1
|
Cui X, Chen L, Tao B, Zhang X, Song Y, Chen J, Duan M, Li W, Chen K, Pei Y, Hu X, Feng K, Luo D, Luo H, Qiao Z, Zhou F, Zhu Z, Trudeau VL, Hu W. Olfactory GnRH3 crypt sensory neurons transduce sex pheromone signals to induce male courtship behavior in zebrafish. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-025-2917-5. [PMID: 40347216 DOI: 10.1007/s11427-025-2917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 05/12/2025]
Abstract
Olfactory activation of neuroendocrine pathways plays vital roles in many organisms for reproduction and survival. The importance of gonadotropin-releasing hormone (GnRH) neurons for reproduction is well-established but little is known about whether they can directly sense and transmit sex pheromone signals. We have uncovered the migration path and distribution pattern of a new GnRH neuronal population that fulfills this role. GnRH3 neurons arise from the region located beneath olfactory placode, undergo bidirectional migration along the olfactory nerve, and cell bodies lie within the olfactory epithelium, olfactory bulb and hypothalamus. These olfactory epithelial GnRH3 neurons express ora4, the olfactory receptor that detects pheromones. GnRH3-OB neurons with olfactory epithelial GnRH3 neurons ablation failed to respond to the waterborne post-ovulatory sex pheromone prostaglandin F2α (PGF2α). GnRH3 neurons in gnrh3-/- mutants have a reduced basal firing rate leading to abnormal responses to PGF2α. Male gnrh3-/- zebrafish exhibit deficiencies in courtship behavior and a decreased capacity to compete and spawn with females. These findings indicate that GnRH3-OE neurons function as crypt sensory neurons transducing sex pheromone-encoded information critical to reproductive success.
Collapse
Affiliation(s)
- Xuefan Cui
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Chen
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Tao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Xiya Zhang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlong Song
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Ji Chen
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Ming Duan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Weiwei Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kuangxin Chen
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yang Pei
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuerui Hu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Ke Feng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Daji Luo
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Hongrui Luo
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Zhixian Qiao
- Analytical and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fang Zhou
- Analytical and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, Canada.
| | - Wei Hu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang X, Zhang N, Dong Z, Sun H, Diao Z, Li Y, Du D, Ma Y. The role of Chinese herbal medicine in diminished ovarian reserve management. J Ovarian Res 2025; 18:90. [PMID: 40307895 PMCID: PMC12042416 DOI: 10.1186/s13048-025-01669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Diminished Ovarian Reserve (DOR) is characterized by a reduction in the number of available follicles in the ovaries, leading to hormonal imbalances, decreased ovarian reserve, and reduced fertility. Clinically, it presents with elevated follicle-stimulating hormone (FSH) levels, decreased anti-Müllerian hormone (AMH) levels, and a lower antral follicle count (AFC). In recent years, Traditional Chinese Medicine (TCM) has gained recognition for its multi-target, holistic regulation in treating DOR, offering broad therapeutic effects with minimal side effects. This review aims to summarize the mechanisms and clinical efficacy of Chinese herbal medicine (CHM) formulas and active compounds in the treatment of DOR, providing theoretical support for their clinical application and future research. A systematic literature search was conducted from June 2019 to June 2024, and 12 clinical studies along with 38 basic research papers were selected. The findings suggest that CHM formulas primarily act by counteracting oxidative stress, regulating immune defense, modulating sex hormone secretion via the hypothalamic-pituitary-ovarian axis, and inhibiting excessive apoptosis of ovarian granulosa cells. This review highlights the therapeutic potential of TCM for improving ovarian function, regulating endocrine balance, and alleviating DOR symptoms, offering valuable insights for clinical practice and research.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Na Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhibin Dong
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Sun
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhihao Diao
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujie Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Dongqing Du
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Liu L, Ge D, Lin Y, Han Z, Zhao H, Cao L, Wu X, Ma G. Epigenetic regulation in oogenesis and fetal development: insights into m6A modifications. Front Immunol 2025; 16:1516473. [PMID: 40356909 PMCID: PMC12066277 DOI: 10.3389/fimmu.2025.1516473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The unique physiological structure of women has led to a variety of diseases that have attracted the attention of many people in recent years. Disturbances in the reproductive system microenvironment lead to the progression of various female tumours and pregnancy disorders. Numerous studies have shown that epigenetic modifications crucially influence both oogenesis and foetal development. m6A, a modification at the mRNA level, consists of three parts, namely, writers, erasers, and readers, which are involved in several biological functions, such as the nucleation and stabilisation of mRNAs, thereby regulating the development of reproductive system diseases. In this manuscript, we delineate the constituents of m6A, their biological roles, and advancements in understanding m6A within the maternal-foetal immunological context. In addition, we summarise the mechanism of m6A in gynaecological diseases and provide a new perspective for targeting m6A to delay the progression of reproductive system diseases in clinical practice.
Collapse
Affiliation(s)
- Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Clinical Medical College of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danxia Ge
- Department of Critical Care Medicine, Traditional Chinese Medicine Hospital of, Ningbo, Zhejiang, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Zhao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqin Cao
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Wu
- Department of Gynecology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guizhi Ma
- Department of Acupuncture and Moxibustion, Shanghai Traditional Chinese Medicine (TCM)-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Song J, Sun X, Wang C. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. BMC Genomics 2025; 26:223. [PMID: 40050716 PMCID: PMC11884202 DOI: 10.1186/s12864-025-11388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND QN Orange scallops are interspecific hybrids with orange adductor muscles that are rich in carotenoids. In this study, analysis of miRNA expression profiles was performed to explore possible regulatory patterns involved in carotenoid accumulation in adductor muscles of QN Orange scallops. RESULTS A total of 91 differentially expressed miRNA between the white and orange adductor muscles were identified. GO and KEGG analysis of target genes of differentially expressed miRNAs revealed enrichments in the transmembrane transporter activity-related pathways, kinase activity-related pathways, signal transduction-related pathways, ATP binding cassette transporters (ABC transporters), retinol metabolism, lipid-related metabolism, and calcium signaling pathway. In particular, miRNA Contig1462_36180, which was shown to negatively regulate the activity of methyltransferase 3 (METTL3) by dual-luciferase reporter assay, may play a pivotal role in the accumulation of carotenoids. Furthermore, METTL3 interference seemed to reduce the pectenoxanthin content and m6A level. CONCLUSION It is thus speculated that Contig1462_36180 may regulate m6A methylation by regulating METTL3, which in turn affects pectenoxanthin accumulation in QN Orange scallops.
Collapse
Affiliation(s)
- Junlin Song
- Analysis and Testing Center, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao Sun
- Analysis and Testing Center, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
5
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
7
|
Cui X, Li H, Huang X, Xue T, Wang S, Zhu X, Jing X. N 6-Methyladenosine Modification on the Function of Female Reproductive Development and Related Diseases. Immun Inflamm Dis 2024; 12:e70089. [PMID: 39660878 PMCID: PMC11632877 DOI: 10.1002/iid3.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is a widespread and reversible epigenetic alteration in eukaryotic mRNA, playing a pivotal role in various biological functions. Its significance in female reproductive development and associated diseases has recently become a focal point of research. OBJECTIVE This review aims to consolidate current knowledge of the role of m6A modification in female reproductive tissues, emphasizing its regulatory dynamics, functional significance, and implications in reproductive health and disease. METHODS A comprehensive analysis of recent studies focusing on m6A modification in ovarian development, oocyte maturation, embryo development, and the pathogenesis of reproductive diseases. RESULTS m6A modification exhibits dynamic regulation in female reproductive tissues, influencing key developmental stages and processes. It plays critical roles in ovarian development, oocyte maturation, and embryo development, underpinning essential aspects of reproductive health. m6A modification is intricately involved in the pathogenesis of several reproductive diseases, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), and endometriosis, offering insights into potential molecular mechanisms and therapeutic targets. CONCLUSION The review highlights the crucial role of m6A modification in female reproductive development and related diseases. It underscores the need for further research to explore innovative diagnostic and therapeutic strategies for reproductive disorders, leveraging the insights gained from understanding m6A modification's impact on reproductive health.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine CenterThe affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health HospitalTaiyuanChina
| | - Huihui Li
- Reproductive Medicine CenterThe affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Shanxi Maternal and Child Health HospitalTaiyuanChina
| | - Xia Huang
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Tingting Xue
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Shu Wang
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Xinyu Zhu
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| | - Xuan Jing
- Department of Clinical LaboratoryShanxi Provincial People's Hospital, Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
8
|
Bove G, Crepaldi M, Amin S, Megchelenbrink WL, Nebbioso A, Carafa V, Altucci L, Del Gaudio N. The m 6A-independent role of epitranscriptomic factors in cancer. Int J Cancer 2024; 155:1705-1713. [PMID: 38935523 DOI: 10.1002/ijc.35067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.
