1
|
Wang P, Yang S, Chen M, Liu Y, He Q, Sun H, Wu D, Xiang S, Jing D, Wang S, Guo Q, Dang J, Liang G. Karyotype variation patterns and phenotypic responses of hybrid progenies of triploid loquat ( Eriobotrya japonica) provide new insight into aneuploid germplasm innovation. HORTICULTURE RESEARCH 2025; 12:uhaf023. [PMID: 40212124 PMCID: PMC11981905 DOI: 10.1093/hr/uhaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/12/2025] [Indexed: 04/13/2025]
Abstract
The sexual reproduction of triploids induces chromosomal karyotype variations, which are significant for germplasm resource innovation. Most triploid plants are with low fertility. Therefore, triploid offspring karyotypes' variation pattern and phenotypic response remain poorly understood. Here, we employed three diploids with diverse genetic distances as male parents to cross-pollinate the female fertile triploid loquat Q24 to construct three experimental populations. The chromosome numbers of 93.82% of hybrid plants were 34~46 in three hybrid populations. All 168 aneuploids with 160 karyotypes and a small percentage of euploids were detected among 178 hybrids by the improved molecular karyotype analysis method. Further analysis revealed that when being transmitted to offspring, chromosome 5 of Q24 as disomy had the highest frequency (>50%), while chromosome 12 had the lowest frequency (≤30%). The frequency of Q24's chromosomes being transmitted to offspring as disomy was influenced by the gene function on the chromosomes and the number of interchromosome collinear gene links. Whole-genome resequencing showed that the Q24 alleles exhibited segregation distortions in the offspring aneuploid population. Transgenic experiments demonstrated that the EjRUN1 gene, which was on one segregation distortion region of Q24, promoted the seed viability of triploid Arabidopsis. Furthermore, chromosome number, dosage, and male parent genotype affected the aneuploid phenotype. These findings advance the understanding of genome genetic characteristics of triploid loquat, and provide a reference for germplasm innovation of loquat rapidly through triploid sexual reproduction.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Shangjian Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Meiyi Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Yingjia Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qiao He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Haiyan Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Di Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Suqiong Xiang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Jiangbo Dang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
2
|
H I Albehaijani S, Huynh T, Boyce KJ. Cellular and genetic changes during and after fluconazole exposure in Cryptococcus neoformans. Int J Antimicrob Agents 2025:107519. [PMID: 40252781 DOI: 10.1016/j.ijantimicag.2025.107519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
The validity of genome replication is fundamental to fungal survival, and errors in this process can result in ploidy changes. These changes can have negative effects, such as developmental defects or reduced fitness, or positive effects such as fungal adaptation and resilience. In the fungal pathogen Cryptococcus neoformans, ploidy changes have been consistently observed in clinical populations, and isolates exposed to the antifungal drug fluconazole commonly exhibit chromosome 1 aneuploidy. Chromosomal and putative metabolic function changes due to drug exposure are not well studied and are important for understanding resistance. This study examined the fluconazole influence on C. neoformans transient aneuploidy and identified any potential genetic pathways that may be implicated. The study investigated 30 genes predicted to have a role in transient aneuploidy, which are related to chromosome organisation, DNA damage checkpoints and stress signalling. Other factors including ploidy status (haploid, diploid, polyploid) and species were also investigated to observe commonalities for a universal drug treatment strategy. Fluconazole treatment increased DNA content, cell size and chromosomal changes in the wildtype and mutants. When fluconazole was removed, permanent changes were observed and were highly variable in the wildtypes and the 30 mutants. Additionally, some mutants lacked chromosomal changes such as tel1∆, mrc1∆ and hog1∆, highlighting the potential involvement in the aneuploidy process. These findings highlight that fluconazole influences the entire genome rather than specific chromosomes, which increases the heterogeneity in permanent changes after fluconazole removal. This heterogeneity may result in long-term consequences, including drug resistance.
