1
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J Fungi (Basel) 2024; 10:132. [PMID: 38392804 PMCID: PMC10890087 DOI: 10.3390/jof10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.
Collapse
Affiliation(s)
| | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; (M.D.); (X.M.)
| |
Collapse
|
3
|
Zimbres FM, Merino EF, Butschek GJ, Butler JH, Ducongé F, Cassera MB. Aptamer-Based Imaging of Polyisoprenoids in the Malaria Parasite. Molecules 2023; 29:178. [PMID: 38202761 PMCID: PMC10780415 DOI: 10.3390/molecules29010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Dolichols are isoprenoid end-products of the mevalonate and 2C-methyl-D-erythritol-4-phosphate pathways. The synthesis of dolichols is initiated with the addition of several molecules of isopentenyl diphosphate to farnesyl diphosphate. This reaction is catalyzed by a cis-prenyltransferase and leads to the formation of polyprenyl diphosphate. Subsequent steps involve the dephosphorylation and reduction of the α-isoprene unit by a polyprenol reductase, resulting in the generation of dolichol. The size of the dolichol varies, depending on the number of isoprene units incorporated. In eukaryotes, dolichols are synthesized as a mixture of four or more different lengths. Their biosynthesis is predicted to occur in the endoplasmic reticulum, where dolichols play an essential role in protein glycosylation. In this study, we have developed a selection of aptamers targeting dolichols and enhanced their specificity by incorporating fatty acids for negative selection. One aptamer showed high enrichment and specificity for linear polyisoprenoids containing at least one oxygen atom, such as an alcohol or aldehyde, in the α-isoprene unit. The selected aptamer proved to be a valuable tool for the subcellular localization of polyisoprenoids in the malaria parasite. To the best of our knowledge, this is the first time that polyisoprenoids have been localized within a cell using aptamer-based imaging techniques.
Collapse
Affiliation(s)
- Flavia M. Zimbres
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, USA
| | - Emilio F. Merino
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, USA
| | - Grant J. Butschek
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, USA
| | - Joshua H. Butler
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, USA
| | - Frédéric Ducongé
- French Atomic Energy Commission (CEA), Fundamental Research Division (DRF), Institute of Biology François Jacob (Jacob), Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, CNRS CEA UMR 9199, 92265 Fontenay-aux-Roses, France
- Paris-Saclay University, 92265 Fontenay-aux-Roses, France
| | - Maria B. Cassera
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
5
|
Characterization of a Marine Diatom Chitin Synthase Using a Combination of Meta-Omics, Genomics, and Heterologous Expression Approaches. mSystems 2023; 8:e0113122. [PMID: 36790195 PMCID: PMC10134812 DOI: 10.1128/msystems.01131-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
β-Chitin has important ecological and physiological roles and potential for widespread applications, but the characterization of chitin-related enzymes from β-chitin producers was rarely reported. Querying against the Tara Oceans Gene Atlas, 4,939 chitin-related unique sequences from 12 Pfam accessions were found in Bacillariophyta metatranscriptomes. Putative chitin synthase (CHS) sequences are decreasingly present in Crustacea (39%), Stramenopiles (16%) and Insecta (14%) from the Marine Atlas of Tara Oceans Unigenes version 1 Metatranscriptomes (MATOUv1+T) database. A CHS gene from the model diatom Thalassiosira pseudonana (Thaps3_J4413, designated TpCHS1) was identified. Homology analysis of TpCHS1 in Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP), PhycoCosm, and the PLAZA diatom omics data set showed that Mediophyceae and Thalassionemales species were potential new β-chitin producers besides Thalassiosirales. TpCHS1 was overexpressed in Saccharomyces cerevisiae and Phaeodactylum tricornutum. In transgenic P. tricornutum lines, TpCHS1-eGFP localizes to the Golgi apparatus and plasma membrane and predominantly accumulates in the cleavage furrow during cell division. Enhanced TpCHS1 expression could induce abnormal cell morphology and reduce growth rates in P. tricornutum, which might be ascribed to the inhibition of the G2/M phase. S. cerevisiae was proved to be a better system for expressing large amounts of active TpCHS1, which effectively incorporates UDP-N-acetylglucosamine in radiometric in vitro assays. Our study expands the knowledge on chitin synthase taxonomic distribution in marine eukaryotic microbes, and is the first to collectively characterize an active marine diatom CHS which may play an important role during cell division. IMPORTANCE As the most abundant biopolymer in the oceans, the significance of chitin and its biosynthesis is rarely demonstrated in diatoms, which are the main contributors to the primary productivity of the oceans, ascribed to their huge biomass and efficient photosynthesis. We retrieved genes involved in chitin-based metabolism against the Tara Oceans Gene Atlas to expand our knowledge about their diversity and distribution in the marine environment. Potential new producers of chitin were found from the analysis of various algal transcriptome and genome databases. Heterologous expression confirms that Thalassiosira pseudonana contains an active chitin synthase (CHS) which may play an important role in the cell division process of diatoms. This study provides new insight into CHS geographic and taxonomic distribution in marine eukaryotic microbes, as well as into a new CHS functioning in the biosynthesis of β-chitin in diatoms.
