1
|
Simmons C, Williams IH, Bradshaw TW, Armstrong AR. Adipocyte-Derived CCHamide-1, Eiger, Growth-Blocking Peptide 3, and Unpaired 2 Regulate Drosophila melanogaster Oogenesis. Biomolecules 2025; 15:513. [PMID: 40305230 PMCID: PMC12024527 DOI: 10.3390/biom15040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
In addition to energy storage, adipose tissue communication to other organs plays a key role in regulating organismal physiology. While the link between adipose tissue dysfunction and pathophysiology, including diabetes, chronic inflammation, and infertility, is clear, the molecular mechanisms that underlie these associations have not been fully described. We use Drosophila melanogaster as a model to better understand how adipose tissue communicates to the ovary. In this study, we utilized D. melanogaster's robust genetic toolkit to examine the role of five adipokines known to control larval growth during development, CCHamide-1, CCHamide-2, eiger, Growth-blocking peptide 3, and unpaired 2 in regulating oogenesis. We show that the adult fat body expresses these "larval" adipokines. Our data indicate that ovarian germline stem cell maintenance does not require these adipokines. However, adipocyte-derived CCHamide-1, eiger, Growth-blocking peptide 3, and unpaired 2 influence early and late germline survival as well as ovulation. Thus, this work uncovers several adipokines that mediate fat-to-ovary communication.
Collapse
Affiliation(s)
| | | | | | - Alissa Richmond Armstrong
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA; (C.S.); (I.H.W.); (T.W.B.)
| |
Collapse
|
2
|
Hayashi R, Niwa R. Large-scale omics analyses of nutrition-responsive mechanisms of female germline stem cell proliferation and maintenance in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101296. [PMID: 39522693 DOI: 10.1016/j.cois.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Female germline stem cells (fGSCs) are essential for generating mature oocytes. In general, self-renewal and differentiation of fGSCs into germ cells are regulated by niche signals from neighboring niche cells. In addition, fGSCs and their niche cells are greatly influenced by physiological and environmental factors, especially nutritional status. To clarify molecular mechanisms involved in regulating fGSC proliferation and maintenance, the fruit fly Drosophila melanogaster has served as an excellent genetic model organism. In recent years, along with sophisticated genetic tools for D. melanogaster, large-scale transcriptome, proteome, and metabolome analyses have provided new insights into D. melanogaster fGSC biology. These large-scale analyses have identified new markers and regulators for D. melanogaster fGSCs, including Netrin-A, Helical factor, eggplant, Gr43a, and genes controlling the polyol pathway, some of which are involved in nutrient-responsive control of fGSC behavior.
Collapse
Affiliation(s)
- Ryosuke Hayashi
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
3
|
Zike AB, Abel MG, Fleck SA, DeWitt ED, Weaver LN. Estrogen-Related Receptor is Required in Adult Drosophila Females for Germline Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635514. [PMID: 40034644 PMCID: PMC11875244 DOI: 10.1101/2025.01.29.635514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Stem cell self-renewal and proper tissue function rely on conserved metabolic regulators to balance energy production with inter-organ metabolic trafficking. The estrogen-related receptor (ERR) subfamily of orphan nuclear receptors are major transcriptional regulators of metabolism. In mammals, ERRs have roles in regulating mitochondrial biosynthesis, lipid metabolism, as well as stem cell maintenance. The sole Drosophila ERR ortholog promotes larval growth by establishing a metabolic state during the latter half of embryogenesis. In addition, ERR is required in adult Drosophila males to coordinate glycolytic metabolism with lipid synthesis and within the testis to regulate spermatogenesis gene expression and fertility. Despite extensive work characterizing of the role of ERR in Drosophila metabolism, whether ERR has a conserved requirement in regulating stem cell behavior has been understudied. To determine whether ERR regulates stem cell activity in Drosophila, we used the established adult female germline stem cell (GSC) lineage as a model. We found that whole-body ERR knockout in adult females using conditional heat shock-driven FLP-FRT recombination significantly reduces egg production and decreases GSC number. In addition, we found that ERR activity is required cell-autonomously in the adult female germline for maintenance of GSCs; whereas ERR regulation of GSCs is independent of its activity in adult female adipocytes. Our results highlight an ancient and conserved role for ERRs in the regulation of stem cell self-renewal.
Collapse
Affiliation(s)
- Anna B. Zike
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madison G. Abel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Sophie A. Fleck
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Emily D. DeWitt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Lesley N. Weaver
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Jiménez-Florido P, Aquilino M, Buckley D, Bella JL, Planelló R. Differential gene expression in Chorthippus parallelus (Zetterstedt, 1821) (Orthoptera: Acrididae: Gomphocerinae) induced by Wolbachia infection. INSECT SCIENCE 2024. [PMID: 39614636 DOI: 10.1111/1744-7917.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Distinct lineages of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) form well-known hybrid zones (HZs) both in the Pyrenees and the Alps mountain ranges in South Europe. These HZs represent unique experimental systems to identify "key genes" that maintain genetic boundaries between emerging species. The Iberian endemism C. p. erythropus (Cpe) and the subspecies C. p. parallelus (Cpp), widely distributed throughout the rest of Europe, overlap and form the Pyrenean HZ. Both subspecies differ morphologically, as well as in behavioral, mitochondrial, nuclear, and chromosomal traits, and in the strains of the maternally transmitted bacterial endosymbiont Wolbachia infecting them. This results in either unidirectional and bidirectional cytoplasmic incompatibility between both grasshopper subspecies, pointing out that Wolbachia clearly affects gene expression in the infected individuals. Here we explore how Wolbachia may modify the expression of some major genes involved in relevant pathways in Cpp in the Pyrenean HZ. We have analyzed, through molecular biomarkers, the physiological responses in C. parallelus individuals infected by Wolbachia, with particular attention to the energy metabolism, the immune system response, and the reproduction. qPCR was used to evaluate the expression of selected genes in the gonads of infected and uninfected adults of both sexes, since this tissue constitutes the main target of Wolbachia infection. Transcriptional analyses also showed differential sex-dependent responses in most of the analyzed biomarkers in infected and noninfected individuals. We identified for the first time new sensitive biomarkers that might be involved in the reproductive barrier induced by Wolbachia in the hybrid zone.