Collapse
Affiliation(s)
- Samah H I Albehaijani
- School of Science, RMIT University, Melbourne, VIC, Australia; Department of Biology, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Tien Huynh
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Kylie J Boyce
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Hu H, Luo H, Deng Z. PCAT19: the role in cancer pathogenesis and beyond. Front Cell Dev Biol 2024; 12:1435717. [PMID: 39744012 PMCID: PMC11688190 DOI: 10.3389/fcell.2024.1435717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025] Open
Abstract
PCAT19, a long non-coding RNA, has attracted considerable attention due to its diverse roles in various malignancies. This work compiles current research on PCAT19's involvement in cancer pathogenesis and progression. Abnormal expression of PCAT19 has been observed in various cancers, and its correlation with clinical features and prognosis positions it as a promising prognostic biomarker. Additionally, its ability to effectively differentiate between tumor and normal tissues suggests significant diagnostic value. PCAT19 exhibits a dual nature, functioning either as an oncogene or a tumor suppressor, depending on the cancer type. It is implicated in a range of tumor-related activities, including cell proliferation, apoptosis, invasion, migration, metabolism, as well as tumor growth and metastasis. PCAT19 acts as a competing endogenous RNA (ceRNA) or interacts with proteins to regulate critical cancer-related pathways, such as MELK signaling, p53 signaling, and cell cycle pathways. Furthermore, emerging evidence suggests that PCAT19 plays a role in the modulation of neuropathic pain, adding complexity to its functional repertoire. By exploring the molecular mechanisms and pathways associated with PCAT19, we aim to provide a comprehensive understanding of its multifaceted roles in human health and disease, highlighting its potential as a therapeutic target for cancer and pain management.
Collapse
Affiliation(s)
- Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Dutcher HA, Hose J, Howe H, Rojas J, Gasch AP. The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast. PLoS Genet 2024; 20:e1011454. [PMID: 39453980 PMCID: PMC11540229 DOI: 10.1371/journal.pgen.1011454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with different chromosome duplications, in wild-type cells (SSD1+) and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1 (ssd1Δ). We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or in SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation. In contrast, duplication of other genes benefits multiple ssd1Δ aneuploids over controls, and this group is enriched for translational effectors. Furthermore, both wild-type and especially ssd1Δ aneuploids with different chromosome amplifications show increased sensitivity to translational inhibitor nourseothricin. We used comparative modeling of aneuploid growth defects, based on the cumulative fitness costs measured for single-gene duplication. Our results present a model in which the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
Collapse
Affiliation(s)
- H. Auguste Dutcher
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hollis Howe
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Dutcher HA, Hose J, Howe H, Rojas J, Gasch AP. The response to single-gene duplication implicates translation as a key vulnerability in aneuploid yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589582. [PMID: 38659764 PMCID: PMC11042342 DOI: 10.1101/2024.04.15.589582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with varying chromosome duplications, in wild-type cells and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1. We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation; in contrast, duplication of other translational regulators, including eI5Fa Hyp2, benefit ssd1Δ aneuploids over controls. Using modeling of aneuploid growth defects, we propose that the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. Our results suggest that the mechanism behind their toxicity is linked to a key vulnerability in translation in aneuploid cells. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.
Collapse
|
6
|
Zhang Z, Pan Z, Li Q, Huang Q, Shi L, Liu Y. Rational design of ICD-inducing nanoparticles for cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk0716. [PMID: 38324678 PMCID: PMC10849581 DOI: 10.1126/sciadv.adk0716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Nanoparticle-based cancer immunotherapy has shown promising therapeutic potential in clinical settings. However, current research mainly uses nanoparticles as delivery vehicles but overlooks their potential to directly modulate immune responses. Inspired by the endogenous endoplasmic reticulum (ER) stress caused by unfolded/misfolded proteins, we present a rationally designed immunogenic cell death (ICD) inducer named NanoICD, which is a nanoparticle engineered for ER targeting and retention. By carefully controlling surface composition and properties, we have obtained NanoICD that can effectively accumulate in the ER, induce ER stress, and activate ICD-associated immune responses. In addition, NanoICD is generally applicable to various proteins and enzymes to further enhance the immunomodulatory capacity, exemplified by encapsulating catalase (CAT) to obtain NanoICD/CAT, effectively alleviated immunosuppressive tumor microenvironment and induced robust antitumor immune responses in 4T1-bearing mice. This work demonstrates engineered nanostructures' potential to autonomously regulate biological processes and provides insights into the development of advanced nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Zheng Pan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Qiushi Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yang Liu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Avecilla G, Spealman P, Matthews J, Caudal E, Schacherer J, Gresham D. Copy number variation alters local and global mutational tolerance. Genome Res 2023; 33:1340-1353. [PMID: 37652668 PMCID: PMC10547251 DOI: 10.1101/gr.277625.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Pieter Spealman
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Julia Matthews
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| | - David Gresham
- Department of Biology, New York University, New York, New York 10003, USA;
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
8
|
Jilderda LJ, Zhou L, Foijer F. Understanding How Genetic Mutations Collaborate with Genomic Instability in Cancer. Cells 2021; 10:342. [PMID: 33562057 PMCID: PMC7914657 DOI: 10.3390/cells10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023] Open
Abstract
Chromosomal instability is the process of mis-segregation for ongoing chromosomes, which leads to cells with an abnormal number of chromosomes, also known as an aneuploid state. Induced aneuploidy is detrimental during development and in primary cells but aneuploidy is also a hallmark of cancer cells. It is therefore believed that premalignant cells need to overcome aneuploidy-imposed stresses to become tumorigenic. Over the past decade, some aneuploidy-tolerating pathways have been identified through small-scale screens, which suggest that aneuploidy tolerance pathways can potentially be therapeutically exploited. However, to better understand the processes that lead to aneuploidy tolerance in cancer cells, large-scale and unbiased genetic screens are needed, both in euploid and aneuploid cancer models. In this review, we describe some of the currently known aneuploidy-tolerating hits, how large-scale genome-wide screens can broaden our knowledge on aneuploidy specific cancer driver genes, and how we can exploit the outcomes of these screens to improve future cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (L.J.J.); (L.Z.)