Collapse
Affiliation(s)
- Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Crepaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sajid Amin
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Wouter Leonard Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
- IEOS-CNR Institute for Endocrinology and Oncology "Gaetano Salvatore", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
Wang Y, Yang C, Sun H, Jiang H, Zhang P, Huang Y, Liu Z, Yu Y, Xu Z, Xiang H, Yi C. The Role of N6-methyladenosine Modification in Gametogenesis and Embryogenesis: Impact on Fertility. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae050. [PMID: 38937660 PMCID: PMC11514847 DOI: 10.1093/gpbjnl/qzae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The most common epigenetic modification of messenger RNAs (mRNAs) is N6-methyladenosine (m6A), which is mainly located near the 3' untranslated region of mRNAs, near the stop codons, and within internal exons. The biological effect of m6A is dynamically modulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). By controlling post-transcriptional gene expression, m6A has a significant impact on numerous biological functions, including RNA transcription, translation, splicing, transport, and degradation. Hence, m6A influences various physiological and pathological processes, such as spermatogenesis, oogenesis, embryogenesis, placental function, and human reproductive system diseases. During gametogenesis and embryogenesis, genetic material undergoes significant changes, including epigenomic modifications such as m6A. From spermatogenesis and oogenesis to the formation of an oosperm and early embryogenesis, m6A changes occur at every step. m6A abnormalities can lead to gamete abnormalities, developmental delays, impaired fertilization, and maternal-to-zygotic transition blockage. Both mice and humans with abnormal m6A modifications exhibit impaired fertility. In this review, we discuss the dynamic biological effects of m6A and its regulators on gamete and embryonic development and review the possible mechanisms of infertility caused by m6A changes. We also discuss the drugs currently used to manipulate m6A and provide prospects for the prevention and treatment of infertility at the epigenetic level.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chen Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Jiang
- Department of Interventional Therapy, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Pin Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zhenran Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Yaru Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Zuying Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei 230032, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Zhang M, Wu X, Guo T, Xia Y, Wang Z, Shi Z, Hu K, Zhu X, Zhu R, Yue Y, Zhang Y, Cao Z. Involvement of METTL3-mediated m6A methylation in the early development of porcine cloned embryos. Theriogenology 2024; 226:378-386. [PMID: 38972169 DOI: 10.1016/j.theriogenology.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
METTL3-mediated N6-methyladenosine (m6A) modification is critical for gametogenesis and early embryonic development. However, the function of METTL3-mediated m6A modification in the early development of somatic nuclear transfer embryos (SCNT) remains unclear. Here, we found that METTL3 mRNA and protein levels exhibit dynamic changes during the early development of porcine SCNT embryos. The levels of METTL3 mRNA and protein in SCNT embryos at specific developmental stages differ from those in parthenogenetic activation (PA) counterparts. SiRNA injection effectively reduced the levels of METTL3 mRNA and protein in 4-cell embryos and blastocysts. METTL3 knockdown significantly reduced the cleavage and blastocyst rates of SCNT embryos. METTL3 knockdown significantly reduced the number of total cells and trophectoderm (TE) cells in the resulting blastocysts and perturbed cell lineage allocation. In addition, METTL3 knockdown reduced the levels of m6A modification in 4-cell embryos and blastocysts. Importantly, METTL3 knockdown decreased the expression levels of CDX2, GATA3, NANOG and YAP, and increased the expression levels of SOX2 and OCT4. Taken together, these results demonstrate that METTL3-mediated m6A modification regulates early development and lineage differentiation of porcine SCNT embryos.
Collapse
Affiliation(s)
- Mengya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, 236041, China
| | - Tenglong Guo
- Anhui Provincial Animal and Poultry Genetic Resources Protection Center, Hefei, 230061, China
| | - Yi Xia
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhichao Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kunlong Hu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyue Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ruiqing Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Yue
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Luo Y, Zhao Y, Zhang B, Chen T, Chen X, Shen C, He G, Cao M, Chen L, Wang Y, Wang N, Zong J, Zhou X, Li C. METTL14 mediates nerve growth factor-stimulated testosterone synthesis in porcine theca cells†. Biol Reprod 2024; 111:655-666. [PMID: 38938081 DOI: 10.1093/biolre/ioae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/16/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Ovarian theca cells produce testosterone, which acts as a vital precursor substance for synthesizing estrogens during follicular development. Nerve growth factor (NGF) has been shown to participate in reproductive physiology, specifically to follicular development and ovulation. There is currently no available data on the impact of NGF on testosterone synthesis in porcine theca cells. Furthermore, m6A modification is the most common internal modification in eukaryotic mRNAs that are closely associated with female gametogenesis, follicle development, ovulation, and other related processes. It is also uncertain whether the three main enzymes associated with m6A, such as Writers, Erasers, and Readers, play a role in this process. The present study, with an in vitro culture model, investigated the effect of NGF on testosterone synthesis in porcine theca cells and the role of Writers-METTL14 in this process. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells. This study will help to further elucidate the mechanisms by which NGF regulates follicular development and provide new therapeutic targets for ovary-related diseases in female animals. Summary Sentence The present study investigated the effect of NGF on testosterone synthesis in porcine theca cells. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells.
Collapse
Affiliation(s)
- Yuxin Luo
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Yun Zhao
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Boqi Zhang
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Tong Chen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Xue Chen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Caomeihui Shen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Guitian He
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Maosheng Cao
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Lu Chen
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Yueying Wang
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Nan Wang
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Jinxin Zong
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Xu Zhou
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| | - Chunjin Li
- College of Animal Science, Heping Campus of Jilin University, No. 5333 Xi'an Road, Green Park District, Changchun, Jilin 130062, China
| |
Collapse
|
12
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Liu Y, Chen L, Jiang H, Wang H, Zhang Y, Yuan Z, Ma Y. N 6-Methyladenosine Modification-Related Genes Express Differentially in Sterile Male Cattle-Yaks. Life (Basel) 2024; 14:1155. [PMID: 39337938 PMCID: PMC11433611 DOI: 10.3390/life14091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
N6-methyladenosine (m6A), an RNA post-transcriptional modification, plays a crucial role in spermatogenesis. Cattle-yaks are interspecific hybrid offsprings of yak and cattle, and male cattle-yaks are sterile. This study aims to investigate the role of m6A modification in male cattle-yak infertility. Herein, testicular tissues were analyzed via histological observations, immunohistochemical assays, reverse-transcription quantitative polymerase chain reaction, Western blotting, and immunofluorescence assays. The results revealed that male cattle-yaks presented smaller testes (5.933 ± 0.4885 cm vs. 7.150 ± 0.3937 cm), with only single cell layers in seminiferous tubules, and weakened signals of m6A regulators such as METTL14 (methyltransferase-like 14), ALKBH5 (alpha-ketoglutarate-dependent hydroxylase homolog 5), FTO (fat mass and obesity-associated protein), and YTHDF2 (YTH N6-methyladenosine RNA binding protein F2), both at the RNA and protein levels, compared with those of yaks. Altogether, these findings suggest that m6A modification may play a crucial role in male cattle-yak sterility, providing a basis for future studies.