Collapse
Affiliation(s)
- Patricia Jiménez-Florido
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - David Buckley
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - José L Bella
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Planelló
- Grupo de Entomología Molecular, Biomarcadores y Estrés Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
5
|
Ott RK, Williams IH, Armstrong AR. Improved whole-mount immunofluorescence protocol for consistent and robust labeling of adult Drosophila melanogaster adipose tissue. Biol Open 2024; 13:bio060491. [PMID: 39041865 PMCID: PMC11317099 DOI: 10.1242/bio.060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Energy storage and endocrine functions of the Drosophila fat body make it an excellent model for elucidating mechanisms that underlie physiological and pathophysiological organismal metabolism. Combined with Drosophila's robust genetic and immunofluorescence microscopy toolkits, studies of Drosophila fat body function are ripe for cell biological analysis. Unlike the larval fat body, which is easily removed as a single, cohesive sheet of tissue, isolating intact adult fat body proves to be more challenging, thus hindering consistent immunofluorescence labeling even within a single piece of adipose tissue. Here, we describe an improved approach to handling Drosophila abdomens that ensures full access of the adult fat body to solutions generally used in immunofluorescence labeling protocols. In addition, we assess the quality of fluorescence reporter expression and antibody immunoreactivity in response to variations in fixative type, fixation incubation time, and detergent used for cellular permeabilization. Overall, we provide several recommendations for steps in a whole-mount staining protocol that results in consistent and robust immunofluorescence labeling of the adult Drosophila fat body.
Collapse
Affiliation(s)
- Rachael K. Ott
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| | - Isaiah H. Williams
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| | - Alissa R. Armstrong
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| |
Collapse
|
6
|
Bradshaw T, Simmons C, Ott RK, Armstrong AR. Ras/MAPK signaling mediates adipose tissue control of ovarian germline survival and ovulation in Drosophila melanogaster. Dev Biol 2024; 510:17-28. [PMID: 38423203 DOI: 10.1016/j.ydbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
From insects to humans, oogenesis is tightly linked to nutritional input, yet little is known about how whole organism physiology matches dietary changes with oocyte development. Considering that diet-induced adipose tissue dysfunction is associated with an increased risk for fertility problems, and other obesity-associated pathophysiologies, it is critical to decipher the cellular and molecular mechanisms linking adipose nutrient sensing to remote control of the ovary and other tissues. Our previous studies in Drosophila melanogaster have shown that amino acid sensing, via the amino acid response pathway and mTOR-mediated signaling function within adipocytes to control germline stem cell maintenance and ovulation, respectively. Additionally, we demonstrated that insulin/insulin-like growth factor signaling within adipocytes employs distinct effector axes, PI3K/Akt1-dependent and -independent, downstream of insulin receptor activity to mediate fat-to-ovary communication. Here, we report that the Ras/MAPK signaling axis functions in adipocytes to regulate early germline cyst survival and ovulation of mature oocytes but is not important for germline stem cell maintenance or the progression through vitellogenesis. Thus, these studies uncover the complexity of signaling pathway activity that mediates inter-organ communication.
Collapse
Affiliation(s)
- Tancia Bradshaw
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Chad Simmons
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Rachael K Ott
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | | |
Collapse
|
7
|
Hikawa N, Kashio S, Miura M. Mating-induced increase of kynurenine in Drosophila ovary enhances starvation resistance of progeny. J Biol Chem 2024; 300:105663. [PMID: 38246353 PMCID: PMC10882137 DOI: 10.1016/j.jbc.2024.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The maternal nutritional environment can impact progeny development, stress tolerance, and longevity. Such phenotypic variation of offspring resulting from the maternal environment is often referred to as the 'maternal effect' and is observed across taxa, including in humans. While some mechanisms behind maternal effects have been revealed, such as histone modification, many studies rely on drastic genetic or nutritional manipulation in describing these mechanisms. Here we aimed to reveal how the maternal environment is regulated under physiological conditions to affect the progeny. Specifically, we detailed metabolic regulation in oocytes in response to mating using Drosophila melanogaster fruit flies. Using liquid chromatography-mass spectrometry, we found that upon mating, the ovary metabolites shifted, predominantly toward increasing amino acids and the tryptophan/kynurenine (Kyn) pathway. This mating-induced increase in ovary Kyn was driven by increased Kyn production in the fat body, a functional counterpart of the mammalian liver and white adipose tissue and the source of Kyn storage for the ovary after mating. Furthermore, we show that maternal Kyn repression decreased the starvation resistance of progeny and that administering exogenous Kyn to the maternal generation enhanced the starvation resistance of female progeny. Taken together, these findings point to a previously unidentified role of fat body Kyn distribution during reproduction on progeny survival.
Collapse
Affiliation(s)
- Naoto Hikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Fleck SA, Biswas P, DeWitt ED, Knuteson RL, Eisman RC, Nemkov T, D'Alessandro A, Tennessen JM, Rideout E, Weaver LN. Auxin exposure disrupts feeding behavior and fatty acid metabolism in adult Drosophila. eLife 2024; 12:RP91953. [PMID: 38240746 PMCID: PMC10945601 DOI: 10.7554/elife.91953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
The ease of genetic manipulation in Drosophila melanogaster using the Gal4/UAS system has been beneficial in addressing key biological questions. Current modifications of this methodology to temporally induce transgene expression require temperature changes or exposure to exogenous compounds, both of which have been shown to have detrimental effects on physiological processes. The recently described auxin-inducible gene expression system (AGES) utilizes the plant hormone auxin to induce transgene expression and is proposed to be the least toxic compound for genetic manipulation, with no obvious effects on Drosophila development and survival in one wild-type strain. Here, we show that auxin delays larval development in another widely used fly strain, and that short- and long-term auxin exposure in adult Drosophila induces observable changes in physiology and feeding behavior. We further reveal a dosage response to adult survival upon auxin exposure, and that the recommended auxin concentration for AGES alters feeding activity. Furthermore, auxin-fed male and female flies exhibit a significant decrease in triglyceride levels and display altered transcription of fatty acid metabolism genes. Although fatty acid metabolism is disrupted, auxin does not significantly impact adult female fecundity or progeny survival, suggesting AGES may be an ideal methodology for studying limited biological processes. These results emphasize that experiments using temporal binary systems must be carefully designed and controlled to avoid confounding effects and misinterpretation of results.
