1
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024; 38:47-61. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
2
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
3
|
King BH, Gunathunga PB. Gustation in insects: taste qualities and types of evidence used to show taste function of specific body parts. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:11. [PMID: 37014302 PMCID: PMC10072106 DOI: 10.1093/jisesa/iead018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The insect equivalent of taste buds are gustatory sensilla, which have been found on mouthparts, pharynxes, antennae, legs, wings, and ovipositors. Most gustatory sensilla are uniporous, but not all apparently uniporous sensilla are gustatory. Among sensilla containing more than one neuron, a tubular body on one dendrite is also indicative of a taste sensillum, with the tubular body adding tactile function. But not all taste sensilla are also tactile. Additional morphological criteria are often used to recognize if a sensillum is gustatory. Further confirmation of such criteria by electrophysiological or behavioral evidence is needed. The five canonical taste qualities to which insects respond are sweet, bitter, sour, salty, and umami. But not all tastants that insects respond to easily fit in these taste qualities. Categories of insect tastants can be based not only on human taste perception, but also on whether the response is deterrent or appetitive and on chemical structure. Other compounds that at least some insects taste include, but are not limited to: water, fatty acids, metals, carbonation, RNA, ATP, pungent tastes as in horseradish, bacterial lipopolysaccharides, and contact pheromones. We propose that, for insects, taste be defined not only as a response to nonvolatiles but also be restricted to responses that are, or are thought to be, mediated by a sensillum. This restriction is useful because some of the receptor proteins in gustatory sensilla are also found elsewhere.
Collapse
Affiliation(s)
- B H King
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | |
Collapse
|
4
|
Krittika S, Yadav P. Alterations in lifespan and sleep/wake duration under selective monochromes of visible light in Drosophila melanogaster. Biol Open 2022; 11:275983. [PMID: 35735020 DOI: 10.1242/bio.059273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Rapid technology development, exposure to gadgets, and artificial lights (with different monochromes) have disturbed our lifestyle and the circadian clock, which otherwise confers better regulation of behavioral patterns and sleep/wake cycles in most organisms including Drosophila melanogaster. We assay the effect of LD12:12 hr (light: dark) monochromatic lights (violet, blue, green, yellow, orange, and red) on the lifespan, activity, and sleep of the D. melanogaster. We observe a shortened lifespan under 12h of violet, blue, green, and yellow lights, while significantly reduced activity levels under the light phase of blue and green light as compared to their dark phase is observed. Significant increase in the evening anticipation index of flies under blue and green light alongside increased and decreased sleep depth during the day and night respectively suggests the light avoidance, while there is no effect of colored light on the waking time, daily active time, and sleep time. Thus, our study shows short and long-term exposure to certain colored lights in terms of reduced lifespan and locomotor activity, which cause qualitative as well as quantitative changes in the sleep of flies; probably as a sign of aversion towards a specific light.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur-613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur-613401, Tamil Nadu, India
| |
Collapse
|
5
|
A functional division of Drosophila sweet taste neurons that is value-based and task-specific. Proc Natl Acad Sci U S A 2022; 119:2110158119. [PMID: 35031566 PMCID: PMC8784143 DOI: 10.1073/pnas.2110158119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Sucrose is an attractive feeding substance and a positive reinforcer for Drosophila But Drosophila females have been shown to robustly reject a sucrose-containing option for egg-laying when given a choice between a plain and a sucrose-containing option in specific contexts. How the sweet taste system of Drosophila promotes context-dependent devaluation of an egg-laying option that contains sucrose, an otherwise highly appetitive tastant, is unknown. Here, we report that devaluation of sweetness/sucrose for egg-laying is executed by a sensory pathway recruited specifically by the sweet neurons on the legs of Drosophila First, silencing just the leg sweet neurons caused acceptance of the sucrose option in a sucrose versus plain decision, whereas expressing the channelrhodopsin CsChrimson in them caused rejection of a plain option that was "baited" with light over another that was not. Analogous bidirectional manipulations of other sweet neurons did not produce these effects. Second, circuit tracing revealed that the leg sweet neurons receive different presynaptic neuromodulations compared to some other sweet neurons and were the only ones with postsynaptic partners that projected prominently to the superior lateral protocerebrum (SLP) in the brain. Third, silencing one specific SLP-projecting postsynaptic partner of the leg sweet neurons reduced sucrose rejection, whereas expressing CsChrimson in it promoted rejection of a light-baited option during egg-laying. These results uncover that the Drosophila sweet taste system exhibits a functional division that is value-based and task-specific, challenging the conventional view that the system adheres to a simple labeled-line coding scheme.
