation post-speciation, or contemporary selection promoting convergent evolution. In this study, we investigate the abundance of shared polymorphism between two members of the Daphnia pulex species complex. We test whether the presence of shared mutations is consistent with the action of balancing selection or alternative hypotheses such as hybridization, incomplete lineage sorting or convergent evolution. We analyzed over 2,000 genomes from six taxa in the D. pulex species group and examined the prevalence and distribution of shared alleles between the focal species pair, North American and European D. pulex. We show that North American and European D. pulex diverged over 10 million years ago, yet retained tens of thousands of shared polymorphisms. We suggest that the number of shared polymorphisms between North American and European D. pulex cannot be fully explained by hybridization or incomplete lineage sorting alone. We show that most shared polymorphisms could be the product of convergent evolution, that a limited number appear to be old trans-specific polymorphisms, and that balancing selection is affecting convergent and ancient mutations alike. Finally, we provide evidence that a blue wavelength opsin gene with trans-specific polymorphisms has functional effects on behavior and fitness in the wild.
Collapse
Affiliation(s)
- Connor S. Murray
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Genome SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Madison Karram
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David J. Bass
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Madison Doceti
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Dörthe Becker
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- School of Biosciences, Ecology and Evolutionary BiologyUniversity of SheffieldSheffieldUK
| | - Joaquin C. B. Nunez
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Aakrosh Ratan
- Department of Genome SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Alan O. Bergland
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
4
|
Burgarella C, Brémaud MF, Von Hirschheydt G, Viader V, Ardisson M, Santoni S, Ranwez V, de Navascués M, David J, Glémin S. Mating systems and recombination landscape strongly shape genetic diversity and selection in wheat relatives. Evol Lett 2024; 8:866-880. [PMID: 39677571 PMCID: PMC11637685 DOI: 10.1093/evlett/qrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 12/17/2024] Open
Abstract
How and why genetic diversity varies among species is a long-standing question in evolutionary biology. Life history traits have been shown to explain a large part of observed diversity. Among them, mating systems have one of the strongest impacts on genetic diversity, with selfing species usually exhibiting much lower diversity than outcrossing relatives. Theory predicts that a high rate of selfing amplifies selection at linked sites, reducing genetic diversity genome-wide, but frequent bottlenecks and rapid population turn-over could also explain low genetic diversity in selfers. However, how linked selection varies with mating systems and whether it is sufficient to explain the observed difference between selfers and outcrossers has never been tested. Here, we used the Aegilops/Triticum grass species, a group characterized by contrasted mating systems (from obligate outcrossing to high selfing) and marked recombination rate variation across the genome, to quantify the effects of mating system and linked selection on patterns of neutral and selected polymorphism. By analyzing phenotypic and transcriptomic data of 13 species, we show that selfing strongly affects genetic diversity and the efficacy of selection by amplifying the intensity of linked selection genome-wide. In particular, signatures of adaptation were only found in the highly recombining regions in outcrossing species. These results bear implications for the evolution of mating systems and, more generally, for our understanding of the fundamental drivers of genetic diversity.
Collapse
Affiliation(s)
- Concetta Burgarella
- CNRS, Univ. Montpellier, ISEM – UMR 5554, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Marie-Fleur Brémaud
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Veronique Viader
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Morgane Ardisson
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Santoni
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Ranwez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Miguel de Navascués
- UMR CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jacques David
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Wong ELY, Valim HF, Schmitt I. Genome-wide differentiation corresponds to climatic niches in two species of lichen-forming fungi. Environ Microbiol 2024; 26:e16703. [PMID: 39388227 DOI: 10.1111/1462-2920.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Lichens can withstand fluctuating environmental conditions such as hydration-desiccation cycles. Many species distribute across climate zones, suggesting population-level adaptations to conditions such as freezing and drought. Here, we aim to understand how climate affects population genomic patterns in lichenized fungi. We analysed population structure along elevational gradients in closely related Umbilicaria phaea (North American; two gradients) and Umbilicaria pustulata (European; three gradients). All gradients showed clear genomic breaks splitting populations into low-elevation (Mediterranean zone) and high-elevation (cold temperate zone). A total of 3301 SNPs in U. phaea and 138 SNPs in U. pustulata were driven to fixation between the two ends of the gradients. The difference between the species is likely due to differences in recombination rate: the sexually reproducing U. phaea has a higher recombination rate than the primarily asexually reproducing U. pustulata. Cline analysis revealed allele frequency transitions along all gradients at approximately 0°C, coinciding with the transition between the Mediterranean and cold temperate zones, suggesting freezing is a strong driver of population differentiation. Genomic scans further confirmed temperature-related selection targets. Both species showed similar differentiation patterns overall, but different selected alleles indicate convergent adaptation to freezing. Our results enrich our knowledge of fungal genomic functions related to temperature and climate, fungal population genomics, and species responses to environmental heterogeneity.