Collapse
Affiliation(s)
- Sophie A Fleck
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Emily D DeWitt
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | | | - Robert C Eisman
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of MedicineAuroraUnited States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of MedicineAuroraUnited States
| | | | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Lesley N Weaver
- Department of Biology, Indiana UniversityBloomingtonUnited States
| |
Collapse
|
9
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
10
|
Fleck SA, Biswas P, DeWitt ED, Knuteson RL, Eisman RC, Nemkov T, D’Alessandro A, Tennessen JM, Rideout EJ, Weaver LN. Auxin Exposure Disrupts Feeding Behavior and Fatty Acid Metabolism in Adult Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553385. [PMID: 37645868 PMCID: PMC10462055 DOI: 10.1101/2023.08.15.553385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The ease of genetic manipulation in Drosophila melanogaster using the Gal4/UAS system has been beneficial in addressing key biological questions. Current modifications of this methodology to temporally induce transgene expression require temperature changes or exposure to exogenous compounds, both of which have been shown to have detrimental effects on physiological processes. The recently described auxin-inducible gene expression system (AGES) utilizes the plant hormone auxin to induce transgene expression and is proposed to be the least toxic compound for genetic manipulation, with no obvious effects on Drosophila development and survival in one wild-type strain. Here we show that auxin delays larval development in another widely-used fly strain, and that short- and long-term auxin exposure in adult Drosophila induces observable changes in physiology and feeding behavior. We further reveal a dosage response to adult survival upon auxin exposure, and that the recommended auxin concentration for AGES alters feeding activity. Furthermore, auxin fed male and female flies exhibit a significant decrease in triglyceride levels and display altered transcription of fatty acid metabolism genes. Although fatty acid metabolism is disrupted, auxin does not significantly impact adult female fecundity or progeny survival, suggesting AGES may be an ideal methodology for studying limited biological processes. These results emphasize that experiments using temporal binary systems must be carefully designed and controlled to avoid confounding effects and misinterpretation of results.
Collapse
Affiliation(s)
- Sophie A. Fleck
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Puja Biswas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Emily D. DeWitt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Robert C. Eisman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | | | - Elizabeth J. Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lesley N. Weaver
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Guo Y, Liu F, Guo Y, Qu Y, Zhang Z, Yao J, Xu J, Li J. Untargeted Lipidomics Analysis Unravels the Different Metabolites in the Fat Body of Mated Bumblebee ( Bombus terrestris) Queens. Int J Mol Sci 2023; 24:15408. [PMID: 37895088 PMCID: PMC10607666 DOI: 10.3390/ijms242015408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The fat body has important functions in energy, fertility, and immunity. In female insects, mating stimulates physiological, behavioral, and gene expression changes. However, it remains unclear whether the metabolites in the fat body are affected after the bumblebee (Bombus terrestris) queen mates. Here, the ultrastructure and lipid metabolites in fat body of mated queens were compared with those of virgins. The fat body weight of mated bumblebee queens was significantly increased, and the adipocytes were filled with lipid droplets. Using LC-MS/MS-based untargeted lipidomics, 949 and 748 differential metabolites were identified in the fat body of virgin and mated bumblebee queens, respectively, in positive and negative ion modes. Most lipid metabolites were decreased, especially some biomembrane components. In order to explore the relationship between the structures of lipid droplets and metabolite accumulation, transmission electron microscopy and fluorescence microscopy were used to observe the fat body ultrastructure. The size/area of lipid droplets was larger, and the fusion of lipid droplets was increased in the mated queen's fat body. These enlarged lipid droplets may store more energy and nutrients. The observed differences in lipid metabolites in the fat body of queens contribute to understanding the regulatory network of bumblebees post mating.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jilian Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (F.L.); (Y.G.); (Y.Q.); (Z.Z.); (J.Y.); (J.X.)