Collapse
|
6
|
A Conserved Machinery Underlies the Synthesis of a Chitosan Layer in the Candida Chlamydospore Cell Wall. mSphere 2021; 6:6/2/e00080-21. [PMID: 33910989 PMCID: PMC8092133 DOI: 10.1128/msphere.00080-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polysaccharide chitosan is found in the cell wall of specific cell types in a variety of fungal species where it contributes to stress resistance, or in pathogenic fungi, virulence. Under certain growth conditions, the pathogenic yeast Candida dubliniensis forms a cell type termed a chlamydospore, which has an additional internal layer in its cell wall compared to hyphal or yeast cell types. We report that this internal layer of the chlamydospore wall is rich in chitosan. The ascospore wall of Saccharomyces cerevisiae also has a distinct chitosan layer. As in S. cerevisiae, formation of the chitosan layer in the C. dubliniensis wall requires the chitin synthase CHS3 and the chitin deacetylase CDA2 In addition, three lipid droplet-localized proteins-Rrt8, Srt1, and Mum3-identified in S. cerevisiae as important for chitosan layer assembly in the ascospore wall are required for the formation of the chitosan layer of the chlamydospore wall in C. dubliniensis These results reveal that a conserved machinery is required for the synthesis of a distinct chitosan layer in the walls of these two yeasts and may be generally important for incorporation of chitosan into fungal walls.IMPORTANCE The cell wall is the interface between the fungal cell and its environment and disruption of cell wall assembly is an effective strategy for antifungal therapies. Therefore, a detailed understanding of how cell walls form is critical to identify potential drug targets and develop therapeutic strategies. This study shows that a set of genes required for the assembly of a chitosan layer in the cell wall of S. cerevisiae is also necessary for chitosan formation in a different cell type in a different yeast, C. dubliniensis Because chitosan incorporation into the cell wall can be important for virulence, the conservation of this pathway suggests possible new targets for antifungals aimed at disrupting cell wall function.
Collapse
|
7
|
Van Gelder K, Virta LKA, Easlick J, Prudhomme N, McAlister JA, Geddes-McAlister J, Akhtar TA. A central role for polyprenol reductase in plant dolichol biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110773. [PMID: 33487357 DOI: 10.1016/j.plantsci.2020.110773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Dolichol is an essential polyisoprenoid within the endoplasmic reticulum of all eukaryotes. It serves as a membrane bound anchor onto which N-glycans are assembled prior to being transferred to nascent polypeptides, many of which enter the secretory pathway. Historically, it has been posited that the accumulation of dolichol represents the 'rate-limiting' step in the evolutionary conserved process of N-glycosylation, which ultimately affects the efficacy of approximately one fifth of the entire eukaryotic proteome. Therefore, this study aimed to enhance dolichol accumulation by manipulating the enzymes involved in its biosynthesis using an established Nicotiana benthamiana platform. Co-expression of a Solanum lycopersicum (tomato) cis-prenyltransferase (CPT) and its cognate partner protein, CPT binding protein (CPTBP), that catalyze the antepenultimate step in dolichol biosynthesis led to a 400-fold increase in the levels of long-chain polyprenols but resulted in only modest increases in dolichol accumulation. However, when combined with a newly characterized tomato polyprenol reductase, dolichol biosynthesis was enhanced by approximately 20-fold. We provide further evidence that in the aquatic macrophyte, Lemna gibba, dolichol is derived exclusively from the mevalonic acid (MVA) pathway with little participation from the evolutionary co-adopted non-MVA pathway. Taken together these results indicate that to effectively enhance the in planta accumulation of dolichol, coordinated synthesis and reduction of polyprenol to dolichol, is strictly required.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lilia K A Virta
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jeremy Easlick
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicholas Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jason A McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Chrissian C, Lin CPC, Camacho E, Casadevall A, Neiman AM, Stark RE. Unconventional Constituents and Shared Molecular Architecture of the Melanized Cell Wall of C. neoformans and Spore Wall of S. cerevisiae. J Fungi (Basel) 2020; 6:E329. [PMID: 33271921 PMCID: PMC7712904 DOI: 10.3390/jof6040329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The fungal cell wall serves as the interface between the cell and the environment. Fungal cell walls are composed largely of polysaccharides, primarily glucans and chitin, though in many fungi stress-resistant cell types elaborate additional cell wall structures. Here, we use solid-state nuclear magnetic resonance spectroscopy to compare the architecture of cell