Collapse
Affiliation(s)
- Yuxin Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Chen
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| | - Hui Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China; (H.J.); (H.W.)
| | - Yujiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yi Ma
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (L.C.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin 300381, China
- Tianjin Engineering Research Center of Animal Healthy Farming, Tianjin 300381, China
| |
Collapse
|
14
|
Cao M, Yuan C, Chen X, He G, Chen T, Zong J, Shen C, Wang N, Zhao Y, Zhang B, Li C, Zhou X. METTL3 deficiency leads to ovarian insufficiency due to IL-1β overexpression in theca cells. Free Radic Biol Med 2024; 222:72-84. [PMID: 38825211 DOI: 10.1016/j.freeradbiomed.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Premature ovarian insufficiency (POI) is a clinical syndrome characterised by a decline in ovarian function in women before 40 years of age and is associated with oestradiol deficiency and a complex pathogenesis. However, the aetiology of POI is still unclear and effective preventative and treatment strategies are still lacking. Methyltransferase like 3 (METTL3) is an RNA methyltransferase that is involved in spermatogenesis, oocyte development and maturation, early embryonic development, and embryonic stem cell differentiation and formation, but its role in POI is unknown. In the present study, METTL3 deficiency in follicular theca cells was found to lead to reduced fertility in female mice, with a POI-like phenotype, and METTL3 knockout promoted ovarian inflammation. Further, a reduction in METTL3 in follicular theca cells led to a decrease in the m6A modification of pri-miR-21, which further reduced pri-miR-21 recognition and binding by DGCR8 proteins, leading to a decrease in the synthesis of mature miR-21-5p. Decrease of miR-21-5p promoted the secretion of interleukin-1β (IL-1β) from follicular theca cells. Acting in a paracrine manner, IL-1β inhibited the cAMP-PKA pathway and activated the NF-κB pathway in follicular granulosa cells. This activation increased the levels of reactive oxygen species in granulosa cells, causing disturbances in the intracellular Ca2+ balance and mitochondrial damage. These cellular events ultimately led to granulosa cell apoptosis and a decrease in oestradiol synthesis, resulting in POI development. Collectively, these findings reveal how METTL3 deficiency promotes the expression and secretion of IL-1β in theca cells, which regulates ovarian functions, and proposes a new theory for the development of POI disease.
Collapse
Affiliation(s)
- Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Guitian He
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Guo M, Zhao F, Zhang M, Chen X, Duan M, Xie Y, Zhang Z, Jiang J, Qiu L. Long-term exposure of metamifop affects sex differentiation and reproductive system of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107004. [PMID: 38901218 DOI: 10.1016/j.aquatox.2024.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The extensive use of herbicide metamifop (MET) in rice fields for weeds control will inevitably lead to its entering into water environments and threaten the aquatic organisms. Previous researches have demonstrated that sublethal exposure of MET significantly affected zebrafish development. Yet the long-term toxicological impacts of MET on aquatic life remains unknown. Herein, we investigated the potential effects of MET (5 and 50 μg/L) on zebrafish during an entire life cycle. Since the expression level of male sex differentiation-related gene dmrt1 and sex hormone synthesis-related gene cyp19a1b were significantly changed after 50 μg/L MET exposure for only 7 days, indicators related to sex differentiation and reproductive system were further investigated. Results showed that the transcript of dmrt1 was inhibited, estradiol content increased and testosterone content decreased in zebrafish of both sexes after MET exposure at 45, 60 and 120 dpf. Histopathological sections showed that the proportions of mature germ cells in the gonads of male and female zebrafish (120 dpf) were significantly decreased. Moreover, males had elevated vitellogenin content while females did not after MET exposure; MET induced feminization in zebrafish, with the proportion of females significantly increased by 19.6% while that of males significantly decreased by 13.2% at 120 dpf. These results suggested that MET interfered with the expression levels of gonad development related-genes, disrupted sex hormone balance, and affected sex differentiation and reproductive system of female and male zebrafish, implying it might have potential endocrine disrupting effects after long-term exposure.
Collapse
Affiliation(s)
- Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Guangxi 530004, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangguang Chen
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manman Duan
- Rural Revitalization Research Institute, Dezhou University, Dezhou 253023, China
| | - Yao Xie
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiazhen Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
17
|
Cao M, Chen X, Wang Y, Chen L, Zhao Y, Li C, Zhou X. The reduction of the m 6A methyltransferase METTL3 in granulosa cells is related to the follicular cysts in pigs. J Cell Physiol 2024; 239:e31289. [PMID: 38685566 DOI: 10.1002/jcp.31289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Follicular cysts are a common reproductive disorder in domestic animals that cause considerable economic losses to the farming industry. Effective prevention and treatment methods are lacking because neither the pathogenesis nor formation mechanisms of follicular cysts are well-understood. In this study, we first investigated the granulosa cells (GCs) of cystic follicles isolated from pigs. We observed a significant reduction in the expression of methyltransferase-like 3 (METTL3). Subsequent experiments revealed that METTL3 downregulation in GCs caused a decrease in m6A modification of pri-miR-21. This reduction further inhibited DGCR8 recognition and binding to pri-miR-21, dampening the synthesis of mature miR-21-5p. Additionally, the decrease in miR-21-5p promotes IL-1β expression in GCs. Elevated IL-1β activates the NFκB pathway, in turn upregulating apoptotic genes TNFa and BAX/BCL2. The subsequent apoptosis of GCs and inhibition of autophagy causes downregulation of CYP19A1 expression. These processes lower oestrogen secretion and contribute to follicular cyst formation. In conclusion, our findings provide a foundation for understanding and further exploring the mechanisms of follicular-cyst development in farm animals. This work has important implications for treating ovarian disorders in livestock and could potentially be extended to humans.
Collapse
Affiliation(s)
- Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yueying Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
18
|
He F, Mu X, Zhang Y, Wang Y, Geng J, Geng Y, Ma Y, Yin X, Gao R, Chen X, He J. Late gestational exposure to fenvalerate impacts ovarian reserve in neonatal mice via YTHDF2-mediated P-body assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171790. [PMID: 38508253 DOI: 10.1016/j.scitotenv.2024.171790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.
Collapse
Affiliation(s)
- Fei He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yongheng Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianwei Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
19
|
Wang HQ, Ma YR, Zhang YX, Wei FH, Zheng Y, Ji ZH, Guo HX, Wang T, Zhang JB, Yuan B. GnRH-driven FTO-mediated RNA m 6A modification promotes gonadotropin synthesis and secretion. BMC Biol 2024; 22:104. [PMID: 38702712 PMCID: PMC11069278 DOI: 10.1186/s12915-024-01905-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.
Collapse
Affiliation(s)
- Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
20
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
21
|
Su X, Lu R, Qu Y, Mu D. Methyltransferase-like 3 mediated RNA m 6 A modifications in the reproductive system: Potentials for diagnosis and therapy. J Cell Mol Med 2024; 28:e18128. [PMID: 38332508 PMCID: PMC10853593 DOI: 10.1111/jcmm.18128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| |
Collapse
|
22
|
Sun MH, Jiang WJ, Li XH, Lee SH, Heo G, Zhou D, Guo J, Cui XS. High Temperature-Induced m6A Epigenetic Changes Affect Early Porcine Embryonic Developmental Competence in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2174-2183. [PMID: 38066680 DOI: 10.1093/micmic/ozad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
N6-methyladenosine (m6A), the most prevalent modification in eukaryotic messenger RNA (mRNA), plays a key role in various developmental processes in mammals. Three proteins that affect RNA m6A modification have been identified: methyltransferases, demethylases, and m6A-binding proteins, known as "writer," "eraser," and "reader" proteins, respectively. However, changes in the m6A modification when early porcine embryos are exposed to stress remain unclear. In this study, we exposed porcine oocytes to a high temperature (HT, 41°C) for 10 h, after which the mature oocytes were parthenogenetically activated and cultured for 7 days to the blastocyst stage. HT significantly decreased the rates of the first polar body extrusion and blastocyst formation. Further detection of m6A modification found that HT can lead to increased expression levels of "reader," YTHDF2, and "writer," METTL3, and decreased expression levels of "eraser," FTO, resulting in an increased level of m6A modification in the embryos. Additionally, heat shock protein 70 (HSP70) is upregulated under HT conditions. Our study demonstrated that HT exposure alters m6A modification levels, which further affects early porcine embryonic development.