| |
Collapse
|
12
|
Nunes RD, Drummond-Barbosa D. A high-sugar diet, but not obesity, reduces female fertility in Drosophila melanogaster. Development 2023; 150:dev201769. [PMID: 37795747 PMCID: PMC10617608 DOI: 10.1242/dev.201769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Obesity is linked to reduced fertility in various species, from Drosophila to humans. Considering that obesity is often induced by changes in diet or eating behavior, it remains unclear whether obesity, diet, or both reduce fertility. Here, we show that Drosophila females on a high-sugar diet become rapidly obese and less fertile as a result of increased death of early germline cysts and vitellogenic egg chambers (or follicles). They also have high glycogen, glucose and trehalose levels and develop insulin resistance in their fat bodies (but not ovaries). By contrast, females with adipocyte-specific knockdown of the anti-obesity genes brummer or adipose are obese but have normal fertility. Remarkably, females on a high-sugar diet supplemented with a separate source of water have mostly normal fertility and glucose levels, despite persistent obesity, high glycogen and trehalose levels, and fat body insulin resistance. These findings demonstrate that a high-sugar diet affects specific processes in oogenesis independently of insulin resistance, that high glucose levels correlate with reduced fertility on a high-sugar diet, and that obesity alone does not impair fertility.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Daniela Drummond-Barbosa
- Department of Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| |
Collapse
|
13
|
Zappia M, Kwon YJ, Westacott A, Liseth I, Lee H, Islam ABMMK, Kim J, Frolov M. E2F regulation of the Phosphoglycerate kinase gene is functionally important in Drosophila development. Proc Natl Acad Sci U S A 2023; 120:e2220770120. [PMID: 37011211 PMCID: PMC10104548 DOI: 10.1073/pnas.2220770120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
The canonical role of the transcription factor E2F is to control the expression of cell cycle genes by binding to the E2F sites in their promoters. However, the list of putative E2F target genes is extensive and includes many metabolic genes, yet the significance of E2F in controlling the expression of these genes remains largely unknown. Here, we used the CRISPR/Cas9 technology to introduce point mutations in the E2F sites upstream of five endogenous metabolic genes in Drosophila melanogaster. We found that the impact of these mutations on both the recruitment of E2F and the expression of the target genes varied, with the glycolytic gene, Phosphoglycerate kinase (Pgk), being mostly affected. The loss of E2F regulation on the Pgk gene led to a decrease in glycolytic flux, tricarboxylic acid cycle intermediates levels, adenosine triphosphate (ATP) content, and an abnormal mitochondrial morphology. Remarkably, chromatin accessibility was significantly reduced at multiple genomic regions in PgkΔE2F mutants. These regions contained hundreds of genes, including metabolic genes that were downregulated in PgkΔE2F mutants. Moreover, PgkΔE2F animals had shortened life span and exhibited defects in high-energy consuming organs, such as ovaries and muscles. Collectively, our results illustrate how the pleiotropic effects on metabolism, gene expression, and development in the PgkΔE2F animals underscore the importance of E2F regulation on a single E2F target, Pgk.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Yong-Jae Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Anton Westacott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Isabel Liseth
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Hyun Min Lee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Abul B. M. M. K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka1000, Bangladesh
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
14
|
Hoshino R, Sano H, Yoshinari Y, Nishimura T, Niwa R. Circulating fructose regulates a germline stem cell increase via gustatory receptor-mediated gut hormone secretion in mated Drosophila. SCIENCE ADVANCES 2023; 9:eadd5551. [PMID: 36827377 PMCID: PMC9956130 DOI: 10.1126/sciadv.add5551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Oogenesis is influenced by multiple environmental factors. In the fruit fly, Drosophila melanogaster, nutrition and mating have large impacts on an increase in female germline stem cells (GSCs). However, it is unclear whether these two factors affect this GSC increase interdependently. Here, we report that dietary sugars are crucial for the GSC increase after mating. Dietary glucose is required for mating-induced release of neuropeptide F (NPF) from enteroendocrine cells (EECs), followed by NPF-mediated enhancement of GSC niche signaling. Unexpectedly, dietary glucose does not directly act on NPF-positive EECs. Rather, it contributes to elevation of hemolymph fructose generated through the polyol pathway. Elevated fructose stimulates the fructose-specific gustatory receptor, Gr43a, in NPF-positive EECs, leading to NPF secretion. This study demonstrates that circulating fructose, derived from dietary sugars, is a prerequisite for the GSC increase that leads to enhancement of egg production after mating.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Yuto Yoshinari
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Nishimura
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
15
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
16
|
Weaver LN. Analysis of Physiological Control of Adult Drosophila Oogenesis by Interorgan Communication. Methods Mol Biol 2023; 2626:89-107. [PMID: 36715901 DOI: 10.1007/978-1-0716-2970-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tissue homeostasis is dependent on the interaction between various organs within an organism in response to physiological inputs. The adult Drosophila melanogaster ovary is sensitive to environmental challenges and has recently been shown to be regulated by signaling from peripheral organs. To dissect the intricate coordination between overall organism health and reproduction, it is necessary to meticulously characterize both experimental tools and oogenesis processes. This chapter provides a guide for the careful analysis of interorgan communication in regulating oogenesis in adult Drosophila melanogaster.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
17
|
Simmons C, Bradshaw TW, Armstrong AR. Methods to Analyze Nutritional and Inter-Organ Control of Drosophila Ovarian Germline Stem Cells. Methods Mol Biol 2023; 2677:81-97. [PMID: 37464236 DOI: 10.1007/978-1-0716-3259-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Physiological status, particularly dietary input, has major impacts on the Drosophila melanogaster ovarian germline stem cell lineage. Moreover, several studies have shed light on the role that inter-organ communication plays in coordinating whole-organism responses to changes in physiology. For example, nutrient-sensing signaling pathways function within the fat body to regulate germline stem cells and their progeny in the ovary. Together with its incredible genetic and cell biological toolkits, Drosophila serves as an amenable model organism to use for uncovering molecular mechanisms that underlie physiological control of adult stem cells. In this methods chapter, we describe a general dietary manipulation paradigm, genetic manipulation of adult adipocytes, and whole-mount ovary immunofluorescence to investigate physiological control of germline stem cells.
Collapse
Affiliation(s)
- Chad Simmons
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Tancia W Bradshaw
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Alissa R Armstrong
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
18
|
Sexual Dimorphism in Metabolic Responses to Western Diet in Drosophila melanogaster. Biomolecules 2021; 12:biom12010033. [PMID: 35053181 PMCID: PMC8774106 DOI: 10.3390/biom12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a chronic disease affecting millions of people worldwide. The fruit fly (Drosophila melanogaster) is an interesting research model to study metabolic and transcriptomic responses to obesogenic diets. However, the sex-specific differences in these responses are still understudied and perhaps underestimated. In this study, we exposed adult male and female Dahomey fruit flies to a standard diet supplemented with sugar, fat, or a combination of both. The exposure to a diet supplemented with 10% sugar and 10% fat efficiently induced an increase in the lipid content in flies, a hallmark for obesity. This increase in lipid content was more prominent in males, while females displayed significant changes in glycogen content. A strong effect of the diets on the ovarian size and number of ma-ture oocytes was also present in females exposed to diets supplemented with fat and a combina-tion of fat and sugar. In both males and females, fat body morphology changed and was associ-ated with an increase in lipid content of fat cells in response to the diets. The expression of me-tabolism-related genes also displayed a strong sexually dimorphic response under normal condi-tions and in response to sugar and/or fat-supplemented diets. Here, we show that the exposure of adult fruit flies to an obesogenic diet containing both sugar and fat allowed studying sexual dimorphism in metabolism and the expression of genes regulating metabolism.
