1
|
Guo X, Zhang S, Lei C, Jia C, Yin R, Zhang M, Liu W, Lu D. Oligotrophic state reduces the time dependence of the observed survival fraction for heavy ion beam-irradiated Saccharomyces cerevisiae and provides new insights into DNA repair. Appl Environ Microbiol 2024; 90:e0111324. [PMID: 39365040 PMCID: PMC11497803 DOI: 10.1128/aem.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy ion beam (HIB) irradiation is widely utilized in studies of cosmic rays-induced cellular effects and microbial breeding. Establishing an accurate dose-survival relationship is crucial for selecting the optimal irradiation dose. Typically, after irradiating logarithmic-phase cell suspensions with HIB, the survival fraction (SF) is determined by the ratio of clonal-forming units in irradiated versus control groups. However, our findings indicated that SF measurements were time sensitive. For the Saccharomyces cerevisiae model, the observed SF initially declined and subsequently increased in a eutrophic state; conversely, in an oligotrophic state, it remained relatively stable within 120 minutes. This time effect of SF observations in the eutrophic state can be ascribed to HIB-exposed cells experiencing cell cycle arrest, whereas the control proliferated rapidly, resulting in an over-time disproportionate change in viable cell count. Therefore, an alternative involves irradiating oligotrophic cells, determining SF thereafter, and transferring cells to the eutrophic state to facilitate DNA repair-mutation. Transcriptomic comparisons under these two trophic states yield valuable insights into the DNA damage response. Although DNA repair was postponed in an oligotrophic state, cells proactively mobilized specific repair pathways to advance this process. Effective nutritional supplementation should occur within 120 minutes, beyond this window, a decline in SF indicates an irreversible loss of repair capability. Upon transition to the eutrophic state, S. cerevisiae swiftly adapted and completed the repair. This study helps to minimize time-dependent variability in SF observations and to ensure effective damage repair and mutation in microbial breeding using HIB or other mutagens. It also promotes the understanding of microbial responses to complex environments.IMPORTANCEMutation breeding is a vital means of developing excellent microbial resources. Consequently, understanding the mechanisms through which microorganisms respond to complex environments characterized by mutagens and specific physiological-biochemical states holds significant theoretical and practical values. This study utilized Saccharomyces cerevisiae as a microbial model and highly efficient heavy ion beam (HIB) radiation as a mutagen, it revealed the time dependence of observations of survival fractions (SF) in response to HIB radiation and proposed an alternative to avoid the indeterminacy that this variable brings. Meanwhile, by incorporating an oligotrophic state into the alternative, this study constructed a dynamic map of gene expression during the fast-repair and slow-repair stages. It also highlighted the influence of trophic states on DNA repair. The findings apply to the survival-damage repair-mutation effects of single-celled microorganisms in response to various mutagens and contribute to elucidating the biological mechanisms underlying microbial survival in complex environments.
Collapse
Affiliation(s)
- Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shengli Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Runsheng Yin
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Signaling pathways involved in cell cycle arrest during the DNA breaks. DNA Repair (Amst) 2021; 98:103047. [PMID: 33454524 DOI: 10.1016/j.dnarep.2021.103047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Our genome bears tens of thousands of harms and devastations per day; In this regard, numerous sophisticated and complicated mechanisms are embedded by our cells in furtherance of remitting an unchanged and stable genome to their next generation. These mechanisms, that are collectively called DDR, have the duty of detecting the lesions and repairing them. it's necessary for the viability of any living cell that sustain the integrity and stability of its genetic content and this highlights the role of mediators that transduce the signals of DNA damage to the cell cycle in order to prevent the replication of a defective DNA. In this paper, we review the signaling pathways that lie between these processes and define how different ingredients of DDR are also able to affect the checkpoint signaling.
Collapse
|
3
|
Zhang J, Jing L, Tan S, Zeng EM, Lin Y, He L, Hu Z, Liu J, Guo Z. Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs. Cell Death Dis 2020; 11:602. [PMID: 32732911 PMCID: PMC7393494 DOI: 10.1038/s41419-020-02812-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are ‘coincidental’ treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Subee Tan
- Key Laboratory for Molecular Biotechnology, College of Life Sciences, Nanjing University, 210093, Nanjing, Jiangsu, P.R. China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, R.P. China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 17176, Sweden
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
4
|
Wu B, Hao W. Mitochondrial‐encoded endonucleases drive recombination of protein‐coding genes in yeast. Environ Microbiol 2019; 21:4233-4240. [DOI: 10.1111/1462-2920.14783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/18/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences Wayne State University Detroit MI USA
| | - Weilong Hao
- Department of Biological Sciences Wayne State University Detroit MI USA
| |
Collapse
|
5
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|