| |
Collapse
|
9
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
10
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
11
|
Moyer AJ, Gardiner K, Reeves RH. All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends Genet 2020; 37:444-459. [PMID: 33097276 DOI: 10.1016/j.tig.2020.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Human chromosome 21 (Hsa21) contains more than 500 genes, making trisomy 21 one of the most complex genetic perturbations compatible with life. The ultimate goal of Down syndrome (DS) research is to design therapies that improve quality of life for individuals with DS by understanding which subsets of Hsa21 genes contribute to DS-associated phenotypes throughout the lifetime. However, the complexity of DS pathogenesis has made developing appropriate animal models an ongoing challenge. Here, we examine lessons learned from a variety of model systems, including yeast, nematode, fruit fly, and zebrafish, and discuss emerging methods for creating murine models that better reflect the genetic basis of trisomy 21.
Collapse
Affiliation(s)
- Anna J Moyer
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Katheleen Gardiner
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA (retired)
| | - Roger H Reeves
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
13
|
The environmental stress response causes ribosome loss in aneuploid yeast cells. Proc Natl Acad Sci U S A 2020; 117:17031-17040. [PMID: 32632008 DOI: 10.1073/pnas.2005648117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aneuploidy, a condition characterized by whole chromosome gains and losses, is often associated with significant cellular stress and decreased fitness. However, how cells respond to the aneuploid state has remained controversial. In aneuploid budding yeast, two opposing gene-expression patterns have been reported: the "environmental stress response" (ESR) and the "common aneuploidy gene-expression" (CAGE) signature, in which many ESR genes are oppositely regulated. Here, we investigate this controversy. We show that the CAGE signature is not an aneuploidy-specific gene-expression signature but the result of normalizing the gene-expression profile of actively proliferating aneuploid cells to that of euploid cells grown into stationary phase. Because growth into stationary phase is among the strongest inducers of the ESR, the ESR in aneuploid cells was masked when stationary phase euploid cells were used for normalization in transcriptomic studies. When exponentially growing euploid cells are used in gene-expression comparisons with aneuploid cells, the CAGE signature is no longer evident in aneuploid cells. Instead, aneuploid cells exhibit the ESR. We further show that the ESR causes selective ribosome loss in aneuploid cells, providing an explanation for the decreased cellular density of aneuploid cells. We conclude that aneuploid budding yeast cells mount the ESR, rather than the CAGE signature, in response to aneuploidy-induced cellular stresses, resulting in selective ribosome loss. We propose that the ESR serves two purposes in aneuploid cells: protecting cells from aneuploidy-induced cellular stresses and preventing excessive cellular enlargement during slowed cell cycles by down-regulating translation capacity.
Collapse
|
14
|
Molecular signatures of aneuploidy-driven adaptive evolution. Nat Commun 2020; 11:588. [PMID: 32001709 PMCID: PMC6992709 DOI: 10.1038/s41467-019-13669-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to understand how cells develop tolerance to aneuploidy, we subject disomic (i.e. with an extra chromosome copy) strains of yeast to long-term experimental evolution under strong selection, by forcing disomy maintenance and daily population dilution. We characterize mutations, karyotype alterations and gene expression changes, and dissect the associated molecular strategies. Cells with different extra chromosomes accumulated mutations at distinct rates and displayed diverse adaptive events. They tended to evolve towards normal ploidy through chromosomal DNA loss and gene expression changes. We identify genes with recurrent mutations and altered expression in multiple lines, revealing a variant that improves growth under genotoxic stresses. These findings support rapid evolvability of disomic strains that can be used to characterize fitness effects of mutations under different stress conditions. Aneuploidy (abnormal chromosome number) can enable rapid adaptation to stress conditions, but it also entails fitness costs from gene imbalance. Here, the authors experimentally evolve yeast while forcing maintenance of aneuploidy to identify the mechanisms that promote tolerance of aneuploidy.