Collapse
|
19
|
Hoshino R, Niwa R. Regulation of Mating-Induced Increase in Female Germline Stem Cells in the Fruit Fly Drosophila melanogaster. Front Physiol 2021; 12:785435. [PMID: 34950056 PMCID: PMC8689587 DOI: 10.3389/fphys.2021.785435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023] Open
Abstract
In many insect species, mating stimuli can lead to changes in various behavioral and physiological responses, including feeding, mating refusal, egg-laying behavior, energy demand, and organ remodeling, which are collectively known as the post-mating response. Recently, an increase in germline stem cells (GSCs) has been identified as a new post-mating response in both males and females of the fruit fly, Drosophila melanogaster. We have extensively studied mating-induced increase in female GSCs of D. melanogaster at the molecular, cellular, and systemic levels. After mating, the male seminal fluid peptide [e.g. sex peptide (SP)] is transferred to the female uterus. This is followed by binding to the sex peptide receptor (SPR), which evokes post-mating responses, including increase in number of female GSCs. Downstream of SP-SPR signaling, the following three hormones and neurotransmitters have been found to act on female GSC niche cells to regulate mating-induced increase in female GSCs: (1) neuropeptide F, a peptide hormone produced in enteroendocrine cells; (2) octopamine, a monoaminergic neurotransmitter synthesized in ovary-projecting neurons; and (3) ecdysone, a steroid hormone produced in ovarian follicular cells. These humoral factors are secreted from each organ and are received by ovarian somatic cells and regulate the strength of niche signaling in female GSCs. This review provides an overview of the latest findings on the inter-organ relationship to regulate mating-induced female GSC increase in D. melanogaster as a model. We also discuss the remaining issues that should be addressed in the future.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Meschi E, Delanoue R. Adipokine and fat body in flies: Connecting organs. Mol Cell Endocrinol 2021; 533:111339. [PMID: 34082046 DOI: 10.1016/j.mce.2021.111339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Under conditions of nutritional and environmental stress, organismal homeostasis is preserved through inter-communication between multiple organs. To do so, higher organisms have developed a system of interorgan communication through which one tissue can affect the metabolism, activity or fate of remote organs, tissues or cells. In this review, we discuss the latest findings emphasizing Drosophila melanogaster as a powerful model organism to study these interactions and may constitute one of the best documented examples depicting the long-distance communication between organs. In flies, the adipose tissue appears to be one of the main organizing centers for the regulation of insect development and behavior: it senses nutritional and hormonal signals and in turn, orchestrates the release of appropriate adipokines. We discuss the nature and the role of recently uncovered adipokines, their regulations by external cues, their secretory routes and their modes of action to adjust developmental growth and timing accordingly. These findings have the potential for identification of candidate factors and signaling pathways that mediate conserved interorgan crosstalk.
Collapse
Affiliation(s)
- Eleonora Meschi
- Centre for Neural Circuit and Behaviour, University of Oxford, Mansfield road, OX3 1SR, Oxford, UK
| | - Renald Delanoue
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose Parc Valrose, 06108, Nice, France.
| |
Collapse
|
22
|
Almeida-Oliveira F, Tuthill BF, Gondim KC, Majerowicz D, Musselman LP. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103569. [PMID: 33753225 DOI: 10.1016/j.ibmb.2021.103569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.
Collapse
Affiliation(s)
- Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Department of Biological Sciences, Binghamton University, USA
| | - Bryon F Tuthill
- Department of Biological Sciences, Binghamton University, USA
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
23
|
Receptor-mediated yolk uptake is required for oskar mRNA localization and cortical anchorage of germ plasm components in the Drosophila oocyte. PLoS Biol 2021; 19:e3001183. [PMID: 33891588 PMCID: PMC8064586 DOI: 10.1371/journal.pbio.3001183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila germ plasm is responsible for germ cell formation. Its assembly begins with localization of oskar mRNA to the posterior pole of the oocyte. The oskar translation produces 2 isoforms with distinct functions: short Oskar recruits germ plasm components, whereas long Oskar remodels actin to anchor the components to the cortex. The mechanism by which long Oskar anchors them remains elusive. Here, we report that Yolkless, which facilitates uptake of nutrient yolk proteins into the oocyte, is a key cofactor for long Oskar. Loss of Yolkless or depletion of yolk proteins disrupts the microtubule alignment and oskar mRNA localization at the posterior pole of the oocyte, whereas microtubule-dependent localization of bicoid mRNA to the anterior and gurken mRNA to the anterior-dorsal corner remains intact. Furthermore, these mutant oocytes do not properly respond to long Oskar, causing defects in the actin remodeling and germ plasm anchoring. Thus, the yolk uptake is not merely the process for nutrient incorporation, but also crucial for oskar mRNA localization and cortical anchorage of germ plasm components in the oocyte. A study of the fruit fly Drosophila reveals that receptor-mediated yolk uptake is not merely a nutrient storage process for future embryogenesis, but is also required for localization of Oskar mRNA and cortical anchorage of germ plasm components in the oocyte during oogenesis.