Collapse
|
6
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Sando SR, Bhatla N, Lee EL, Horvitz HR. An hourglass circuit motif transforms a motor program via subcellularly localized muscle calcium signaling and contraction. eLife 2021; 10:59341. [PMID: 34212858 PMCID: PMC8331187 DOI: 10.7554/elife.59341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/26/2021] [Indexed: 12/27/2022] Open
Abstract
Neural control of muscle function is fundamental to animal behavior. Many muscles can generate multiple distinct behaviors. Nonetheless, individual muscle cells are generally regarded as the smallest units of motor control. We report that muscle cells can alter behavior by contracting subcellularly. We previously discovered that noxious tastes reverse the net flow of particles through the C. elegans pharynx, a neuromuscular pump, resulting in spitting. We now show that spitting results from the subcellular contraction of the anterior region of the pm3 muscle cell. Subcellularly localized calcium increases accompany this contraction. Spitting is controlled by an ‘hourglass’ circuit motif: parallel neural pathways converge onto a single motor neuron that differentially controls multiple muscles and the critical subcellular muscle compartment. We conclude that subcellular muscle units enable modulatory motor control and propose that subcellular muscle contraction is a fundamental mechanism by which neurons can reshape behavior.
Collapse
Affiliation(s)
- Steven R Sando
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Miller Institute, Helen Wills Neuroscience Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eugene Lq Lee
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
9
|
Han Y, Guo Y, Cui SW, Li H, Shan Y, Wang H. Purple Sweet Potato Extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster. Exp Gerontol 2020; 144:111190. [PMID: 33301922 DOI: 10.1016/j.exger.2020.111190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Purple sweet potato is a nutritive food rich in anthocyanins that possess antioxidant effects. Drosophila melanogaster owns short growth cycle, fast reproduction, less chromosomes, more mutants, small individuals, therefore, which is an appropriate genetic model organism. OBJECTIVE To investigate the anti-aging activity of Purple Sweet Potato Extract (PSPE) in male Drosophila melanogaster and explore the underlying mechanism. RESULTS PSPE-induced longevity was associated with improvements in climbing ability and tolerance to stressors such as paraquat and hydrogen peroxide (H2O2). Furthermore, PSPE supplementation increased the activity of superoxide dismutase (SOD) and catalase (CAT), as well as expression of SOD and CAT genes, but decreased malondialdehyde (MDA) content. Meanwhile, PSPE decreased the intestinal stem cells (ISCs) proliferation and improved intestinal homeostasis, which was measured by Smurf assay and colony-forming units (CFUs) measurement in aging flies. Additionally, PSPE markedly inhibited the expression of upstream genes AKT-1, PI3K and mTOR and elevated the downstream gene 4E-BP, which further activated the expression of autophagy-related genes (Atg1, Atg5, Atg8a and Atg8b). Moreover, the production of lysosomes increased, indicating that the autophagy pathway was activated. CONCLUSION The results provided direct evidence of PSPE anti-aging effects on an organism level, indicating PSPE could be developed for use in effective anti-aging products.
Collapse
Affiliation(s)
- Ying Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300384, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph N1G5C9, Canada
| | - Heyu Li
- Tianjin ubasio biotechnology group Co., Ltd, Tianjin 300457, China
| | - Yanqin Shan
- Jiangsu Xingye Food Co., Ltd, Jiangsu 225700, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
10
|
Harrison BR, Wang L, Gajda E, Hoffman EV, Chung BY, Pletcher SD, Raftery D, Promislow DEL. The metabolome as a link in the genotype-phenotype map for peroxide resistance in the fruit fly, Drosophila melanogaster. BMC Genomics 2020; 21:341. [PMID: 32366330 PMCID: PMC7199327 DOI: 10.1186/s12864-020-6739-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Erika Gajda
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Elise V Hoffman
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Hull JJ, Yang YW, Miyasaki K, Brent CS. TRPA1 modulates noxious odor responses in Lygus hesperus. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104038. [PMID: 32113955 DOI: 10.1016/j.jinsphys.2020.104038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Lygus hesperus isa key pest of many economically important crops across western North America. Central to many aspects of the lives of these insects is chemical signalling, with identified roles in host plant selection, aggregation and passive mate guarding. The development of novel monitoring and control approaches for this insect will rely on a sound understanding of how these cues are perceived and processed, and their impact on behavior. Towards this end, we investigated allyl isothiocyanate, cinnamaldehyde and citronellal, compounds that are noxious repellents to other insects. We found that L. hesperus avoided areas containing the three compounds and that exposure induced increases in movement velocity and duration in both nymphs and adults. This suggests these compounds may work as repellents. To better understand the underlying physiology of this response, RNA interference by dsRNA injection was used to inhibit the expression of two chemosensory-associated proteins, the odorant receptor co-receptor (Orco) and the transient receptor potential A (TRPA1) channel. While knockdown of Orco did not change the reaction of adult females to citronellal, TRPA1 silencing effectively eliminated the induced increase to movement, suggesting a chemoperceptory role in citronellal detection.