Collapse
|
15
|
Tsai HJ, Nelliat A. A Double-Edged Sword: Aneuploidy is a Prevalent Strategy in Fungal Adaptation. Genes (Basel) 2019; 10:E787. [PMID: 31658789 PMCID: PMC6826469 DOI: 10.3390/genes10100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy, a deviation from a balanced genome by either gain or loss of chromosomes, is generally associated with impaired fitness and developmental defects in eukaryotic organisms. While the general physiological impact of aneuploidy remains largely elusive, many phenotypes associated with aneuploidy link to a common theme of stress adaptation. Here, we review previously identified mechanisms and observations related to aneuploidy, focusing on the highly diverse eukaryotes, fungi. Fungi, which have conquered virtually all environments, including several hostile ecological niches, exhibit widespread aneuploidy and employ it as an adaptive strategy under severe stress. Gambling with the balance between genome plasticity and stability has its cost and in fact, most aneuploidies have fitness defects. How can this fitness defect be reconciled with the prevalence of aneuploidy in fungi? It is likely that the fitness cost of the extra chromosomes is outweighed by the advantage they confer under life-threatening stresses. In fact, once the selective pressures are withdrawn, aneuploidy is often lost and replaced by less drastic mutations that possibly incur a lower fitness cost. We discuss representative examples across hostile environments, including medically and industrially relevant cases, to highlight potential adaptive mechanisms in aneuploid yeast.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Anjali Nelliat
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Lancaster SM, Payen C, Smukowski Heil C, Dunham MJ. Fitness benefits of loss of heterozygosity in Saccharomyces hybrids. Genome Res 2019; 29:1685-1692. [PMID: 31548357 PMCID: PMC6771408 DOI: 10.1101/gr.245605.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
With two genomes in the same organism, interspecific hybrids have unique fitness opportunities and costs. In both plants and yeasts, wild, pathogenic, and domesticated hybrids may eliminate portions of one parental genome, a phenomenon known as loss of heterozygosity (LOH). Laboratory evolution of hybrid yeast recapitulates these results, with LOH occurring in just a few hundred generations of propagation. In this study, we systematically looked for alleles that are beneficial when lost in order to determine how prevalent this mode of adaptation may be and to determine candidate loci that might underlie the benefits of larger-scale chromosome rearrangements. These aims were accomplished by mating Saccharomyces uvarum with the S. cerevisiae deletion collection to create hybrids such that each nonessential S. cerevisiae allele is deleted. Competitive fitness assays of these pooled, barcoded, hemizygous strains, and accompanying controls, revealed a large number of loci for which LOH is beneficial. We found that the fitness effects of hemizygosity are dependent on the species context, the selective environment, and the species origin of the deleted allele. Further, we found that hybrids have a wider distribution of fitness consequences versus matched S. cerevisiae hemizygous diploids. Our results suggest that LOH can be a successful strategy for adaptation of hybrids to new environments, and we identify candidate loci that drive the chromosomal rearrangements observed in evolution of yeast hybrids.
Collapse
Affiliation(s)
- Samuel M Lancaster
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Abstract
Genomic instability is a common feature of tumours that has a wide range of disruptive effects on cellular homeostasis. In this review we briefly discuss how instability comes about, then focus on the impact of gain or loss of DNA (aneuploidy) on oxidative stress. We discuss several mechanisms that lead from aneuploidy to the production of reactive oxygen species, including the effects on protein complex stoichiometry, endoplasmic reticulum stress and metabolic disruption. Each of these are involved in positive feedback loops that amplify relatively minor genetic changes into major cellular disruption or cell death, depending on the capacity of the cell to induce antioxidants or processes such as mitophagy that can moderate the disruption. Finally we examine the direct effects of reactive oxygen species on mitosis and how oxidative stress can compromise centrosome number, cytoskeletal integrity and signalling processes that are vital for mitotic fidelity.