Collapse
|
24
|
Weaver LN, Drummond-Barbosa D. Hormone receptor 4 is required in muscles and distinct ovarian cell types to regulate specific steps of Drosophila oogenesis. Development 2021; 148:dev.198663. [PMID: 33547134 DOI: 10.1242/dev.198663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
The conserved nuclear receptor superfamily has crucial roles in many processes, including reproduction. Nuclear receptors with known roles in oogenesis have been studied mostly in the context of their ovary-intrinsic requirement. Recent studies in Drosophila, however, have begun to reveal new roles of nuclear receptor signaling in peripheral tissues in controlling reproduction. Here, we identified Hormone receptor 4 (Hr4) as an oogenesis regulator required in the ovary and muscles. Global Hr4 knockdown leads to increased germline stem cell (GSC) loss, reduced GSC proliferation, early germline cyst death, slowed follicle growth and vitellogenic follicle degeneration. Tissue-specific knockdown experiments uncovered ovary-intrinsic and peripheral tissue requirements for Hr4 In the ovary, Hr4 is required in the niche for GSC proliferation and in the germline for GSC maintenance. Hr4 functions in muscles to promote GSC maintenance and follicle growth. The specific tissues that require Hr4 for survival of early germline cysts and vitellogenic follicles remain unidentified. These results add to the few examples of muscles controlling gametogenesis and expand our understanding of the complexity of nuclear receptor regulation of various aspects of oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
26
|
RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS One 2020; 15:e0243756. [PMID: 33307547 PMCID: PMC7732368 DOI: 10.1371/journal.pone.0243756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
Reproduction is highly sensitive to changes in physiology and the external environment. Neuropeptides are evolutionarily conserved signaling molecules that regulate multiple physiological processes. However, the potential reproductive roles of many neuropeptide signaling pathways remain underexplored. Here, we describe the results of RNAi-based screens in Drosophila melanogaster to identify neuropeptides/neuropeptide receptors with potential roles in oogenesis. The screen read-outs were either the number of eggs laid per female per day over time or fluorescence microscopy analysis of dissected ovaries. We found that the orphan neuropeptide receptor encoded by moody (homologous to mammalian melatonin receptors) is likely required in somatic cells for normal egg production and proper germline stem cell maintenance. However, the egg laying screens had low signal-to-noise ratio and did not lead to the identification of additional candidates. Thus, although egg count assays might be useful for large-scale screens to identify oogenesis regulators that result in dramatic changes in oogenesis, more labor-intensive microscopy-based screen are better applicable for identifying new physiological regulators of oogenesis with more subtle phenotypes.
Collapse
|
27
|
Weaver LN, Drummond-Barbosa D. The Nuclear Receptor Seven Up Regulates Genes Involved in Immunity and Xenobiotic Response in the Adult Drosophila Female Fat Body. G3 (BETHESDA, MD.) 2020; 10:4625-4635. [PMID: 33087412 PMCID: PMC7718730 DOI: 10.1534/g3.120.401745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023]
Abstract
The physiology of organisms depends on inter-organ communication in response to changes in the environment. Nuclear receptors are broadly expressed transcription factors that respond to circulating molecules to control many biological processes, including immunity, detoxification, and reproduction. Although the tissue-intrinsic roles of nuclear receptors in reproduction have been extensively studied, there is increasing evidence that nuclear receptor signaling in peripheral tissues can also influence oogenesis. We previously showed that the Drosophila nuclear receptor Seven up (Svp) is required in the adult fat body to regulate distinct steps of oogenesis; however, the relevant downstream targets of Svp remain unknown. Here, we took an RNA sequencing approach to identify candidate Svp targets specifically in the adult female fat body that might mediate this response. svp knockdown in the adult female fat body significantly downregulated immune genes involved in the first line of pathogen defense, suggesting a role for Svp in stimulating early immunity. In addition, we found that Svp transcriptionally regulates genes involved in each step of the xenobiotic detoxification response. Based on these findings, we propose a testable model in which Svp functions in the adult female fat body to stimulate early defense against pathogens and facilitate detoxification as part of its mechanisms to promote oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
28
|
Abstract
Precise genetic manipulation of specific cell types or tissues to pinpoint gene function requirement is a critical step in studies aimed at unraveling the intricacies of organismal physiology. Drosophila researchers heavily rely on the UAS/Gal4/Gal80 system for tissue-specific manipulations; however, it is often unclear whether the reported Gal4 expression patterns are indeed specific to the tissue of interest such that experimental results are not confounded by secondary sites of Gal4 expression. Here, we surveyed the expression patterns of commonly used Gal4 drivers in adult Drosophila female tissues under optimal conditions and found that multiple drivers have unreported secondary sites of expression beyond their published cell type/tissue expression pattern. These results underscore the importance of thoroughly characterizing Gal4 tools as part of a rigorous experimental design that avoids potential misinterpretation of results as we strive for understanding how the function of a specific gene/pathway in one tissue contributes to whole-body physiology.
