1
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. mBio 2025; 16:e0022325. [PMID: 39998264 PMCID: PMC11980393 DOI: 10.1128/mbio.00223-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g., cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.IMPORTANCESexual reproduction is essential for long-term evolutionary success. Fungal cell-type identity is governed by the MAT locus, which is typically rapidly evolving and highly divergent between different mating types. In this study, we show that the a and α alleles of four genes encoded in the MAT locus of the opportunistic human fungal pathogen C. neoformans are essential. We demonstrate that a fifth gene, MYO2, which had been predicted to be essential, is in fact dispensable for cell viability. However, a functional MYO2 allele is important for cytokinesis and fungal pathogenicity. Our study highlights the need for careful genetic analyses in determining essential genes, which is complementary to high-throughput approaches. Additionally, the presence of essential genes in the MAT locus of C. neoformans provides insights into the function, maintenance, and evolution of these fast-evolving genomic regions.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626420. [PMID: 39677606 PMCID: PMC11642766 DOI: 10.1101/2024.12.02.626420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g. cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly-evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Chu L, Liu A, Chang J, Zhang J, Hou X, Zhu X, Xing Q, Bao Z. TORC1 Regulates Thermotolerance via Modulating Metabolic Rate and Antioxidant Capacity in Scallop Argopecten irradians irradians. Antioxidants (Basel) 2024; 13:1359. [PMID: 39594501 PMCID: PMC11591371 DOI: 10.3390/antiox13111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a key regulator of metabolism in eukaryotes across multiple pathways. Although TORC1 has been extensively studied in vertebrates and some invertebrates, research on this complex in scallops is limited. In this study, we identified the genes encoding TORC1 complex subunits in the scallop Argopecten irradians irradians through genome-wide in silico scanning. Five genes, including TOR, RAPTOR, LST8, DEPTOR, and PRAS40, that encode the subunits of TORC1 complex were identified in the bay scallop. We then conducted structural characterization and phylogenetic analysis of the A. i. irradians TORC1 (AiTORC1) subunits to determine their structural features and evolutionary relationships. Next, we analyzed the spatiotemporal expressions of AiTORC1-coding genes during various embryo/larvae developmental stages and across different tissues in healthy adult scallops. The results revealed stage- and tissue-specific expression patterns, suggesting diverse roles in development and growth. Furthermore, the regulation of AiTORC1-coding genes was examined in temperature-sensitive tissues (the mantle, gill, hemocyte, and heart) of bay scallops exposed to high-temperature (32 °C) stress over different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, and 10 d). The expression of AiTORC1-coding genes was predominantly suppressed in the hemocyte but was generally activated in the mantle, gill, and heart, indicating a tissue-specific response to heat stress. Finally, functional validation was performed using the TOR inhibitor rapamycin to suppress AiTORC1, leading to an enhanced catabolism, a decreased antioxidant capacity, and a significant reduction in thermotolerance in bay scallops. Collectively, this study elucidates the presence, structural features, evolutional relationships, expression profiles, and roles in antioxidant capacity and metabolism regulation of AiTORC1 in the bay scallop, providing a preliminary understanding of its versatile functions in response to high-temperature challenges in marine mollusks.