Collapse
Affiliation(s)
- Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin, 130118, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| |
Collapse
|
23
|
Zang S, Yin X, Li P. FTO-mediated m 6A demethylation regulates GnRH expression in the hypothalamus via the PLCβ3/Ca 2+/CAMK signalling pathway. Commun Biol 2023; 6:1297. [PMID: 38129517 PMCID: PMC10739951 DOI: 10.1038/s42003-023-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
N6-methyladenosine (m6A) plays a crucial role in the development and functional homeostasis of the central nervous system. The fat mass and obesity-associated (FTO) gene, which is highly expressed in the hypothalamus, is closely related to female pubertal development. In this study, we found that m6A methylation decreased in the hypothalamus gradually with puberty and decreased in female rats with precocious puberty. FTO expression was increased at the same time. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that the m6A methylation of PLCβ3, a key enzyme of the Ca2+ signalling pathway, was decreased significantly in the hypothalamus in precocious rats. Upregulating FTO increased PLCβ3 expression and activated the Ca2+ signalling pathway, which promoted GnRH expression. Dual-luciferase reporter and MeRIP-qPCR assays confirmed that FTO regulated m6A demethylation of PLCβ3 and promoted PLCβ3 expression. Upon overexpressing FTO in the hypothalamic arcuate nucleus (ARC) in female rats, we observed advanced puberty onset. Meanwhile, PLCβ3 and GnRH expression in the hypothalamus increased significantly, and the Ca2+ signalling pathway was activated. Our study demonstrates that FTO enhances GnRH expression, which promotes puberty onset, by regulating m6A demethylation of PLCβ3 and activating the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Shaolian Zang
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China
| | - Xiaoqin Yin
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| | - Pin Li
- Department of endocrinology, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, 200062, Shanghai, China.
| |
Collapse
|
24
|
Liu B, Yan J, Li J, Xia W. The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. Int J Mol Sci 2023; 24:16019. [PMID: 38003209 PMCID: PMC10671747 DOI: 10.3390/ijms242216019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Early embryonic development relies on the maternal RNAs and newly synthesized proteins during oogenesis. Zygotic transcription is an important event occurring at a specific time after fertilization. If no zygotic transcription occurs, the embryo will die because it is unable to meet the needs of the embryo and continue to grow. During the early stages of embryonic development, the correct transcription, translation, and expression of genes play a crucial role in blastocyst formation and differentiation of cell lineage species formation among mammalian species, and any variation may lead to developmental defects, arrest, or even death. Abnormal expression of some genes may lead to failure of the embryonic zygote genome before activation, such as BDNF and YBX1; Decreased expression of CENPF, ZSCAN4, TEAD4, GLIS1, and USF1 genes can lead to embryonic development failure. This article reviews the results of studies on the timing and mechanism of gene expression of these genes in bovine fertilized eggs/embryos.
Collapse
Affiliation(s)
- Bingnan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Jiaxin Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| |
Collapse
|
25
|
Liu Z, Zhou L, Li D, Lu H, Liu L, Mao W, Yu X, Fan Y, Huang Q, Wang F, Wan Y. N6-methyladenosine methyltransferase METTL3 modulates the cell cycle of granulosa cells via CCND1 and AURKB in Haimen goats. FASEB J 2023; 37:e23273. [PMID: 37874265 DOI: 10.1096/fj.202301232r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
N6-methyladenosine (m6A) plays a crucial role in many bioprocesses across species, but its function in granulosa cells during oocyte maturation is not well understood in animals, especially domestic animals. We observed an increase in m6A methyltransferase-like 3 (METTL3) in granulosa cells during oocyte maturation in Haimen goats. Our results showed that knockdown of METTL3 disrupted the cell cycle in goat granulosa cells, leading to aggravated cell apoptosis and inhibition of cell proliferation and hormone secretion. Mechanistically, METTL3 may regulate the cell cycle in goat granulosa cells by mediating Aurora kinase B (AURKB) mRNA degradation in an m6A-YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) manner and participating in AURKB transcription via the Cyclin D1 (CCND1)-Retinoblastoma protein (RB)-E2F transcription factor 1 (E2F1) pathway. Overall, our study highlights the essential role of METTL3 in granulosa cells during oocyte maturation in Haimen goats. These findings provide a theoretical basis and technical means for understanding how RNA methylation participates in oocyte maturation through granulosa cells.
Collapse
Affiliation(s)
- Zifei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dongxu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honghui Lu
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Liang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijia Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qunhao Huang
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Li D, Liu Y, Zhou J, Chen Y, Yang C, Liu H, Li W, You J. m6A Regulator-mediated RNA Methylation Modulates Immune Microenvironment of Hepatitis B Virus-related Acute Liver Failure. Inflammation 2023; 46:1777-1795. [PMID: 37256461 DOI: 10.1007/s10753-023-01841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Acute liver failure (ALF) is a rare and complicated disease with a high mortality rate. Emergency liver transplantation is the only treatment method that can improve the ALF prognosis. However, its clinical application remains limited owing to the aggressive nature of liver transplantation, limited donors, and high postoperative mortality. The study investigated the effect of m6A on the immune microenvironment of hepatitis B virus-related ALF (HBV-ALF). In this study, the gene expression data of 47 normal people and 42 HBV-ALF patients were downloaded from the Gene Expression Omnibu (GEO) database. The known 23 m6A regulators which mediated RNA modification patterns were compared and analyzed in these two groups, and the gene diagnosis model of HBV-ALF patients was established based on the analysis results. In addition, we used unsupervised clustering to identify different m6A RNA methylation modification patterns in HBV-ALF based on m6A regulators, and evaluated the immune infiltration and biological differences in these subtypes. In addition, the relationship between m6A genes and immune cell activation in HBV-ACLF patients was explored by immune infiltration analysis. Nineteen m6A regulators mediated RNA methylation (m6A regulators for short) were differentially expressed in HBV-ALF and control groups. m6A regulators could well distinguish control samples from HBV-ALF samples, and m6A regulators might be used as a basis for diagnosing HBV-ALF patients. Immune cells such as activated CD8 T cells, activated B cells, and activated CD4 T cells might play important roles in HBV-ALF, and m6A regulators were closely associated with immune cell infiltration. ALKBH15, CBLL1, IGF2BP2, IGF2BP3, and ZC3H13 were significantly associated with immune cells. Considering 23 m6A regulators, HBV-ALF patients could be classified into two subtypes (cluster 1 and cluster 2) based on different immune cell infiltration. m6A regulators of the IGFBP and YHDF families have extremely different levels in these two subtypes. Differential immune cell infiltration among these subtypes was observed, a total of 913 differentially expressed genes among different m6A modification patterns was identified, and their biological functions were explored. m6A modification might play a crucial role in the diverse and complex immune microenvironment of HBV-ALF patients.
Collapse
Affiliation(s)
- Dingchun Li
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China
| | - Ye Liu
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China
| | - Ju Zhou
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China
| | - Yihui Chen
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China
| | - Chunxia Yang
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China
| | - Huaie Liu
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China
| | - Wu Li
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China.
| | - Jing You
- The First Affiliated Hospital, Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, China.