Collapse
Affiliation(s)
- David L Newman
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia
| | - Lauren A Thurgood
- b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| | - Stephen L Gregory
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia.,b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| |
Collapse
|
18
|
Tsai HJ, Nelliat AR, Choudhury MI, Kucharavy A, Bradford WD, Cook ME, Kim J, Mair DB, Sun SX, Schatz MC, Li R. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy. Nature 2019; 570:117-121. [PMID: 31068692 PMCID: PMC6583789 DOI: 10.1038/s41586-019-1187-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2019] [Indexed: 01/06/2023]
Abstract
Aneuploidy, which refers to unbalanced chromosome numbers, represents a class of genetic variation that is associated with cancer, birth defects and eukaryotic micro-organisms1-4. Whereas it is known that each aneuploid chromosome stoichiometry can give rise to a distinct pattern of gene expression and phenotypic profile4,5, it remains a fundamental question as to whether there are common cellular defects that are associated with aneuploidy. Here we show the existence in budding yeast of a common aneuploidy gene-expression signature that is suggestive of hypo-osmotic stress, using a strategy that enables the observation of common transcriptome changes of aneuploidy by averaging out karyotype-specific dosage effects in aneuploid yeast-cell populations with random and diverse chromosome stoichiometry. Consistently, aneuploid yeast exhibited increased plasma-membrane stress that led to impaired endocytosis, and this defect was also observed in aneuploid human cells. Thermodynamic modelling showed that hypo-osmotic-like stress is a general outcome of the proteome imbalance that is caused by aneuploidy, and also predicted a relationship between ploidy and cell size that was observed in yeast and aneuploid cancer cells. A genome-wide screen uncovered a general dependency of aneuploid cells on a pathway of ubiquitin-mediated endocytic recycling of nutrient transporters. Loss of this pathway, coupled with the endocytic defect inherent to aneuploidy, leads to a marked alteration of intracellular nutrient homeostasis.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anjali R Nelliat
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrei Kucharavy
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Malcolm E Cook
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jisoo Kim
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean X Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Jaffe M, Dziulko A, Smith JD, St Onge RP, Levy SF, Sherlock G. Improved discovery of genetic interactions using CRISPRiSeq across multiple environments. Genome Res 2019; 29:668-681. [PMID: 30782640 PMCID: PMC6442382 DOI: 10.1101/gr.246603.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
Abstract
Large-scale genetic interaction (GI) screens in yeast have been invaluable for our understanding of molecular systems biology and for characterizing novel gene function. Owing in part to the high costs and long experiment times required, a preponderance of GI data has been generated in a single environmental condition. However, an unknown fraction of GIs may be specific to other conditions. Here, we developed a pooled-growth CRISPRi-based sequencing assay for GIs, CRISPRiSeq, which increases throughput such that GIs can be easily assayed across multiple growth conditions. We assayed the fitness of approximately 17,000 strains encompassing approximately 7700 pairwise interactions in five conditions and found that the additional conditions increased the number of GIs detected nearly threefold over the number detected in rich media alone. In addition, we found that condition-specific GIs are prevalent and improved the power to functionally classify genes. Finally, we found new links during respiratory growth between members of the Ras nutrient-sensing pathway and both the COG complex and a gene of unknown function. Our results highlight the potential of conditional GI screens to improve our understanding of cellular genetic networks.
Collapse
Affiliation(s)
- Mia Jaffe
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Adam Dziulko
- Joint Initiative for Metrology in Biology, Stanford, California 94305, USA.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Justin D Smith
- Stanford Genome Technology Center, Stanford University, Palo Alto, California 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert P St Onge
- Stanford Genome Technology Center, Stanford University, Palo Alto, California 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sasha F Levy
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Joint Initiative for Metrology in Biology, Stanford, California 94305, USA.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA.,National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
20
|
Abstract
The billions of proteins inside a eukaryotic cell are organized among dozens of sub-cellular compartments, within which they are further organized into protein complexes. The maintenance of both levels of organization is crucial for normal cellular function. Newly made proteins that fail to be segregated to the correct compartment or assembled into the appropriate complex are defined as orphans. In this review, we discuss the challenges faced by a cell of minimizing orphaned proteins, the quality control systems that recognize orphans, and the consequences of excess orphans for protein homeostasis and disease.