wall fractions isolated from Saccharomyces cerevisiae spores and Cryptococcus neoformans melanized cells. The specialized cell walls of these two divergent fungi are highly similar in composition. Both use chitosan, the deacetylated derivative of chitin, as a scaffold on which a polyaromatic polymer, dityrosine and melanin, respectively, is assembled. Additionally, we demonstrate that a previously identified but uncharacterized component of the S. cerevisiae spore wall is composed of triglycerides, which are also present in the C. neoformans melanized cell wall. Moreover, we identify a tyrosine-derived constituent in the C. neoformans wall that, although it is not dityrosine, is a non-pigment constituent of the cell wall. The similar composition of the walls of these two phylogenetically distant species suggests that triglycerides, polyaromatics, and chitosan are basic building blocks used to assemble highly stress-resistant cell walls and the use of these constituents may be broadly conserved in other fungal species.
Collapse
Affiliation(s)
- Christine Chrissian
- CUNY Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA;
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Coney Pei-Chen Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (E.C.); (A.C.)
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (E.C.); (A.C.)
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Ruth E. Stark
- CUNY Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA;
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
9
|
Chrissian C, Camacho E, Kelly JE, Wang H, Casadevall A, Stark RE. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls and whole fungal cells. J Biol Chem 2020; 295:15083-15096. [PMID: 32859751 DOI: 10.1074/jbc.ra120.015201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
A primary virulence-associated trait of the opportunistic fungal pathogen Cryptococcus neoformans is the production of melanin pigments that are deposited into the cell wall and interfere with the host immune response. Previously, our solid-state NMR studies of isolated melanized cell walls (melanin "ghosts") revealed that the pigments are strongly associated with lipids, but their identities, origins, and potential roles were undetermined. Herein, we exploited spectral editing techniques to identify and quantify the lipid molecules associated with pigments in melanin ghosts. The lipid profiles were remarkably similar in whole C. neoformans cells, grown under either melanizing or nonmelanizing conditions; triglycerides (TGs), sterol esters (SEs), and polyisoprenoids (PPs) were the major constituents. Although no quantitative differences were found between melanized and nonmelanized cells, melanin ghosts were relatively enriched in SEs and PPs. In contrast to lipid structures reported during early stages of fungal growth in nutrient-rich media, variants found herein could be linked to nutrient stress, cell aging, and subsequent production of substances that promote chronic fungal infections. The fact that TGs and SEs are the typical cargo of lipid droplets suggests that these organelles could be connected to C. neoformans melanin synthesis. Moreover, the discovery of PPs is intriguing because dolichol is a well-established constituent of human neuromelanin. The presence of these lipid species even in nonmelanized cells suggests that they could be produced constitutively under stress conditions in anticipation of melanin synthesis. These findings demonstrate that C. neoformans lipids are more varied compositionally and functionally than previously recognized.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA; Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York, USA
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John E Kelly
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA
| | - Hsin Wang
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA; Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York, USA; Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
10
|
Edani BH, Grabińska KA, Zhang R, Park EJ, Siciliano B, Surmacz L, Ha Y, Sessa WC. Structural elucidation of the cis-prenyltransferase NgBR/DHDDS complex reveals insights in regulation of protein glycosylation. Proc Natl Acad Sci U S A 2020; 117:20794-20802. [PMID: 32817466 PMCID: PMC7456142 DOI: 10.1073/pnas.2008381117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids required for protein glycosylation in the lumen of endoplasmic reticulum. Here, we report the crystal structure of the human NgBR/DHDDS complex, which represents an atomic resolution structure for any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through dimerization, participates in the enzyme's active site through its C-terminal -RXG- motif, and how phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme's active site tunnel, and an insert within the α3 helix helps to stabilize this energetically unfavorable state to enable long-chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases have evolved from their ancestral, homodimeric forms to fulfill their function in long-chain polyprenol synthesis.