| |
Collapse
|
27
|
Guo S, Pei J, Wang X, Cao M, Xiong L, Kang Y, Ding Z, La Y, Chu M, Bao P, Guo X. Transcriptome Studies Reveal the N6-Methyladenosine Differences in Testis of Yaks at Juvenile and Sexual Maturity Stages. Animals (Basel) 2023; 13:2815. [PMID: 37760215 PMCID: PMC10525320 DOI: 10.3390/ani13182815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Studying the mechanism of spermatogenesis is key to exploring the reproductive characteristics of male yaks. Although N6-methyladenosine (m6A) RNA modification has been reported to regulate spermatogenesis and reproductive function in mammals, the molecular mechanism of m6A in yak testis development and spermatogenesis remains largely unknown. Therefore, we collected testicular tissue from juvenile and adult yaks and found that the m6A level significantly increased after sexual maturity in yaks. In MeRIP-seq, 1702 hypermethylated peaks and 724 hypomethylated peaks were identified. The hypermethylated differentially methylated RNAs (DMRs) (CIB2, AK1, FOXJ2, PKDREJ, SLC9A3, and TOPAZ1) mainly regulated spermatogenesis. Functional enrichment analysis showed that DMRs were significantly enriched in the adherens junction, gap junction, and Wnt, PI3K, and mTOR signaling pathways, regulating cell development, spermatogenesis, and testicular endocrine function. The functional analysis of differentially expressed genes showed that they were involved in the biological processes of mitosis, meiosis, and flagellated sperm motility during the sexual maturity of yak testis. We also screened the key regulatory factors of testis development and spermatogenesis by combined analysis, which included BRCA1, CREBBP, STAT3, and SMAD4. This study indexed the m6A characteristics of yak testicles at different developmental stages, providing basic data for further research of m6A modification regulating yak testicular development.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.G.); (J.P.); (X.W.); (M.C.); (L.X.); (Y.K.); (Z.D.); (Y.L.); (M.C.); (P.B.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
28
|
Ye L, Yao X, Xu B, Chen W, Lou H, Tong X, Fang S, Zou R, Hu Y, Wang Z, Xiang D, Lin Q, Feng S, Xue X, Guo G. RNA epigenetic modifications in ovarian cancer: The changes, chances, and challenges. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1784. [PMID: 36811232 DOI: 10.1002/wrna.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is the most common female cancer worldwide. Patients with OC have high mortality because of its complex and poorly understood pathogenesis. RNA epigenetic modifications, such as m6 A, m1 A, and m5 C, are closely associated with the occurrence and development of OC. RNA modifications can affect the stability of mRNA transcripts, nuclear export of RNAs, translation efficiency, and decoding accuracy. However, there are few overviews that summarize the link between m6 A RNA modification and OC. Here, we discuss the molecular and cellular functions of different RNA modifications and how their regulation contributes to the pathogenesis of OC. By improving our understanding of the role of RNA modifications in the etiology of OC, we provide new perspectives for their use in OC diagnosis and treatment. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Yan C, Xiong J, Zhou Z, Li Q, Gao C, Zhang M, Yu L, Li J, Hu MM, Zhang CS, Cai C, Zhang H, Zhang J. A cleaved METTL3 potentiates the METTL3-WTAP interaction and breast cancer progression. eLife 2023; 12:RP87283. [PMID: 37589705 PMCID: PMC10435237 DOI: 10.7554/elife.87283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation of RNA by the methyltransferase complex (MTC), with core components including METTL3-METTL14 heterodimers and Wilms' tumor 1-associated protein (WTAP), contributes to breast tumorigenesis, but the underlying regulatory mechanisms remain elusive. Here, we identify a novel cleaved form METTL3a (residues 239-580 of METTL3). We find that METTL3a is required for the METTL3-WTAP interaction, RNA m6A deposition, as well as cancer cell proliferation. Mechanistically, we find that METTL3a is essential for the METTL3-METTL3 interaction, which is a prerequisite step for recruitment of WTAP in MTC. Analysis of m6A sequencing data shows that depletion of METTL3a globally disrupts m6A deposition, and METTL3a mediates mammalian target of rapamycin (mTOR) activation via m6A-mediated suppression of TMEM127 expression. Moreover, we find that METTL3 cleavage is mediated by proteasome in an mTOR-dependent manner, revealing positive regulatory feedback between METTL3a and mTOR signaling. Our findings reveal METTL3a as an important component of MTC, and suggest the METTL3a-mTOR axis as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Chaojun Yan
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jingjing Xiong
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Zirui Zhou
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Qifang Li
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Chuan Gao
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Liya Yu
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming-Ming Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhanChina
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network School of Life Sciences, Xiamen UniversityFujianChina
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhanChina
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan UniversityWuhanChina
| |
Collapse
|
30
|
Jiao Y, Palli SR. N 6-adenosine (m 6A) mRNA methylation is required for Tribolium castaneum development and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103985. [PMID: 37422274 PMCID: PMC10528953 DOI: 10.1016/j.ibmb.2023.103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Gene expression is regulated at various levels, including post-transcriptional mRNA modifications, where m6A methylation is the most common modification of mRNA. The m6A methylation regulates multiple stages of mRNA processing, including splicing, export, decay, and translation. How m6A modification is involved in insect development is not well known. We used the red flour beetle, Tribolium castaneum, as a model insect to identify the role of m6A modification in insect development. RNA interference (RNAi)-mediated knockdown of genes coding for m6A writers (m6A methyltransferase complex, depositing m6A to mRNA) and readers (YTH-domain proteins, recognizing and executing the function of m6A) was conducted. Knockdown of most writers during the larval stage caused a failure of ecdysis during eclosion. The loss of m6A machinery sterilized both females and males by interfering with the functioning of reproductive systems. Females treated with dsMettl3, the main m6A methyltransferase, laid significantly fewer and reduced-size eggs than the control insects. In addition, the embryonic development in eggs laid by dsMettl3 injected females was terminated in the early stages. Knockdown studies also showed that the cytosol m6A reader, YTHDF, is likely responsible for executing the function of m6A modifications during insect development. These data suggest that m6A modifications are critical for T. castaneum development and reproduction.
Collapse
Affiliation(s)
- Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
31
|
Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, Jiang Y, Zhang YH. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front Endocrinol (Lausanne) 2023; 14:1172481. [PMID: 37600717 PMCID: PMC10436748 DOI: 10.3389/fendo.2023.1172481] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Normal levels of reactive oxygen species (ROS) play an important role in regulating follicular growth, angiogenesis and sex hormone synthesis in ovarian tissue. When the balance between ROS and antioxidants is disrupted, however, it can cause serious consequences of oxidative stress (OS), and the quantity and quality of oocytes will decline. Therefore, this review discusses the interrelationship between OS and premature ovarian insufficiency (POI), the potential mechanisms and the methods by which antioxidants can improve POI through controlling the level of OS. We found that OS can mediate changes in genetic materials, signal pathways, transcription factors and ovarian microenvironment, resulting in abnormal apoptosis of ovarian granulosa cells (GCs) and abnormal meiosis as well as decreased mitochondrial Deoxyribonucleic Acid(mtDNA) and other changes, thus accelerating the process of ovarian aging. However, antioxidants, mesenchymal stem cells (MSCs), biological enzymes and other antioxidants can delay the disease process of POI by reducing the ROS level in vivo.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Su-Na Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
32
|
Zhang M, Nie J, Chen Y, Li X, Chen H. Connecting the Dots: N6-Methyladenosine (m 6 A) Modification in Spermatogenesis. Adv Biol (Weinh) 2023; 7:e2300068. [PMID: 37353958 DOI: 10.1002/adbi.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Indexed: 06/25/2023]
Abstract
N6-methyladenosine (m6 A) is the most common RNA modification found in eukaryotes and is involved in multiple biological processes, including neuronal development, tumorigenesis, and gametogenesis. It is well known that methylation-modifying enzymes (classified into writers, erasers, and readers) mediate catalysis, clearance, and recognition of m6 A. Recent studies suggest that these genes may be associated with spermatogenesis. Numerous studies have revealed the m6 A role during spermatogenesis. However, the expression patterns and relationships of these m6 A enzymes during various stages of spermatogenesis remain unknown. In this review, it is aimed to provide an overview of m6 A enzyme functions and elucidate their potential mechanisms and regulatory relationships at a specific phase during spermatogenesis, providing new insights into the m6 A modification underlying the spermatogenesis process.
Collapse
Affiliation(s)
- Mengya Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Lianhua Road No. 1120, Futian District, Shenzhen, Guangdong Province, 518000, P. R. China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226000, China
| |
Collapse
|
33
|
Kitano J, Ansai S, Fujimoto S, Kakioka R, Sato M, Mandagi IF, Sumarto BKA, Yamahira K. A Cryptic Sex-Linked Locus Revealed by the Elimination of a Master Sex-Determining Locus in Medaka Fish. Am Nat 2023; 202:231-240. [PMID: 37531272 DOI: 10.1086/724840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractSex chromosomes rapidly turn over in several taxonomic groups. Sex chromosome turnover is generally thought to start with the appearance of a new sex-determining gene on an autosome while an old sex-determining gene still exists, followed by the fixation of the new one. However, we do not know how prevalent the transient state is, where multiple sex-determining loci coexist within natural populations. Here, we removed a Y chromosome with a master male-determining gene DMY from medaka fish using high temperature-induced sex-reversed males. After four generations, the genomic characteristics of a sex chromosome were found on one chromosome, which was an autosome in the original population. Thus, the elimination of a master sex-determining locus can reveal a cryptic locus with a possible sex-determining effect, which can be the seed for sex chromosome turnover. Our results suggest that populations that seem to have a single-locus XY system may have other chromosomal regions with sex-determining effects. In conclusion, the coexistence of multiple sex-determining genes in a natural population may be more prevalent than previously thought. Experimental elimination of a master sex-determining locus may serve as a promising method for finding a locus that can be a protosex chromosome.