Collapse
Affiliation(s)
- Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (L.C.); (A.L.); (J.C.); (J.Z.); (X.H.); (X.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Chai Z, Li Y, Zhang J, Ding C, Tong X, Zhang Z. Sirtulin-Ypk1 regulation axis governs the TOR signaling pathway and fungal pathogenicity in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0003824. [PMID: 38912819 PMCID: PMC11302014 DOI: 10.1128/spectrum.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Cryptococcus neoformans is a life-threatening fungal pathogen that is a causative agent for pulmonary infection and meningoencephalitis in both immunocompetent and immunodeficient individuals. Recent studies have elucidated the important function of the target of rapamycin (TOR) signaling pathway in the modulation of C. neoformans virulence factor production and pathogenicity in animal infection models. Herein, we discovered that Ypk1, a critical component of the TOR signaling pathway, acts as a critical modulator in fungal pathogenicity through post-translational modifications (PTMs). Mass spectrometry analysis revealed that Ypk1 is subject to protein acetylation at lysines 315 and 502, and both sites are located within kinase functional domains. Inhibition of the C. neoformans TOR pathway by rapamycin activates the deacetylation process for Ypk1. The YPK1Q strain, a hyper-acetylation of Ypk1, exhibited increased sensitivity to rapamycin, decreased capsule formation ability, reduced starvation tolerance, and diminished fungal pathogenicity, indicating that deacetylation of Ypk1 is crucial for responding to stress. Deacetylase inhibition assays have shown that sirtuin family proteins are critical to the Ypk1 deacetylation mechanism. After screening deacetylase mutants, we found that Dac1 and Dac7 directly interact with Ypk1 to facilitate the deacetylation modification process via a protein-protein interaction. These findings provide new insights into the molecular basis for regulating the TORC-Ypk1 axis and demonstrate an important function of protein acetylation in modulating fungal pathogenicity. IMPORTANCE Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. While there are currently few effective antifungal treatments, the absence of novel molecular targets in fungal pathogenicity hinders the development of new drugs. There is increasing evidence that protein post-translational modifications (PTMs) can modulate the pathogenicity of fungi. In this study, we discovered that the pathogenicity of C. neoformans was significantly impacted by the dynamic acetylation changes of Ypk1, the immediate downstream target of the TOR complex. We discovered that Ypk1 is acetylated at lysines 315 and 502, both of which are within kinase functional domains. Deacetylation of Ypk1 is necessary for formation of the capsule structure, the response to the TOR pathway inhibitor rapamycin, nutrient utilization, and host infection. We also demonstrate that the sirtuin protein family is involved in the Ypk1 deacetylation mechanism. We anticipate that the sirtuin-Ypk1 regulation axis could be used as a potential target for the development of antifungal medications.
Collapse
Affiliation(s)
- Zhenghua Chai
- Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanjian Li
- College of Sciences, Northeastern University, Shenyang, China
| | - Jing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiujuan Tong
- Department of Laboratory Medicine of Central Hospital of Chaoyang, Chaoyang, China
| | - Zhijie Zhang
- Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Chadwick BJ, Lin X. Effects of CO 2 in fungi. Curr Opin Microbiol 2024; 79:102488. [PMID: 38759247 PMCID: PMC11162916 DOI: 10.1016/j.mib.2024.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
Carbon dioxide supplies carbon for photosynthetic species and is a major product of respiration for all life forms. Inside the human body where CO2 is a by-product of the tricarboxylic acid cycle, its level reaches 5% or higher. In the ambient atmosphere, ∼.04% of the air is CO2. Different organisms can tolerate different CO2 levels to various degrees, and experiencing higher CO2 is toxic and can lead to death. The fungal kingdom shows great variations in response to CO2 that has been documented by different researchers at different time periods. This literature review aims to connect these studies, highlight mechanisms underlying tolerance to high levels of CO2, and emphasize the effects of CO2 on fungal metabolism and morphogenesis.
Collapse
Affiliation(s)
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Kwon S, Choi Y, Kim ES, Lee KT, Bahn YS, Jung KW. Pleiotropic roles of LAMMER kinase, Lkh1 in stress responses and virulence of Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1369301. [PMID: 38774630 PMCID: PMC11106425 DOI: 10.3389/fcimb.2024.1369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eui-Seong Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
7
|
Ianiri G, Barone G, Palmieri D, Quiquero M, Gaeta I, De Curtis F, Castoria R. Transcriptomic investigation of the interaction between a biocontrol yeast, Papiliotrema terrestris strain PT22AV, and the postharvest fungal pathogen Penicillium expansum on apple. Commun Biol 2024; 7:359. [PMID: 38519651 PMCID: PMC10960036 DOI: 10.1038/s42003-024-06031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Biocontrol strategies offer a promising alternative to control plant pathogens achieving food safety and security. In this study we apply a RNAseq analysis during interaction between the biocontrol agent (BCA) Papiliotrema terrestris, the pathogen Penicillium expansum, and the host Malus domestica. Analysis of the BCA finds overall 802 upregulated DEGs (differentially expressed genes) when grown in apple tissue, with the majority being involved in nutrients uptake and oxidative stress response. This suggests that these processes are crucial for the BCA to colonize the fruit wounds and outcompete the pathogen. As to P. expansum analysis, 1017 DEGs are upregulated when grown in apple tissue, with the most represented GO categories being transcription, oxidation reduction process, and transmembrane transport. Analysis of the host M. domestica finds a higher number of DEGs in response to the pathogen compared to the BCA, with overexpression of genes involved in host defense signaling pathways in the presence of both of them, and a prevalence of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) only during interaction with P. expansum. This analysis contributes to advance the knowledge on the molecular mechanisms that underlie biocontrol activity and the tritrophic interaction of the BCA with the pathogen and the host.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Michela Quiquero
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Ilenia Gaeta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis snc, 86100, Campobasso, Italy.