Collapse
|
21
|
Abstract
This review by Levine and Holland reviews the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. They discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy and survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically. Mitosis is a delicate event that must be executed with high fidelity to ensure genomic stability. Recent work has provided insight into how mitotic errors shape cancer genomes by driving both numerical and structural alterations in chromosomes that contribute to tumor initiation and progression. Here, we review the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. We discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy. Finally, we survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
22
|
Wu Y, Sun Y, Sun S, Li G, Wang J, Wang B, Lin X, Huang M, Gong Z, Sanguinet KA, Zhang Z, Liu B. Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1273-1285. [PMID: 29478186 PMCID: PMC5945760 DOI: 10.1007/s00122-018-3077-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 05/24/2023]
Abstract
We report a repertoire of diverse aneuploids harbored by a newly synthesized segmental allotetraploid rice population with fully sequenced sub-genomes and demonstrate their retention features and phenotypic consequences. Aneuploidy, defined as unequal numbers of different chromosomes, is a large-effect genetic variant and may produce diverse cellular and organismal phenotypes. Polyploids are more permissive to chromosomal content imbalance than their diploid and haploid counterparts, and therefore, may enable more in-depth investigation of the phenotypic consequences of aneuploidy. Based on whole-genome resequencing, we identify that ca. 40% of the 312 selfed individual plants sampled from an early generation rice segmental allotetraploid population are constitutive aneuploids harboring 55 distinct aneuploid karyotypes. We document that gain of a chromosome is more prevalent than loss of a chromosome, and the 12 rice chromosomes have distinct tendencies to be in an aneuploid state. These properties of aneuploidy are constrained by multiple factors including the number of genes residing on the chromosome and predicted functional connectivity with other chromosomes. Two broad categories of aneuploidy-associated phenotypes are recognized: those shared by different aneuploids, and those associated with aneuploidy of a specific chromosome. A repertoire of diverse aneuploids in the context of a segmental allotetraploid rice genome with fully sequenced sub-genomes provides a tractable resource to explore the roles of aneuploidy in nascent polyploid genome evolution and helps to decipher the mechanisms conferring karyotypic stabilization on the path to polyploid speciation and towards artificial construction of novel polyploid crops.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuai Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Meng Huang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zhiyun Gong
- Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
23
|
Zhu J, Tsai HJ, Gordon MR, Li R. Cellular Stress Associated with Aneuploidy. Dev Cell 2018; 44:420-431. [PMID: 29486194 DOI: 10.1016/j.devcel.2018.02.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Aneuploidy, chromosome stoichiometry that deviates from exact multiples of the haploid compliment of an organism, exists in eukaryotic microbes, several normal human tissues, and the majority of solid tumors. Here, we review the current understanding about the cellular stress states that may result from aneuploidy. The topics of aneuploidy-induced proteotoxic, metabolic, replication, and mitotic stress are assessed in the context of the gene dosage imbalance observed in aneuploid cells. We also highlight emerging findings related to the downstream effects of aneuploidy-induced cellular stress on the immune surveillance against aneuploid cells.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Molly R Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Viganó C, von Schubert C, Ahrné E, Schmidt A, Lorber T, Bubendorf L, De Vetter JRF, Zaman GJR, Storchova Z, Nigg EA. Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Mol Biol Cell 2018; 29:1031-1047. [PMID: 29496963 PMCID: PMC5921571 DOI: 10.1091/mbc.e17-10-0577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 11/11/2022] Open
Abstract
Although aneuploidy is poorly tolerated during embryogenesis, aneuploidy and whole chromosomal instability (CIN) are common hallmarks of cancer, raising the question of how cancer cells can thrive in spite of chromosome aberrations. Here we present a comprehensive and quantitative proteomics analysis of isogenic DLD-1 colorectal adenocarcinoma cells lines, aimed at identifying cellular responses to changes in ploidy and/or CIN. Specifically, we compared diploid (2N) and tetraploid (4N) cells with posttetraploid aneuploid (PTA) clones and engineered trisomic clones. Our study provides a comparative data set on the proteomes and phosphoproteomes of the above cell lines, comprising several thousand proteins and phosphopeptides. In comparison to the parental 2N line, we observed changes in proteins associated with stress responses and with interferon signaling. Although we did not detect a conspicuous protein signature associated with CIN, we observed many changes in phosphopeptides that relate to fundamental cellular processes, including mitotic progression and spindle function. Most importantly, we found that most changes detectable in PTA cells were already present in the 4N progenitor line. This suggests that activation of mitotic pathways through hyper-phosphorylation likely constitutes an important response to chromosomal burden. In line with this conclusion, cells with extensive chromosome gains showed differential sensitivity toward a number of inhibitors targeting cell cycle kinases, suggesting that the efficacy of anti-mitotic drugs may depend on the karyotype of cancer cells.
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Thomas Lorber
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | | | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V., 5340 Oss, The Netherlands
| | | | - Erich A. Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Yanagitani K, Juszkiewicz S, Hegde RS. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 2018; 357:472-475. [PMID: 28774922 DOI: 10.1126/science.aan0178] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 01/02/2023]
Abstract
Many nascent proteins are assembled into multiprotein complexes of defined stoichiometry. Imbalances in the synthesis of individual subunits result in orphans. How orphans are selectively eliminated to maintain protein homeostasis is poorly understood. Here, we found that the conserved ubiquitin-conjugating enzyme UBE2O directly recognized juxtaposed basic and hydrophobic patches on unassembled proteins to mediate ubiquitination without a separate ubiquitin ligase. In reticulocytes, where UBE2O is highly up-regulated, unassembled α-globin molecules that failed to assemble with β-globin were selectively ubiquitinated by UBE2O. In nonreticulocytes, ribosomal proteins that did not engage nuclear import factors were targets for UBE2O. Thus, UBE2O is a self-contained quality control factor that comprises substrate recognition and ubiquitin transfer activities within a single protein to efficiently target orphans of multiprotein complexes for degradation.