Collapse
Affiliation(s)
- J Joe Hull
- USDA-ARS, Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, United States
| | - Yu-Wen Yang
- USDA-ARS, Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, United States
| | - Katelyn Miyasaki
- USDA-ARS, Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, United States
| | - Colin S Brent
- USDA-ARS, Arid Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ, United States.
| |
Collapse
|
12
|
Chen YCD, Dahanukar A. Recent advances in the genetic basis of taste detection in Drosophila. Cell Mol Life Sci 2020; 77:1087-1101. [PMID: 31598735 PMCID: PMC7125039 DOI: 10.1007/s00018-019-03320-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023]
Abstract
The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA, 92521, USA.
- Department of Molecular, Cell and Systems Biology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Schnaitmann C, Pagni M, Reiff DF. Color vision in insects: insights from Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:183-198. [PMID: 32020291 PMCID: PMC7069916 DOI: 10.1007/s00359-019-01397-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Color vision is an important sensory capability that enhances the detection of contrast in retinal images. Monochromatic animals exclusively detect temporal and spatial changes in luminance, whereas two or more types of photoreceptors and neuronal circuitries for the comparison of their responses enable animals to differentiate spectral information independent of intensity. Much of what we know about the cellular and physiological mechanisms underlying color vision comes from research on vertebrates including primates. In insects, many important discoveries have been made, but direct insights into the physiology and circuit implementation of color vision are still limited. Recent advances in Drosophila systems neuroscience suggest that a complete insect color vision circuitry, from photoreceptors to behavior, including all elements and computations, can be revealed in future. Here, we review fundamental concepts in color vision alongside our current understanding of the neuronal basis of color vision in Drosophila, including side views to selected other insects.
Collapse
Affiliation(s)
- Christopher Schnaitmann
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany
| | - Manuel Pagni
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany
| | - Dierk F Reiff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
14
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
15
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
16
|
Wu SF, Ja YL, Zhang YJ, Yang CH. Sweet neurons inhibit texture discrimination by signaling TMC-expressing mechanosensitive neurons in Drosophila. eLife 2019; 8:46165. [PMID: 31184585 PMCID: PMC6559806 DOI: 10.7554/elife.46165] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/30/2019] [Indexed: 11/13/2022] Open
Abstract
Integration of stimuli of different modalities is an important but incompletely understood process during decision making. Here, we show that Drosophila are capable of integrating mechanosensory and chemosensory information of choice options when deciding where to deposit their eggs. Specifically, females switch from preferring the softer option for egg-laying when both options are sugar free to being indifferent between them when both contain sucrose. Such sucrose-induced indifference between options of different hardness requires functional sweet neurons, and, curiously, the Transmembrane Channel-like (TMC)-expressing mechanosensitive neurons that have been previously shown to promote discrimination of substrate hardness during feeding. Further, axons of sweet neurons directly contact axons of TMC-expressing neurons in the brain and stimulation of sweet neurons increases Ca2+ influx into axons of TMC-expressing neurons. These results uncover one mechanism by which Drosophila integrate taste and tactile information when deciding where to deposit their eggs and reveal that TMC-expressing neurons play opposing roles in hardness discrimination in two different decisions.
Collapse
Affiliation(s)
- Shun-Fan Wu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Department of Neurobiology, Duke University, Durham, United States
| | - Ya-Long Ja
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Jie Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chung-Hui Yang
- Department of Neurobiology, Duke University, Durham, United States
| |
Collapse
|
17
|
Cury KM, Prud'homme B, Gompel N. A short guide to insect oviposition: when, where and how to lay an egg. J Neurogenet 2019; 33:75-89. [PMID: 31164023 DOI: 10.1080/01677063.2019.1586898] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Egg-laying behavior is one of the most important aspects of female behavior, and has a profound impact on the fitness of a species. As such, it is controlled by several layers of regulation. Here, we review recent advances in our understanding of insect neural circuits that control when, where and how to lay an egg. We also outline outstanding open questions about the control of egg-laying decisions, and speculate on the possible neural underpinnings that can drive the diversification of oviposition behaviors through evolution.