| |
Collapse
|
8
|
Ristow LC, Jezewski AJ, Chadwick BJ, Stamnes MA, Lin X, Krysan DJ. Cryptococcus neoformans adapts to the host environment through TOR-mediated remodeling of phospholipid asymmetry. Nat Commun 2023; 14:6587. [PMID: 37852972 PMCID: PMC10584969 DOI: 10.1038/s41467-023-42318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we report that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also describe a C. neoformans ABC/PDR transporter (PDR9) that is highly expressed in CO2-sensitive environmental strains, suppresses CO2-induced phosphatidylserine/phospholipid remodeling, and increases susceptibility to host concentrations of CO2. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew J Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Tang P, Han JJ, Zhang CC, Tang PP, Qi FN, Zhang KQ, Liang LM. The Growth and Conidiation of Purpureocillium lavendulum Are Co-Regulated by Nitrogen Sources and Histone H3K14 Acetylation. J Fungi (Basel) 2023; 9:325. [PMID: 36983493 PMCID: PMC10054409 DOI: 10.3390/jof9030325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Plant-parasitic nematodes cause severe economic losses to agriculture. As important biocontrol agents, nematophagous fungi evolved the ability to obtain nitrogen sources from nematodes. However, the impact of nitrogen sources on the growth and development of these fungi is largely unknown. In this study, we aimed to better understand how nitrogen sources could influence vegetative growth and conidiation through epigenetic regulation in the nematophagous fungus, Purpureocillium lavendulum. Through nutrition screening, we found a phenomenon of the fungus, limited colony extension with a large amount of conidia production when cultured on PDA media, can be altered by adding ammonia nitrate. Characterized by site-directed mutagenesis, the histone H3K14 acetylation was found to be involved in the alternation. Furthermore, the acetyltransferase PlGCN5 was responsible for H3K14 acetylation. Knockout of Plgcn5 severely diminished conidiation in P. lavendulum. Chip-seq showed that H3K14ac distributed in conidiation regulating genes, and genes in the MAPK pathway which may be the downstream targets in the regulation. These findings suggest that histone modification and nitrogen sources coordinated lifestyle regulation in P. lavendulum, providing new insight into the mechanism of growth regulation by nutritional signals for the carnivorous fungus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, China
| |
Collapse
|
10
|
An L, Jia G, Tan J, Yang L, Wang Y, Li L. Analysis of the synergistic antifungal activity of everolimus and antifungal drugs against dematiaceous fungi. Front Cell Infect Microbiol 2023; 13:1131416. [PMID: 36909734 PMCID: PMC9996166 DOI: 10.3389/fcimb.2023.1131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chromoblastomycosis (CBM) is a form of chronic mycosis that affects the skin and mucous membranes and is caused by species of dematiaceous fungi including Exophiala spp., Phialophora spp., and Fonsecaea spp. The persistence of this disease and limitations associated with single-drug treatment have complicated efforts to adequately manage this condition. Methods In this study, a microdilution assay was used to explore the synergistic antifungal activity of everolimus (EVL) in combination with itraconazole (ITC), voriconazole (VRC), posaconazole (POS), and amphotericin B (AMB) against a range of clinical dematiaceous fungal isolates. Results These analyses revealed that the EVL+POS and EVL+ITC exhibited superior in vitro synergistic efficacy, respectively inhibiting the growth of 64% (14/22) and 59% (13/22) of tested strains. In contrast, the growth of just 9% (2/22) of tested strains was inhibited by a combination of EVL+AMB, and no synergistic efficacy was observed for the combination of EVL+VRC. Discussion Overall, these findings indicate that EVL holds promise as a novel drug that can be synergistically combined with extant antifungal drugs to improve their efficacy, thereby aiding in the treatment of CBM.