Collapse
|
34
|
Zhou Y, Sun W, Tang Q, Lu Y, Li M, Wang J, Han X, Wu D, Wu W. Effect of prenatal perfluoroheptanoic acid exposure on spermatogenesis in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115072. [PMID: 37262965 DOI: 10.1016/j.ecoenv.2023.115072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Perfluoroheptanoic acid (PFHpA), a persistent organic pollutant widespread in the environment, is suspected as an environmental endocrine disruptor for its disturbance effect on hormone homeostasis and reproductive development. Whereas the effect of intrauterine PFHpA exposure during gestation on spermatogenesis of male offspring mice is still unknown. OBJECTIVE This study aimed to explore the effect of prenatal PFHpA exposure on the reproductive development of male offspring mice and the role of N6-methyladenosine (m6A) during the process. METHODS Fifty-six C57BL/6 pregnant mice were randomly divided into 4 groups. During the gestation period, the pregnant mice were exposed to 0, 0.0015, 0.015, and 0.15 mg/kg bw/d PFHpA from gestational day 1 (GD1) to GD16 by oral gavage. The male offspring mice were sacrificed by spinal dislocation at 7 weeks old. The body weight, testicular weight, and brain weight were weighed, and the intra-testicular testosterone was detected. The sperm qualities were analyzed with computer-aided sperm analysis (CASA). The testicular tissues were taken to analyze the pathological changes and examine the global m6A RNA methylation levels. Quantitative real-time PCR (qRT-PCR) was adopted to figure out the mRNA expression levels of m6A-related enzymes in testicular tissues of different PFHpA treated groups. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was applied to further explore the m6A RNA methylation at a whole-genome scale. RESULTS Compared with the control group, no significant differences were observed in body weight, testicular weight, testicular coefficient, and the visceral-brain ratio of testicular tissue in the PFHpA treated groups. And no significant change was observed in intra-testicular testosterone among the four groups. CASA results showed a decrease of sperm count, sperm concentration, and total cell count, as well as an increase of sperm progressive cells' head area after prenatal PFHpA exposure (P < 0.05). Hematoxylin and eosin staining of pathological sections showed seminiferous tubules morphological change, disorder arrangement of seminiferous epithelium, and reduction of spermatogenic cells in the PFHpA treated groups. PFHpA significantly decreased global levels of m6A RNA methylation in testicular tissue (P < 0.05). Besides, qRT-PCR results showed significant alteration of the mRNA expression levels of seven m6A-related enzymes (Mettl3, Mettl5, Mettl14, Pcif1, Wtap, Hnrnpa2b1, and Hnrnpc) in the PFHpA treated groups (P < 0.05). MeRIP-seq results showed a correlation between prenatal PFHpA exposure and activation and binding of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Cnga3 and Mpzl3 showed differential expression in the enrichment subcategories or pathways. CONCLUSIONS Exposure to PFHpA during the gestation period would adversely affect the development of seminiferous tubules and testicular m6A RNA methylation in offspring mice, which subsequently interferes with spermatogenesis and leads to reproductive toxicity.
Collapse
Affiliation(s)
- Yijie Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weilian Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiwen Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
35
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
36
|
Ferraz R, Coimbra S, Correia S, Canhoto J. RNA methyltransferases in plants: Breakthroughs in function and evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:449-460. [PMID: 36502609 DOI: 10.1016/j.plaphy.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, removing and recognising methyl groups on RNA, respectively. Several methyltransferases identified in plants are now being investigated and recent studies have shown a connection between RNA-methyltransferases (RNA-MTases) and stress and development processes. However, compared to their animal and bacteria counterparts, the understanding of RNA methyltransferases is still incipient, particularly those located in organelles. Comparative and systematic analyses allowed the tracing of the evolution of these enzymes suggesting the existence of several methyltransferases yet to be characterised. This review outlines the functions of plant nuclear and organellar RNA-MTases in plant development and stress responses and the comparative and evolutionary discoveries made on RNA-MTases across kingdoms.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sílvia Coimbra
- University of Porto, Faculty of Sciences, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| |
Collapse
|
37
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
38
|
Wang X, Pei J, Guo S, Cao M, Kang Y, Xiong L, La Y, Bao P, Liang C, Yan P, Guo X. Characterization of N6-methyladenosine in cattle-yak testis tissue. Front Vet Sci 2022; 9:971515. [PMID: 36016801 PMCID: PMC9395605 DOI: 10.3389/fvets.2022.971515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 01/12/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common form of eukaryotic mRNA modification, and it has been shown to exhibit broad regulatory activity in yeast, plants, and mammals. The specific role of m6A methylation as a regulator of spermatogenesis, however, has yet to be established. In this experiment, through a series of preliminary studies and methylated RNA immunoprecipitation sequencing, the m6A map of cattle-yak testicular tissue was established as a means of exploring how m6A modification affects cattle-yak male infertility. Cattle-yak testis tissues used in this study were found to contain sertoli cells and spermatogonia. Relative to sexually mature yak samples, those isolated from cattle-yak testis exhibited slightly reduced levels of overall methylation, although these levels were significantly higher than those in samples from pre-sexually mature yaks. Annotation analyses revealed that differentially methylated peaks were most concentrated in exonic regions, with progressively lower levels of concentration in the 3'-untranslated region (UTR) and 5'-UTR regions. To further explore the role of such m6A modification, enrichment analyses were performed on differentially methylated and differentially expressed genes in these samples. For the cattle-yaks vs. 18-months-old yaks group comparisons, differentially methylated genes were found to be associated with spermatogenesis-related GO terms related to the cytoskeleton and actin-binding, as well as with KEGG terms related to the regulation of the actin cytoskeleton and the MAPK signaling pathway. Similarly, enrichment analyses performed for the cattle-yaks vs. 5-years-old yaks comparison revealed differentially methylated genes to be associated with GO terms related to protein ubiquitination, ubiquitin ligase complexes, ubiquitin-dependent protein catabolism, and endocytotic activity, as well as with KEGG terms related to apoptosis and the Fanconi anemia pathway. Overall, enrichment analyses for the cattle-yaks vs. 18-months-old yaks comparison were primarily associated with spermatogenesis, whereas those for the cattle-yaks vs. 5-years-old yaks comparison were primarily associated with apoptosis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- *Correspondence: Xian Guo
| |
Collapse
|
39
|
Sun X, Lu J, Li H, Huang B. The Role of m 6A on Female Reproduction and Fertility: From Gonad Development to Ovarian Aging. Front Cell Dev Biol 2022; 10:884295. [PMID: 35712673 PMCID: PMC9197073 DOI: 10.3389/fcell.2022.884295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
The growth and maturation of oocyte is accompanied by the accumulation of abundant RNAs and posttranscriptional regulation. N6-methyladenosine (m6A) is the most prevalent epigenetic modification in mRNA, and precisely regulates the RNA metabolism as well as gene expression in diverse physiological processes. Recent studies showed that m6A modification and regulators were essential for the process of ovarian development and its aberrant manifestation could result in ovarian aging. Moreover, the specific deficiency of m6A regulators caused oocyte maturation disorder and female infertility with defective meiotic initiation, subsequently the oocyte failed to undergo germinal vesicle breakdown and consequently lost the ability to resume meiosis by disrupting spindle organization as well as chromosome alignment. Accumulating evidence showed that dysregulated m6A modification contributed to ovarian diseases including polycystic ovarian syndrome (PCOS), primary ovarian insufficiency (POI), ovarian aging and other ovarian function disorders. However, the complex and subtle mechanism of m6A modification involved in female reproduction and fertility is still unknown. In this review, we have summarized the current findings of the RNA m6A modification and its regulators in ovarian life cycle and female ovarian diseases. And we also discussed the role and potential clinical application of the RNA m6A modification in promoting oocyte maturation and delaying the reproduction aging.