Collapse
Affiliation(s)
- Edgar L Y Wong
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Henrique F Valim
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
6
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
8
|
Abstract
We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Bush SJ, Murren CJ, Urrutia AO, Kover PX. Contrasting gene-level signatures of selection with reproductive fitness. Mol Ecol 2021; 31:1515-1526. [PMID: 34918851 PMCID: PMC9304172 DOI: 10.1111/mec.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic datasets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.
Collapse
Affiliation(s)
- Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA, 29424
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico, 04510, Mexico
| | - Paula X Kover
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
10
|
Glémin S. Balancing selection in self-fertilizing populations. Evolution 2021; 75:1011-1029. [PMID: 33675041 DOI: 10.1111/evo.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 11/30/2022]
Abstract
Self-fertilization commonly occurs in hermaphroditic species, either occasionally or as the main reproductive mode. It strongly affects the genetic functioning of a population by increasing homozygosity and genetic drift and reducing the effectiveness of recombination. Balancing selection is a form of selection that maintains polymorphism, which has been extensively studied in outcrossing species. Yet, despite recent developments, the analysis of balancing selection in partially selfing species is limited to specific cases and a general treatment is still lacking. In particular, it is unclear whether selfing globally reduced the efficacy of balancing selection as in the well-known case of overdominance. I provide a unifying framework, quantify how selfing affects the maintenance of polymorphism and the efficacy of the different form of balancing selection, and show that they can be classified into two main categories: overdominance-like selection (including true overdominance, selection variable in space and time, and antagonistic selection), which is strongly affected by selfing, and negative frequency dependent selection, which is barely affected by selfing, even at multiple loci. I also provide simple analytical results for all cases under the assumption of weak selection. This framework provides theoretical background to analyze the genomic signature of balancing selection in partially selfing species. It also sheds new light on the evolution of selfing species, including the evolution of selfing syndrome, the interaction with pathogens, and the evolutionary fate of selfing lineages.