Collapse
Affiliation(s)
- Kota Yanagitani
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Szymon Juszkiewicz
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Ramanujan S Hegde
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
26
|
Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids. Yeast 2017; 35:51-69. [DOI: 10.1002/yea.3283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Eladio Barrio
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
- Department of Genetics; University of Valencia; Valencia Spain
| | - Amparo Querol
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| |
Collapse
|
27
|
Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B. Global Analysis of Gene Expression in Response to Whole-Chromosome Aneuploidy in Hexaploid Wheat. PLANT PHYSIOLOGY 2017; 175:828-847. [PMID: 28821592 PMCID: PMC5619904 DOI: 10.1104/pp.17.00819] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/14/2017] [Indexed: 05/25/2023]
Abstract
Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops.
Collapse
Affiliation(s)
- Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
28
|
The Stress-Inducible Peroxidase TSA2 Underlies a Conditionally Beneficial Chromosomal Duplication in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3177-3184. [PMID: 28743806 PMCID: PMC5592942 DOI: 10.1534/g3.117.300069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although chromosomal duplications are often deleterious, in some cases they enhance cells’ abilities to tolerate specific genetic or environmental challenges. Identifying the genes that confer these conditionally beneficial effects to particular chromosomal duplications can improve our understanding of the genetic and molecular mechanisms that enable certain aneuploidies to persist in cell populations and contribute to disease and evolution. Here, we perform a screen for spontaneous mutations that improve the tolerance of haploid Saccharomyces cerevisiae to hydrogen peroxide. Chromosome IV duplication is the most frequent mutation, as well as the only change in chromosomal copy number seen in the screen. Using a genetic mapping strategy that involves systematically deleting segments of a duplicated chromosome, we show that the chromosome IV’s duplication effect is largely due to the generation of a second copy of the stress-inducible cytoplasmic thioredoxin peroxidase TSA2. Our findings add to a growing body of literature that shows the conditionally beneficial effects of chromosomal duplication are typically mediated by a small number of genes that enhance tolerance to specific stresses when their copy numbers are increased.
Collapse
|
29
|
Miettinen TP, Caldez MJ, Kaldis P, Björklund M. Cell size control - a mechanism for maintaining fitness and function. Bioessays 2017; 39. [PMID: 28752618 DOI: 10.1002/bies.201700058] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The maintenance of cell size homeostasis has been studied for years in different cellular systems. With the focus on 'what regulates cell size', the question 'why cell size needs to be maintained' has been largely overlooked. Recent evidence indicates that animal cells exhibit nonlinear cell size dependent growth rates and mitochondrial metabolism, which are maximal in intermediate sized cells within each cell population. Increases in intracellular distances and changes in the relative cell surface area impose biophysical limitations on cells, which can explain why growth and metabolic rates are maximal in a specific cell size range. Consistently, aberrant increases in cell size, for example through polyploidy, are typically disadvantageous to cellular metabolism, fitness and functionality. Accordingly, cellular hypertrophy can potentially predispose to or worsen metabolic diseases. We propose that cell size control may have emerged as a guardian of cellular fitness and metabolic activity.
Collapse
Affiliation(s)
- Teemu P Miettinen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matias J Caldez
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - Mikael Björklund
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
30
|
Santaguida S, Richardson A, Iyer DR, M'Saad O, Zasadil L, Knouse KA, Wong YL, Rhind N, Desai A, Amon A. Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. Dev Cell 2017; 41:638-651.e5. [PMID: 28633018 PMCID: PMC5536848 DOI: 10.1016/j.devcel.2017.05.022] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023]
Abstract
Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance.
Collapse
Affiliation(s)
- Stefano Santaguida
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA.
| | - Amelia Richardson
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Divya Ramalingam Iyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ons M'Saad
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA
| | - Lauren Zasadil
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA
| | - Kristin A Knouse
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA; Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Liang Wong
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arshad Desai
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelika Amon
- Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-543, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
Abstract
Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes.