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Jiafeng Lu
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Gusu School, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| |
Collapse
|
40
|
Bai G, Zhai X, Liu L, Cai Z, Xiong J, Li H, Yang B. The molecular characteristics in different procedures of spermatogenesis. Gene 2022; 826:146405. [PMID: 35341953 DOI: 10.1016/j.gene.2022.146405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
Abstract
Spermatogenesis is a multistep biological process. In addition to somatic cells, it involves the orderly differentiation of dozens of spermatogenic cells. In this process, the regulatory networks between different spermatogenic cell populations are significantly different. RNA m6A regulators and miRNAs have been found to be closely related to spermatogenesis in recent years, and they are an important part of the above regulatory networks. Understanding gene expression and its rules in different spermatogenic cell populations will help in the in-depth exploration of their detailed roles in spermatogenesis. This study collected a public dataset of nonobstructive azoospermia (NOA). Based on the Johnson score, the testicular samples of NOA were divided into three types, Sertoli-cell only syndrome, meiotic arrest and postmeiotic arrest, which represented the loss of three germ cell populations, including whole spermatogenic cells, postmeiotic spermatogenic cells, and a mixture of late spermatids and spermatozoa, respectively. The aforementioned three types of testis data were compared with normal testis data, and the molecular expression characteristics of the abovementioned three germ cell populations were obtained. Our study showed that different germ cell populations have different active molecules and their pathways. In addition, RNA m6A regulators, including METTL3, IGF2BP2 and PRRC2A, and miRNAs, including hsa-let-7a-2, hsa-let-7f-1, hsa-let-7g, hsa-miR-15a, hsa-miR-197, hsa-miR-21, hsa-miR-30e, hsa-miR-32, hsa-miR-503 and hsa-miR-99a, also presented regulatory roles in almost all germ cells.
Collapse
Affiliation(s)
- Gang Bai
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiuxia Zhai
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, China
| | - Linling Liu
- Department of Urology, the 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jian Xiong
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China.
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Bin Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
41
|
Guo S, Wang X, Cao M, Wu X, Xiong L, Bao P, Chu M, Liang C, Yan P, Pei J, Guo X. The transcriptome-wide N6-methyladenosine (m 6A) map profiling reveals the regulatory role of m 6A in the yak ovary. BMC Genomics 2022; 23:358. [PMID: 35538402 PMCID: PMC9092806 DOI: 10.1186/s12864-022-08585-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Yak estrus is a seasonal phenomenon, probably involving epigenetic regulation of synthesis and secretion of sex hormones as well as growth and development of follicles. N6-methyladenosine (m6A) is the most common internal modification of the eukaryotic mRNA. However, there are no detailed reports on the m6A transcriptome map of yak ovary. Therefore, this study aimed to collected the yak ovarian tissues at three different states of anestrus (YO-A), estrus (YO-F), and pregnancy (YO-P), and obtained the full transcriptome m6A map in yak by MeRIP-seq. RESULTS The HE staining revealed that the number of growing follicles and mature follicles in the ovary during the estrus period was relatively higher than those in the anestrus period and the pregnancy period. The RT-qPCR showed that the expression of METTL3, METTL14, FTO, YTHDC1 were significantly different across different periods in the ovaries, which suggests that m6A may play a regulatory role in ovarian activity. Next, we identified 20,174, 19,747 and 13,523 m6A peaks in the three ovarian samples of YO-A, YO-F and YO-P using the methylated RNA immunoprecipitation sequencing (MeRIP-seq). The m6A peaks are highly enriched in the coding sequence (CDS) region and 3'untranslated region (3'UTR) as well as the conserved sequence of "RRACH." The GO, KEGG and GSEA analysis revealed the involvement of m6A in many physiological activities of the yak's ovary during reproductive cycle. The association analysis found that some genes such as BNC1, HOMER1, BMP15, BMP6, GPX3, and WNT11 were related to ovarian functions. CONCLUSIONS The comparison of the distribution patterns of methylation peaks in the ovarian tissues across different periods further explored the m6A markers related to the regulation of ovarian ovulation and follicular development in the yak ovary. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the yak ovary.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
42
|
Liu C, Cao J, Zhang H, Wu J, Yin J. Profiling of Transcriptome-Wide N6-Methyladenosine (m6A) Modifications and Identifying m6A Associated Regulation in Sperm Tail Formation in Anopheles sinensis. Int J Mol Sci 2022; 23:ijms23094630. [PMID: 35563020 PMCID: PMC9101273 DOI: 10.3390/ijms23094630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in many species have revealed potential regulatory functions of this RNA modification by m6A players—writers, readers, and erasers. Here, we first profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes. Distinct from mammals and yeast but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3′-untranslated regions but also around the start codon and 5′-UTR. Gene ontology analysis indicates the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways such as tRNA wobble uridine modification and phospholipid-binding in females, and peptidoglycan catabolic process, exosome and signal recognition particle, endoplasmic reticulum targeting, and RNA helicase activity in males. The positive correlation between m6A deposition and mRNA abundance indicates that m6A can play a role in regulating gene expression in mosquitoes. Furthermore, many spermatogenesis-associated genes, especially those related to mature sperm flagellum formation, are positively modulated by m6A methylation. A transcriptional regulatory network of m6A in An. sinensis is first profiled in the present study, especially in spermatogenesis, which may provide a new clue for the control of this disease-transmitting vector.
Collapse
|
43
|
On the genetic architecture of rapidly adapting and convergent life history traits in guppies. Heredity (Edinb) 2022; 128:250-260. [PMID: 35256765 PMCID: PMC8986872 DOI: 10.1038/s41437-022-00512-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.
Collapse
|
44
|
McGlacken-Byrne SM, Del Valle I, Le Quesne Stabej P, Bellutti L, Garcia-Alonso L, Ocaka LA, Ishida M, Suntharalingham JP, Gagunashvili A, Ogunbiyi OK, Mistry T, Buonocore F, Crespo B, Moreno N, Niola P, Brooks T, Brain CE, Dattani MT, Kelberman D, Vento-Tormo R, Lagos CF, Livera G, Conway GS, Achermann JC. Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency. JCI Insight 2022; 7:154671. [PMID: 35138268 PMCID: PMC8983136 DOI: 10.1172/jci.insight.154671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Primary ovarian insufficiency (POI) affects 1% of women and carries significant medical and psychosocial sequelae. Approximately 10% of POI has a defined genetic cause, with most implicated genes relating to biological processes involved in early fetal ovary development and function. Recently, Ythdc2, an RNA helicase and N6-methyladenosine (m6a) reader, has emerged as a novel regulator of meiosis in mice. Here, we describe homozygous pathogenic variants in YTHDC2 in three women with early-onset POI from two families: c. 2567C>G, p.P856R in the helicase-associated (HA2) domain; and c.1129G>T, p.E377*. We demonstrate that YTHDC2 is expressed in the developing human fetal ovary and is upregulated in meiotic germ cells, together with related meiosis-associated factors. The p.P856R variant results in a less flexible protein that likely disrupts downstream conformational kinetics of the HA2 domain, whereas the p.E377* variant truncates the helicase core. Taken together, our results reveal that YTHDC2 is a key new regulator of meiosis in humans and pathogenic variants within this gene are associated with POI.