Collapse
Affiliation(s)
- Sylvain Glémin
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution), University of Rennes 1, UMR 6553, Rennes, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
11
|
Hartfield M. Approximating the Coalescent Under Facultative Sex. J Hered 2021; 112:145-154. [PMID: 33511984 DOI: 10.1093/jhered/esaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/01/2020] [Indexed: 11/14/2022] Open
Abstract
Genome studies of facultative sexual species, which can either reproduce sexually or asexually, are providing insight into the evolutionary consequences of mixed reproductive modes. It is currently unclear to what extent the evolutionary history of facultative sexuals' genomes can be approximated by the standard coalescent, and if a coalescent effective population size Ne exists. Here, I determine if and when these approximations can be made. When sex is frequent (occurring at a frequency much greater than 1/N per reproduction per generation, for N the actual population size), the underlying genealogy can be approximated by the standard coalescent, with a coalescent Ne≈N. When sex is very rare (at frequency much lower than 1/N), approximations for the pairwise coalescent time can be obtained, which is strongly influenced by the frequencies of sex and mitotic gene conversion, rather than N. However, these terms do not translate into a coalescent Ne. These results are used to discuss the best sampling strategies for investigating the evolutionary history of facultative sexual species.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Becher H, Jackson BC, Charlesworth B. Patterns of Genetic Variability in Genomic Regions with Low Rates of Recombination. Curr Biol 2019; 30:94-100.e3. [PMID: 31866366 DOI: 10.1016/j.cub.2019.10.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The amount of DNA sequence variability in a genomic region is often positively correlated with its rate of crossing over (CO) [1-3]. This pattern is caused by selection acting on linked sites, which reduces genetic variability and biases the frequency distribution of segregating variants toward more rare variants than are expected without selection (skew). These effects may involve the spread of beneficial mutations (selective sweeps [SSWs]), the elimination of deleterious mutations (background selection [BGS]), or both, and are expected to be stronger with lower CO rates [1-3]. However, in a recent study of human populations, the skew was reduced in the lowest CO regions compared with regions with somewhat higher CO rates [4]. A low skew in very low CO regions, compared with theoretical predictions, is seen in the population genomic studies of Drosophila simulans described here and in other Drosophila species. Here, we propose an explanation for lower than expected skew in low CO regions, and validate it using computer simulations; explanations for higher skew with higher CO rates, as in D. simulans, will be explored elsewhere. Partially recessive, linked deleterious mutations can increase neutral variability when the product of the effective population size (Ne) and the selection coefficient against homozygous carriers of mutations (s) is ≤1, i.e., there is associative overdominance (AOD) rather than BGS [5]. AOD can operate in low CO regions, producing a lower skew than in its absence. This opens up a new perspective on how selection affects patterns of variability at linked sites.
Collapse
Affiliation(s)
- Hannes Becher
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Benjamin C Jackson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
13
|
Ho EKH, Bartkowska M, Wright SI, Agrawal AF. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. THE NEW PHYTOLOGIST 2019; 224:1361-1371. [PMID: 31298732 DOI: 10.1111/nph.16056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Clonal propagation allows some plant species to achieve massive population sizes quickly but also reduces the evolutionary independence of different sites in the genome. We examine genome-wide genetic diversity in Spirodela polyrhiza, a duckweed that reproduces primarily asexually. We find that this geographically widespread and numerically abundant species has very low levels of genetic diversity. Diversity at nonsynonymous sites relative to synonymous sites is high, suggesting that purifying selection is weak. A potential explanation for this observation is that a very low frequency of sex renders selection ineffective. However, there is a pronounced decay in linkage disequilibrium over 40 kb, suggesting that though sex may be rare at the individual level it is not too infrequent at the population level. In addition, neutral diversity is affected by the physical proximity of selected sites, which would be unexpected if sex was exceedingly rare at the population level. The amount of genetic mixing as assessed by the decay in linkage disequilibrium is not dissimilar from selfing species such as Arabidopsis thaliana, yet selection appears to be much less effective in duckweed. We discuss alternative explanations for the signature of weak purifying selection.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Magdalena Bartkowska
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
14
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Clémentine M François
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France.
| |
Collapse
|
15
|
The Effect of Strong Purifying Selection on Genetic Diversity. Genetics 2018; 209:1235-1278. [PMID: 29844134 DOI: 10.1534/genetics.118.301058] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Purifying selection reduces genetic diversity, both at sites under direct selection and at linked neutral sites. This process, known as background selection, is thought to play an important role in shaping genomic diversity in natural populations. Yet despite its importance, the effects of background selection are not fully understood. Previous theoretical analyses of this process have taken a backward-time approach based on the structured coalescent. While they provide some insight, these methods are either limited to very small samples or are computationally prohibitive. Here, we present a new forward-time analysis of the trajectories of both neutral and deleterious mutations at a nonrecombining locus. We find that strong purifying selection leads to remarkably rich dynamics: neutral mutations can exhibit sweep-like behavior, and deleterious mutations can reach substantial frequencies even when they are guaranteed to eventually go extinct. Our analysis of these dynamics allows us to calculate analytical expressions for the full site frequency spectrum. We find that whenever background selection is strong enough to lead to a reduction in genetic diversity, it also results in substantial distortions to the site frequency spectrum, which can mimic the effects of population expansions or positive selection. Because these distortions are most pronounced in the low and high frequency ends of the spectrum, they become particularly important in larger samples, but may have small effects in smaller samples. We also apply our forward-time framework to calculate other quantities, such as the ultimate fates of polymorphisms or the fitnesses of their ancestral backgrounds.