Collapse
|
29
|
Yoshinari Y, Ameku T, Kondo S, Tanimoto H, Kuraishi T, Shimada-Niwa Y, Niwa R. Neuronal octopamine signaling regulates mating-induced germline stem cell increase in female Drosophila melanogaster. eLife 2020; 9:57101. [PMID: 33077027 PMCID: PMC7591258 DOI: 10.7554/elife.57101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells fuel the development and maintenance of tissues. Many studies have addressed how local signals from neighboring niche cells regulate stem cell identity and their proliferative potential. However, the regulation of stem cells by tissue-extrinsic signals in response to environmental cues remains poorly understood. Here we report that efferent octopaminergic neurons projecting to the ovary are essential for germline stem cell (GSC) increase in response to mating in female Drosophila. The neuronal activity of the octopaminergic neurons is required for mating-induced GSC increase as they relay the mating signal from sex peptide receptor-positive cholinergic neurons. Octopamine and its receptor Oamb are also required for mating-induced GSC increase via intracellular Ca2+ signaling. Moreover, we identified Matrix metalloproteinase-2 as a downstream component of the octopamine-Ca2+ signaling to induce GSC increase. Our study provides a mechanism describing how neuronal system couples stem cell behavior to environmental cues through stem cell niche signaling.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
30
|
Drummond-Barbosa D, Tennessen JM. Reclaiming Warburg: using developmental biology to gain insight into human metabolic diseases. Development 2020; 147:147/11/dev189340. [PMID: 32540896 DOI: 10.1242/dev.189340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developmental biologists have frequently pushed the frontiers of modern biomedical research. From the discovery and characterization of novel signal transduction pathways to exploring the molecular underpinnings of genetic inheritance, transcription, the cell cycle, cell death and stem cell biology, studies of metazoan development have historically opened new fields of study and consistently revealed previously unforeseen avenues of clinical therapies. From this perspective, it is not surprising that our community is now an integral part of the current renaissance in metabolic research. Amidst the global rise in metabolic syndrome, the discovery of novel signaling roles for metabolites, and the increasing links between altered metabolism and many human diseases, we as developmental biologists can contribute skills and expertise that are uniquely suited for investigating the mechanisms underpinning human metabolic health and disease. Here, we summarize the opportunities and challenges that our community faces, and discuss how developmental biologists can make unique and valuable contributions to the field of metabolism and physiology.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
31
|
Zhang H, Cai Y. Signal transduction pathways regulating Drosophila ovarian germline stem cells. CURRENT OPINION IN INSECT SCIENCE 2020; 37:1-7. [PMID: 31726320 DOI: 10.1016/j.cois.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Drosophila female germline stem cells (GSCs) serve as one of the best understood stem cell types. GSCs reside in a special microenvironment, the stem cell niche, and their activity is tightly regulated by niche-derived signals. In addition to the stemness-promoting signaling molecules, the niche also generates other signaling molecules that regulate GSC differentiation. Recent studies are beginning to appreciate the intricate interactions among these signaling molecules in the niche and their effects on GSC behaviour. This review summarizes recent advances to demonstrate how the niche functions as a signaling hub to integrate these niche-derived local signals as well as other organ-produced systemic signals to control GSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore.
| |
Collapse
|
32
|
Lin KY, Hsu HJ. Regulation of adult female germline stem cells by nutrient-responsive signaling. CURRENT OPINION IN INSECT SCIENCE 2020; 37:16-22. [PMID: 32070932 DOI: 10.1016/j.cois.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Insect oogenesis is greatly affected by nutrient availability. When nutrients are abundant, oocytes are rapidly generated, but the process is slowed to conserve energy under nutrient-deficient conditions. To properly allocate limited resources toward oogenesis, systemic factors coordinate the behavioral response of ovarian germline stem cells (GSCs) to nutritional inputs by acting on the GSC itself, GSC supporting cells (the niche), or the adipose tissue surrounding the ovary. In this review, we describe current knowledge of the Drosophila ovarian GSC-niche-adipocyte system and major nutrient sensing pathways (insulin/IGF signaling, TOR signaling, and GCN2-dependent amino acid sensing) that intrinsically or extrinsically regulate GSC responses to nutrient signals.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
33
|
Weaver LN, Drummond-Barbosa D. The nuclear receptor seven up functions in adipocytes and oenocytes to control distinct steps of Drosophila oogenesis. Dev Biol 2019; 456:179-189. [PMID: 31470019 PMCID: PMC6884690 DOI: 10.1016/j.ydbio.2019.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 02/09/2023]
Abstract
Reproduction is intimately linked to the physiology of an organism. Nuclear receptors are widely expressed transcription factors that mediate the effects of many circulating molecules on physiology and reproduction. While multiple studies have focused on the roles of nuclear receptors intrinsically in the ovary, it remains largely unknown how the actions of nuclear receptors in peripheral tissues influence oogenesis. We identified the nuclear receptor encoded by svp as a novel regulator of oogenesis in adult Drosophila. Global somatic knockdown of svp reduces egg production by increasing GSC loss, death of early germline cysts, and degeneration of vitellogenic follicles. Tissue-specific knockdown experiments revealed that svp remotely controls these different steps of oogenesis through separate mechanisms involving distinct tissues. Specifically, adipocyte-specific svp knockdown impairs GSC maintenance and early germline cyst survival, whereas oenocyte-specific svp knockdown increases the death of vitellogenic follicles without any effects on GSCs or early cysts. These results illustrate that nuclear receptors can control reproduction through a variety of mechanisms involving peripheral tissues.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
34
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
35
|
Baião GC, Schneider DI, Miller WJ, Klasson L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genomics 2019; 20:465. [PMID: 31174466 PMCID: PMC6555960 DOI: 10.1186/s12864-019-5816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D. paulistorum and investigate the hypothesis that the symbiont may play a role in host speciation. For that goal, we analyze samples of heads and abdomens of both sexes of the Amazonian, Centro American and Orinocan semispecies of D. paulistorum. Results We identify between 175 and 1192 differentially expressed genes associated with a variety of biological processes that respond either globally or according to tissue, sex or condition in the three semispecies. Some of the functions associated with differentially expressed genes are known to be affected by Wolbachia in other species, such as metabolism and immunity, whereas others represent putative novel phenotypes involving muscular functions, pheromone signaling, and visual perception. Conclusions Our results show that Wolbachia affect a large number of biological functions in D. paulistorum, particularly when present in high titer. We suggest that the significant metabolic impact of the infection on the host may cause several of the other putative and observed phenotypes. We also speculate that the observed differential expression of genes associated with chemical communication and reproduction may be associated with the emergence of pre- and postmating barriers between semispecies, which supports a role for Wolbachia in the speciation of D. paulistorum. Electronic supplementary material The online version of this article (10.1186/s12864-019-5816-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden
| | - Daniela I Schneider
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.,Present address: Department of Epidemiology of Microbial Diseases, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Wolfgang J Miller
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Lisa Klasson
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
36
|
Yoshinari Y, Kurogi Y, Ameku T, Niwa R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2019; 31:14-19. [PMID: 31109668 DOI: 10.1016/j.cois.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
Germline stem cells (GSCs) are critical for the generation of sperms and eggs in most animals including the fruit fly Drosophila melanogaster. It is well known that self-renewal and differentiation of female D. melanogaster GSCs are regulated by local niche signals. However, little is known about whether and how the GSC number is regulated by paracrine signals. In the last decade, however, multiple humoral factors, including insulin and ecdysteroids, have been recognized as key regulators of female D. melanogaster GSCs. This review paper summarizes the role of humoral factors in female D. melanogaster GSC proliferation and maintenance in response to internal and external conditions, such as nutrients, mating stimuli, and aging.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshitomo Kurogi
- College of Biological Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
37
|
Ameku T, Yoshinari Y, Texada MJ, Kondo S, Amezawa K, Yoshizaki G, Shimada-Niwa Y, Niwa R. Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol 2018; 16:e2005004. [PMID: 30248087 PMCID: PMC6152996 DOI: 10.1371/journal.pbio.2005004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 08/20/2018] [Indexed: 01/21/2023] Open
Abstract
Stem cell maintenance is established by neighboring niche cells that promote stem cell self-renewal. However, it is poorly understood how stem cell activity is regulated by systemic, tissue-extrinsic signals in response to environmental cues and changes in physiological status. Here, we show that neuropeptide F (NPF) signaling plays an important role in the pathway regulating mating-induced germline stem cell (GSC) proliferation in the fruit fly Drosophila melanogaster. NPF expressed in enteroendocrine cells (EECs) of the midgut is released in response to the seminal-fluid protein sex peptide (SP) upon mating. This midgut-derived NPF controls mating-induced GSC proliferation via ovarian NPF receptor (NPFR) activity, which modulates bone morphogenetic protein (BMP) signaling levels in GSCs. Our study provides a molecular mechanism that describes how a gut-derived systemic factor couples stem cell behavior to physiological status, such as mating, through interorgan communication. Communication between different organs is essential to respond quickly to environmental cues or changes in the physiological status of an organism. Recent studies have shown the existence of humoral factors or hormones, which are transported by the circulatory system to different organs and achieve coordination between them. Here, we have analyzed the communication mechanism between organs that regulates proliferation of germline stem cells (GSCs) in the ovary of the fruit fly Drosophila melanogaster. We show that a peptide hormone called neuropeptide F (NPF) is a key player in this process. This peptide is produced in both the brain and the midgut, and, remarkably, we find that only NPF released from the midgut is crucial for controlling post-mating GSC proliferation. Our data suggest that mating stimulates the release of NPF from the endocrine cells of the midgut stimulated by the presence of a seminal peptide. Midgut-derived NPF is then transduced through an NPF-specific G-protein–coupled receptor expressed in the ovary, and this triggers GSC proliferation. Our study identifies an essential interaction between the digestive system and the ovary that regulates the size of stem cell populations in flies depending on mating.
Collapse
Affiliation(s)
- Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
| | - Kotaro Amezawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
38
|
Weaver LN, Drummond-Barbosa D. Maintenance of Proper Germline Stem Cell Number Requires Adipocyte Collagen in Adult Drosophila Females. Genetics 2018; 209:1155-1166. [PMID: 29884747 PMCID: PMC6063239 DOI: 10.1534/genetics.118.301137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches and are regulated by a variety of physiological inputs. Adipocytes influence whole-body physiology and stem cell lineages; however, the molecular mechanisms linking adipocytes to stem cells are poorly understood. Here, we report that collagen IV produced in adipocytes is transported to the ovary to maintain proper germline stem cell (GSC) number in adult Drosophila females. Adipocyte-derived collagen IV acts through β-integrin signaling to maintain normal levels of E-cadherin at the niche, thereby ensuring proper adhesion to GSCs. These findings demonstrate that extracellular matrix components produced in adipocytes can be transported to and incorporated into an established adult tissue to influence stem cell number.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
39
|
Galimberti MG, Guida S, Pellacani G, Bencini PL. Hyaluronic acid filler for skin rejuvenation: The role of diet on outcomes. A pilot study. Dermatol Ther 2018; 31:e12646. [DOI: 10.1111/dth.12646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Stefania Guida
- I.C.L.I.D.; Milan Italy
- Dermatology Unit; University of Modena and Reggio Emilia; Modena Italy
| | | | | |
Collapse
|
40
|
Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 2018; 440:31-39. [PMID: 29729259 DOI: 10.1016/j.ydbio.2018.04.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Tissue-specific stem cells are tied to the nutritional and physiological environment of adult organisms. Adipocytes have key endocrine and nutrient-sensing roles and have emerged as major players in relaying dietary information to regulate other organs. For example, previous studies in Drosophila melanogaster revealed that amino acid sensing as well as diet-dependent metabolic pathways function in adipocytes to influence the maintenance of female germline stem cells (GSCs). How nutrient-sensing pathways acting within adipocytes influence adult stem cell lineages, however, is just beginning to be elucidated. Here, we report that insulin/insulin-like growth factor signaling in adipocytes promotes GSC maintenance, early germline cyst survival, and vitellogenesis. Further, adipocytes use distinct mechanisms downstream of insulin receptor activation to control these aspects of oogenesis, all of which are independent of FOXO. We find that GSC maintenance is modulated by Akt1 through GSK-3β, early germline cyst survival is downstream of adipocyte Akt1 but independent of GSK-3β, and vitellogenesis is regulated through an Akt1-independent pathway in adipocytes. These results indicate that, in addition to employing different types of nutrient sensing, adipocytes can use distinct axes of a single nutrient-sensing pathway to regulate multiple stages of the GSC lineage in the ovary.
Collapse
|
41
|
.Mirth CK, Piper MDW. Matching complex dietary landscapes with the signalling pathways that regulate life history traits. Curr Opin Genet Dev 2017; 47:9-16. [DOI: 10.1016/j.gde.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
|