Collapse
Affiliation(s)
- Sinead M McGlacken-Byrne
- Genetics and Genomics Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Laura Bellutti
- Laboratory of Development of the Gonads, UMR E008, Université de Paris, Université Paris Saclay, CEA, Fontenay aux Roses, France
| | - Luz Garcia-Alonso
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Louise A Ocaka
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Miho Ishida
- Genetics and Genomics Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jenifer P Suntharalingham
- Genetics and Genomics Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrey Gagunashvili
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Olumide K Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Talisa Mistry
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomics Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Berta Crespo
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child health, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, London, United Kingdom
| | - Caroline E Brain
- Department of Paediatric Endocrinology, Great Ormond Street Hospital, London, United Kingdom
| | - Mehul T Dattani
- Genetics and Genomics Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Daniel Kelberman
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Carlos F Lagos
- Chemical Biology & Drug Discovery Lab, Escuela de Química y Farmacia, Universidad San Sebastián, Santiago, Chile
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMR E008, Université de Paris, Université Paris Saclay, CEA, Fontenay aux Roses, France
| | - Gerard S Conway
- Institute for Women's Health, University College London, London, United Kingdom
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
45
|
Deng M, Chen B, Liu Z, Wan Y, Li D, Yang Y, Wang F. YBX1 mediates alternative splicing and maternal mRNA decay during pre-implantation development. Cell Biosci 2022; 12:12. [PMID: 35109938 PMCID: PMC8812265 DOI: 10.1186/s13578-022-00743-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to zygotic transition (MZT) is critical for the early embryogenesis. Y-box binding protein YBX1 plays vital roles in RNA stabilization and transcriptional regulation, but its roles remain to be elucidated during pre-implantation development. Methods In the present study, we re-analyzed transcriptional level of YBX1 in mice, human, bovine, and goat embryos using public RNA-seq datasets. We further performed siRNA microinjection to knock down the expression of YBX1, and RNA sequencing of the 8-cell stage embryos in the control and YBX1 knockdown group. To reveal the regulation mechanisms of YBX1, we conducted differentially expression analysis, alternative splicing (AS) analysis, enrichment analysis, and 5-EU staining using DESeq2, rMATs, clusterProfiler, and immunofluorescence technique, respectively. Results The expression of YBX1 was increased during MZT in goat, bovine, human, and mice, but significantly decreased in YBX1 knockdown embryos compared with the controls, suggesting successfully knockdown of YBX1. The percentage of blastocyst was decreased, while embryos blocked at the 2- and 4-cell stage were increased in YBX1 knockdown embryos compared to the controls. Using RNA-seq, we identified 1623 up-regulated and 3531 down-regulated genes in the 8-cell stage YBX1 knockdown embryos. Of note, the down-regulated genes were enriched in regulation of RNA/mRNA stability and spliceosome, suggesting that YBX1 might medicate RNA stability and AS. To this end, we identified 3284 differential AS events and 1322 differentially expressed maternal mRNAs at the 8-cell stage YBX1 knockdown embryos. Meanwhile, the splicing factors and mRNA decay-related genes showed aberrant expression, and the transcriptional activity during ZGA in goat and mice was compromised when YBX1 was knocked down. Conclusion YBX1 serves an important role in maternal mRNA decay, alternative splicing, and the transcriptional activity required for early embryogenesis, which will broaden the current understanding of YBX1 functions during the stochastic reprogramming events. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00743-4.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
46
|
Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. NANOMATERIALS 2022; 12:nano12030389. [PMID: 35159736 PMCID: PMC8839700 DOI: 10.3390/nano12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
With the increasing application of nanoparticles (NPs) in medical and consumer applications, it is necessary to ensure their safety. As m6A (N6-methyladenosine) RNA modification is one of the most prevalent RNA modifications involved in many diseases and essential biological processes, the relationship between nanoparticles and m6A RNA modification for the modulation of these events has attracted substantial research interest. However, there is limited knowledge regarding the relationship between nanoparticles and m6A RNA modification, but evidence is beginning to emerge. Therefore, a summary of these aspects from current research on nanoparticle-induced m6A RNA modification is timely and significant. In this review, we highlight the roles of m6A RNA modification in the bioimpacts of nanoparticles and thus elaborate on the mechanisms of nanoparticle-induced m6A RNA modification. We also summarize the dynamic regulation and biofunctions of m6A RNA modification. Moreover, we emphasize recent advances in the application perspective of nanoparticle-induced m6A RNA modification in medication and toxicity of nanoparticles to provide a potential method to facilitate the design of nanoparticles by deliberately tuning m6A RNA modification.
Collapse
|
47
|
Mu H, Li H, Liu Y, Wang X, Mei Q, Xiang W. N6-Methyladenosine Modifications in the Female Reproductive System: Roles in Gonad Development and Diseases. Int J Biol Sci 2022; 18:771-782. [PMID: 35002524 PMCID: PMC8741838 DOI: 10.7150/ijbs.66218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic messenger RNAs. By participating in various RNA-related bioprocesses including RNA decay, splicing, transport and translation, m6A serves as a pivotal regulator of RNA fate and plays an irreplaceable role in cellular activities. The m6A modifications of transcripts are coordinately regulated by methyltransferase “writers” and demethylase “erasers”, and produce variable effects via different m6A reading protein “readers”. There is emerging evidence that m6A modifications play a critical role in a variety of physiological and pathological processes in the female reproductive system, subsequently affecting female fertility. Here, we introduce recent advances in research on m6A regulators and their functions, then highlight the role of m6A in gonad development and female reproductive diseases, as well as the underlying mechanisms driving these processes.
Collapse
Affiliation(s)
- Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Zhou M, Liu W, Zhang J, Sun N. RNA m 6A Modification in Immunocytes and DNA Repair: The Biological Functions and Prospects in Clinical Application. Front Cell Dev Biol 2022; 9:794754. [PMID: 34988083 PMCID: PMC8722703 DOI: 10.3389/fcell.2021.794754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
As the most prevalent internal modification in mRNA, N6-methyladenosine (m6A) plays broad biological functions via fine-tuning gene expression at the post-transcription level. Such modifications are deposited by methyltransferases (i.e., m6A Writers), removed by demethylases (i.e., m6A Erasers), and recognized by m6A binding proteins (i.e., m6A Readers). The m6A decorations regulate the stability, splicing, translocation, and translation efficiency of mRNAs, and exert crucial effects on proliferation, differentiation, and immunologic functions of immunocytes, such as T lymphocyte, B lymphocyte, dendritic cell (DC), and macrophage. Recent studies have revealed the association of dysregulated m6A modification machinery with various types of diseases, including AIDS, cancer, autoimmune disease, and atherosclerosis. Given the crucial roles of m6A modification in activating immunocytes and promoting DNA repair in cells under physiological or pathological states, targeting dysregulated m6A machinery holds therapeutic potential in clinical application. Here, we summarize the biological functions of m6A machinery in immunocytes and the potential clinical applications via targeting m6A machinery.
Collapse
Affiliation(s)
- Mingjie Zhou
- Department of Blood Transfusion, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jieyan Zhang
- Department of Orthopaedics, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, China
| | - Nan Sun
- Department of Blood Transfusion, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
49
|
Li D, Liu Z, Deng M, Liu L, Lu J, Wang F, Wan Y. The function of the m6A methyltransferase METTL3 in goat early embryo development under hypoxic and normoxic conditions. Theriogenology 2022; 177:140-150. [PMID: 34700071 DOI: 10.1016/j.theriogenology.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/16/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023]
Abstract
It has been reported that N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) plays an important role in zygote genome activation during embryonic development, but the effects of METTL3 under oxidative stress in the early development of goat embryos remain largely unknown. In this study, zygotes were monitored at 72 and 168 h after fertilization, and they developed to the 8-cell stage and blastocyst stage under hypoxic conditions and normoxic conditions. Single-cell transcriptome sequencing was performed at the 8-cell stage and the blastocyst stage in the goat embryos, the differentially expressed METTL3 was screened from the sequencing results. We found that microinjection of small interfering RNA (siRNA) against METTL3 caused developmental arrest, both 8-cell rates (37.45 ± 2.21% vs. 47.09 ± 1.38%; P < 0.01) and blastocyst rates of Si-METTL3 (12.17% ± 2.84 vs. 20.83 ± 3.61%; P < 0.01) in Si-METTL3 group were significantly decreased compared with that of control under hypoxic conditions, significant changes were found in the m6A-related genes and the expression levels of critical transcription factors, such as, NANOG, GATA3, CDX2 and SOX17, were decreased. This study revealed the key role of METTL3 in the regulation of embryonic development under oxidative stress, and laid the foundation for further study of the crucial mechanism of oxidative stress during the early embryonic development of goats.
Collapse
Affiliation(s)
- Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawei Lu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
50
|
Lundin K, Sepponen K, Väyrynen P, Liu X, Yohannes DA, Survila M, Ghimire B, Känsäkoski J, Katayama S, Partanen J, Vuoristo S, Paloviita P, Rahman N, Raivio T, Luiro K, Huhtaniemi I, Varjosalo M, Tuuri T, Tapanainen JS. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6574364. [PMID: 35471239 PMCID: PMC9308958 DOI: 10.1093/molehr/gaac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- K Lundin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K Sepponen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - P Väyrynen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - X Liu
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - D A Yohannes
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Immunology & Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - M Survila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - B Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - J Känsäkoski
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - S Katayama
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Partanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - S Vuoristo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - P Paloviita
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - N Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - T Raivio
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, HUH, Helsinki, Finland
| | - K Luiro
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Metabolism, Endocrinology and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - M Varjosalo
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - T Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, Oulu, Finland
- Corresponding author. Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, PO Box 140, 00029 Helsinki, Finland. Tel: +358-94711; E-mail:
| |
Collapse
|