Collapse
|
32
|
Knouse KA, Davoli T, Elledge SJ, Amon A. Aneuploidy in Cancer: Seq-ing Answers to Old Questions. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-042616-072231] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristin A. Knouse
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115
| | - Teresa Davoli
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Stephen J. Elledge
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Angelika Amon
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
33
|
Dissecting Gene Expression Changes Accompanying a Ploidy-Based Phenotypic Switch. G3-GENES GENOMES GENETICS 2017; 7:233-246. [PMID: 27836908 PMCID: PMC5217112 DOI: 10.1534/g3.116.036160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aneuploidy, a state in which the chromosome number deviates from a multiple of the haploid count, significantly impacts human health. The phenotypic consequences of aneuploidy are believed to arise from gene expression changes associated with the altered copy number of genes on the aneuploid chromosomes. To dissect the mechanisms underlying altered gene expression in aneuploids, we used RNA-seq to measure transcript abundance in colonies of the haploid Saccharomyces cerevisiae strain F45 and two aneuploid derivatives harboring disomies of chromosomes XV and XVI. F45 colonies display complex “fluffy” morphologies, while the disomic colonies are smooth, resembling laboratory strains. Our two disomes displayed similar transcriptional profiles, a phenomenon not driven by their shared smooth colony morphology nor simply by their karyotype. Surprisingly, the environmental stress response (ESR) was induced in F45, relative to the two disomes. We also identified genes whose expression reflected a nonlinear interaction between the copy number of a transcriptional regulatory gene on chromosome XVI, DIG1, and the copy number of other chromosome XVI genes. DIG1 and the remaining chromosome XVI genes also demonstrated distinct contributions to the effect of the chromosome XVI disome on ESR gene expression. Expression changes in aneuploids appear to reflect a mixture of effects shared between different aneuploidies and effects unique to perturbing the copy number of particular chromosomes, including nonlinear copy number interactions between genes. The balance between these two phenomena is likely to be genotype- and environment-specific.
Collapse
|
34
|
iSeq: A New Double-Barcode Method for Detecting Dynamic Genetic Interactions in Yeast. G3-GENES GENOMES GENETICS 2017; 7:143-153. [PMID: 27821633 PMCID: PMC5217104 DOI: 10.1534/g3.116.034207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systematic screens for genetic interactions are a cornerstone of both network and systems biology. However, most screens have been limited to characterizing interaction networks in a single environment. Moving beyond this static view of the cell requires a major technological advance to increase the throughput and ease of replication in these assays. Here, we introduce iSeq-a platform to build large double barcode libraries and rapidly assay genetic interactions across environments. We use iSeq in yeast to measure fitness in three conditions of nearly 400 clonal strains, representing 45 possible single or double gene deletions, including multiple replicate strains per genotype. We show that iSeq fitness and interaction scores are highly reproducible for the same clonal strain across replicate cultures. However, consistent with previous work, we find that replicates with the same putative genotype have highly variable genetic interaction scores. By whole-genome sequencing 102 of our strains, we find that segregating variation and de novo mutations, including aneuploidy, occur frequently during strain construction, and can have large effects on genetic interaction scores. Additionally, we uncover several new environment-dependent genetic interactions, suggesting that barcode-based genetic interaction assays have the potential to significantly expand our knowledge of genetic interaction networks.
Collapse
|
35
|
Dodgson SE, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance. Genes Dev 2016; 30:2259-2271. [PMID: 27807036 PMCID: PMC5110993 DOI: 10.1101/gad.287474.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
Abstract
In this study, Dodgson et al. used a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast and identified the deubiquitinase Ubp3 as a key regulator of aneuploid cell homeostasis. They found that Ubp3 is a guardian of aneuploid cell fitness conserved across species. Aneuploidy—or an unbalanced karyotype in which whole chromosomes are gained or lost—causes reduced fitness at both the cellular and organismal levels but is also a hallmark of human cancers. Aneuploidy causes a variety of cellular stresses, including genomic instability, proteotoxic and oxidative stresses, and impaired protein trafficking. The deubiquitinase Ubp3, which was identified by a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast, is a key regulator of aneuploid cell homeostasis. We show that deletion of UBP3 exacerbates both karyotype-specific phenotypes and global stresses of aneuploid cells, including oxidative and proteotoxic stress. Indeed, Ubp3 is essential for proper proteasome function in euploid cells, and deletion of this deubiquitinase leads to further proteasome-mediated proteotoxicity in aneuploid yeast. Notably, the importance of UBP3 in aneuploid cells is conserved. Depletion of the human homolog of UBP3, USP10, is detrimental to the fitness of human cells upon chromosome missegregation, and this fitness defect is accompanied by autophagy inhibition. We thus used a genome-wide screen in yeast to identify a guardian of aneuploid cell fitness conserved across species. We propose that interfering with Ubp3/USP10 function could be a productive avenue in the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Stacie E Dodgson
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Stefano Santaguida
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Sharon Kim
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jason Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
36
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|
37
|
Tosato V, Sims J, West N, Colombin M, Bruschi CV. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 2016; 63:281-292. [PMID: 27491680 DOI: 10.1007/s00294-016-0635-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.
Collapse
Affiliation(s)
- Valentina Tosato
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia. .,Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Laboratories, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Nicole West
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Clinical Pathology, Maggiore Hospital, Piazza dell' Ospitale 2, 34125, Trieste, Italy
| | - Martina Colombin
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|