Collapse
Affiliation(s)
- Ban H Edani
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Kariona A Grabińska
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Rong Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Benjamin Siciliano
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Ya Ha
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520;
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520;
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
11
|
Metabolomics profiling reveals new aspects of dolichol biosynthesis in Plasmodium falciparum. Sci Rep 2020; 10:13264. [PMID: 32764679 PMCID: PMC7414040 DOI: 10.1038/s41598-020-70246-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
The cis-polyisoprenoid lipids namely polyprenols, dolichols and their derivatives are linear polymers of several isoprene units. In eukaryotes, polyprenols and dolichols are synthesized as a mixture of four or more homologues of different length with one or two predominant species with sizes varying among organisms. Interestingly, co-occurrence of polyprenols and dolichols, i.e. detection of a dolichol along with significant levels of its precursor polyprenol, are unusual in eukaryotic cells. Our metabolomics studies revealed that cis-polyisoprenoids are more diverse in the malaria parasite Plasmodium falciparum than previously postulated as we uncovered active de novo biosynthesis and substantial levels of accumulation of polyprenols and dolichols of 15 to 19 isoprene units. A distinctive polyprenol and dolichol profile both within the intraerythrocytic asexual cycle and between asexual and gametocyte stages was observed suggesting that cis-polyisoprenoid biosynthesis changes throughout parasite’s development. Moreover, we confirmed the presence of an active cis-prenyltransferase (PfCPT) and that dolichol biosynthesis occurs via reduction of the polyprenol to dolichol by an active polyprenol reductase (PfPPRD) in the malaria parasite.
Collapse
|
12
|
Chen CC, Zhang L, Yu X, Ma L, Ko TP, Guo RT. Versatile cis-isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
13
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
14
|
Long-Chain Polyisoprenoids Are Synthesized by AtCPT1 in Arabidopsis thaliana. Molecules 2019; 24:molecules24152789. [PMID: 31370240 PMCID: PMC6695881 DOI: 10.3390/molecules24152789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/17/2022] Open
Abstract
Arabidopsis roots accumulate a complex mixture of dolichols composed of three families, (i.e., short-, medium- and long-chain dolichols), but until now none of the cis-prenyltransferases (CPTs) predicted in the Arabidopsis genome has been considered responsible for their synthesis. In this report, using homo- and heterologous (yeast and tobacco) models, we have characterized the AtCPT1 gene (At2g23410) which encodes a CPT responsible for the formation of long-chain dolichols, Dol-18 to -23, with Dol-21 dominating, in Arabidopsis. The content of these dolichols was significantly reduced in AtCPT1 T-DNA insertion mutant lines and highly increased in AtCPT1-overexpressing plants. Similar to the majority of eukaryotic CPTs, AtCPT1 is localized to the endoplasmic reticulum (ER). Functional complementation tests using yeast rer2Δ or srt1Δ mutants devoid of medium- or long-chain dolichols, respectively, confirmed that this enzyme synthesizes long-chain dolichols, although the dolichol chains thus formed are somewhat shorter than those synthesized in planta. Moreover, AtCPT1 acts as a homomeric CPT and does not need LEW1 for its activity. AtCPT1 is the first plant CPT producing long-chain polyisoprenoids that does not form a complex with the NgBR/NUS1 homologue.
Collapse
|
15
|
Thiam AR, Dugail I. Lipid droplet-membrane contact sites - from protein binding to function. J Cell Sci 2019; 132:132/12/jcs230169. [PMID: 31209063 DOI: 10.1242/jcs.230169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the general context of an increasing prevalence of obesity-associated diseases, which follows changing paradigms in food consumption and worldwide use of industry-transformed foodstuffs, much attention has been given to the consequences of excessive fattening on health. Highly related to this clinical problem, studies at the cellular and molecular level are focused on the fundamental mechanism of lipid handling in dedicated lipid droplet (LD) organelles. This Review briefly summarizes how views on LD functions have evolved from those of a specialized intracellular compartment dedicated to lipid storage to exerting a more generalized role in the stress response. We focus on the current understanding of how proteins bind to LDs and determine their function, and on the new paradigms that have emerged from the discoveries of the multiple contact sites formed by LDs. We argue that elucidating the important roles of LD tethering to other cellular organelles allows for a better understanding of LD diversity and dynamics.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Isabelle Dugail
- U1269 INSERM/Sorbonne Université, Nutriomics, Faculté de Médecine Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|