Collapse
|
16
|
Siewert KM, Voight BF. Detecting Long-Term Balancing Selection Using Allele Frequency Correlation. Mol Biol Evol 2018; 34:2996-3005. [PMID: 28981714 PMCID: PMC5850717 DOI: 10.1093/molbev/msx209] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Balancing selection occurs when multiple alleles are maintained in a population, which can result in their preservation over long evolutionary time periods. A characteristic signature of this long-term balancing selection is an excess number of intermediate frequency polymorphisms near the balanced variant. However, the expected distribution of allele frequencies at these loci has not been extensively detailed, and therefore existing summary statistic methods do not explicitly take it into account. Using simulations, we show that new mutations which arise in close proximity to a site targeted by balancing selection accumulate at frequencies nearly identical to that of the balanced allele. In order to scan the genome for balancing selection, we propose a new summary statistic, β, which detects these clusters of alleles at similar frequencies. Simulation studies show that compared with existing summary statistics, our measure has improved power to detect balancing selection, and is reasonably powered in non-equilibrium demographic models and under a range of recombination and mutation rates. We compute β on 1000 Genomes Project data to identify loci potentially subjected to long-term balancing selection in humans. We report two balanced haplotypes-localized to the genes WFS1 and CADM2-that are strongly linked to association signals for complex traits. Our approach is computationally efficient and applicable to species that lack appropriate outgroup sequences, allowing for well-powered analysis of selection in the wide variety of species for which population data are rapidly being generated.
Collapse
Affiliation(s)
- Katherine M Siewert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Mutation Rate Evolution in Partially Selfing and Partially Asexual Organisms. Genetics 2017; 207:1561-1575. [PMID: 28971958 DOI: 10.1534/genetics.117.300346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022] Open
Abstract
Different factors can influence the evolution of the mutation rate of a species: costs associated with DNA replication fidelity, indirect selection caused by the mutations produced (that should generally favor lower mutation rates, given that most mutations affecting fitness are deleterious), and genetic drift, which may render selection acting on weak mutators inefficient. In this paper, we use a two-locus model to compute the strength of indirect selection acting on a modifier locus that affects the mutation rate toward a deleterious allele at a second, linked, locus, in a population undergoing partial selfing or partial clonality. The results show that uniparental reproduction increases the effect of indirect selection for lower mutation rates. Extrapolating to the case of a whole genome with many deleterious alleles, and introducing a direct cost to DNA replication fidelity, the results can be used to compute the evolutionarily stable mutation rate, U In the absence of mutational bias toward higher U, the analytical prediction fits well with individual-based, multilocus simulation results. When such a bias is added into the simulations, however, genetic drift may lead to the maintenance of higher mutation rates, and this effect may be amplified in highly selfing or highly clonal populations due to their reduced effective population size.
Collapse
|
18
|
Charlesworth et al. on Background Selection and Neutral Diversity. Genetics 2017; 204:829-832. [PMID: 28114095 DOI: 10.1534/genetics.116.196170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Roze D. Background Selection in Partially Selfing Populations. Genetics 2016; 203:937-57. [PMID: 27075726 PMCID: PMC4896204 DOI: 10.1534/genetics.116.187955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high.
Collapse
Affiliation(s)
- Denis Roze
- Centre National de la Recherche Scientifique, Unité Mixte Internationale 3614, Evolutionary Biology and Ecology of Algae, Roscoff, FranceSorbonne Universités, Université Pierre et Marie Curie Université Paris VI, 29688 Roscoff, France
| |
Collapse
|