Collapse
Affiliation(s)
- Kevin M Cury
- a Department of Neuroscience and the Mortimer B. Zuckerman Mind Brain Behavior Institute , Columbia University , New York , NY , USA
| | - Benjamin Prud'homme
- b Aix Marseille Université, CNRS , Institut de Biologie du Développement de Marseille (IBDM) , Marseille , France
| | - Nicolas Gompel
- c Fakultät für Biologie, Biozentrum , Ludwig-Maximilians Universität München , Munich , Germany
| |
Collapse
|
18
|
Boonen B, Alpizar YA, Meseguer VM, Talavera K. TRP Channels as Sensors of Bacterial Endotoxins. Toxins (Basel) 2018; 10:toxins10080326. [PMID: 30103489 PMCID: PMC6115757 DOI: 10.3390/toxins10080326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
The cellular and systemic effects induced by bacterial lipopolysaccharides (LPS) have been solely attributed to the activation of the Toll-like receptor 4 (TLR4) signalling cascade. However, recent studies have shown that LPS activates several members of the Transient Receptor Potential (TRP) family of cation channels. Indeed, LPS induces activation of the broadly-tuned chemosensor TRPA1 in sensory neurons in a TLR4-independent manner, and genetic ablation of this channel reduced mouse pain and inflammatory responses triggered by LPS and the gustatory-mediated avoidance to LPS in fruit flies. LPS was also shown to activate TRPV4 channels in airway epithelial cells, an effect leading to an immediate production of bactericidal nitric oxide and to an increase in ciliary beat frequency. In this review, we discuss the role of TRP channels as sensors of bacterial endotoxins, and therefore, as crucial players in the timely detection of invading gram-negative bacteria.
Collapse
Affiliation(s)
- Brett Boonen
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Yeranddy A Alpizar
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| | - Victor M Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | - Karel Talavera
- Laboratory for Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, O&N1 Herestraat 49 - box 802, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Deciphering Drosophila female innate behaviors. Curr Opin Neurobiol 2018; 52:139-148. [PMID: 29940518 DOI: 10.1016/j.conb.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
Abstract
Innate responses are often sexually dimorphic. Studies of female specific behaviors have remained niche, but the focus is changing as illustrated by the recent progress in understanding the female courtship responses and egg-laying decisions. In this review, we will cover our current knowledge about female behaviors in these two specific contexts. Recent studies elucidate on how females process the courtship song. They also show that egg-laying decisions are extremely complex, requiring the assessment of food, microbial, predator and social cues. Study of female responses will improve our understanding of how a nervous system processes different challenges.
Collapse
|
20
|
Arenas OM, Zaharieva EE, Para A, Vásquez-Doorman C, Petersen CP, Gallio M. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat Neurosci 2017; 20:1686-1693. [PMID: 29184198 PMCID: PMC5856474 DOI: 10.1038/s41593-017-0005-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
All animals must detect noxious stimuli to initiate protective behavior, but the evolutionary origin of nociceptive systems is not well understood. Here we show that noxious heat and irritant chemicals elicit robust escape behaviors in the planarian Schmidtea mediterranea and that the conserved ion channel TRPA1 is required for these responses. TRPA1-mutant Drosophila flies are also defective in noxious-heat responses. We find that either planarian or human TRPA1 can restore noxious-heat avoidance to TRPA1-mutant Drosophila, although neither is directly activated by heat. Instead, our data suggest that TRPA1 activation is mediated by H2O2 and reactive oxygen species, early markers of tissue damage rapidly produced as a result of heat exposure. Together, our data reveal a core function for TRPA1 in noxious heat transduction, demonstrate its conservation from planarians to humans, and imply that animal nociceptive systems may share a common ancestry, tracing back to a progenitor that lived more than 500 million years ago.
Collapse
Affiliation(s)
- Oscar M Arenas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | | | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
21
|
The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature. Int J Mol Sci 2017; 18:ijms18102028. [PMID: 28972543 PMCID: PMC5666710 DOI: 10.3390/ijms18102028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster. Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.
Collapse
|
22
|
A Bitter Taste of the Sun Makes Egg-Laying Flies Run. Genetics 2017; 205:467-469. [PMID: 28154195 DOI: 10.1534/genetics.116.196352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 11/18/2022] Open
|