Collapse
Affiliation(s)
- Lulu An
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengpei Jia
- Department of General Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemei Wang
- Department of Clinical Laboratory, Shibei Hospital, Shanghai, China
| | - Lei Li
- Department of Clinical Laboratory, Shibei Hospital, Shanghai, China
- *Correspondence: Lei Li,
| |
Collapse
|
11
|
Jung KW, Kwon S, Jung JH, Bahn YS. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0104422. [PMID: 35736239 PMCID: PMC9431586 DOI: 10.1128/spectrum.01044-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
A balance in the deoxyribonucleotide (dNTPs) intracellular concentration is critical for the DNA replication and repair processes. In the model yeast Saccharomyces cerevisiae, the Mec1-Rad53-Dun1 kinase cascade mainly regulates the ribonucleotide reductase (RNR) gene expression during DNA replication and DNA damage stress. However, the RNR regulatory mechanisms in basidiomycete fungi during DNA replication and damage stress remain elusive. Here, we observed that in C. neoformans, RNR1 (large RNR subunit) and RNR21 (one small RNR subunit) were required for cell viability, but not RNR22 (another small RNR subunit). RNR22 overexpression compensated for the lethality of RNR21 suppression. In contrast to the regulatory mechanisms of RNRs in S. cerevisiae, Rad53 and Chk1 kinases cooperatively or divergently controlled RNR1 and RNR21 expression under DNA damage and DNA replication stress. In particular, this study revealed that Chk1 mainly regulated RNR1 expression during DNA replication stress, whereas Rad53, rather than Chk1, played a significant role in controlling the expression of RNR21 during DNA damage stress. Furthermore, the expression of RNR22, not but RNR1 and RNR21, was suppressed by the Ssn6-Tup1 complex during DNA replication stress. Notably, we observed that RNR1 expression was mainly regulated by Mbs1, whereas RNR21 expression was cooperatively controlled by Mbs1 and Bdr1 as downstream factors of Rad53 and Chk1 during DNA replication and damage stress. Collectively, the regulation of RNRs in C. neoformans has both evolutionarily conserved and divergent features in DNA replication and DNA damage stress, compared with other yeasts. IMPORTANCE Upon DNA replication or damage stresses, it is critical to provide proper levels of deoxynucleotide triphosphates (dNTPs) and activate DNA repair machinery. Ribonucleotide reductases (RNRs), which are composed of large and small subunits, are required for synthesizing dNTP. An imbalance in the intracellular concentration of dNTPs caused by the perturbation of RNR results in a reduction in DNA repair fidelity. Despite the importance of their roles, functions and regulations of RNR have not been elucidated in the basidiomycete fungi. In this study, we found that the roles of RNR1, RNR21, and RNR22 genes encoding RNR subunits in the viability of C. neoformans. Furthermore, their expression levels are divergently regulated by the Rad53-Chk1 pathway and the Ssn6-Tup1 complex in response to DNA replication and damage stresses. Therefore, this study provides insight into the regulatory mechanisms of RNR genes to DNA replication and damage stresses in basidiomycete fungi.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U, Magwene PM, Heitman J. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans. Nat Microbiol 2022; 7:1239-1251. [PMID: 35918426 PMCID: PMC10840647 DOI: 10.1038/s41564-022-01183-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans infections cause approximately 15% of AIDS-related deaths owing to a combination of limited antifungal therapies and drug resistance. A collection of clinical and environmental C. neoformans isolates were assayed for increased mutation rates via fluctuation analysis, and we identified two hypermutator C. neoformans clinical isolates with increased mutation rates when exposed to the combination of rapamycin and FK506. Sequencing of drug target genes found that Cnl1 transposon insertions conferred the majority of resistance to rapamycin and FK506 and could also independently cause resistance to 5-fluoroorotic acid and the clinically relevant antifungal 5-flucytosine. Whole-genome sequencing revealed both hypermutator genomes harbour a nonsense mutation in the RNA-interference component ZNF3 and hundreds of Cnl1 elements organized into massive subtelomeric arrays on each of the fourteen chromosomes. Quantitative trait locus mapping in 28 progeny derived from a cross between a hypermutator and wild-type identified a locus associated with hypermutation that included znf3. CRISPR editing of the znf3 nonsense mutation abolished hypermutation and restored small-interfering-RNA production. We conclude that hypermutation and drug resistance in these clinical isolates result from RNA-interference loss and accumulation of Cnl1 elements.
Collapse
Affiliation(s)
- Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Gutiérrez-Santiago F, Cintas-Galán M, Martín-Expósito M, del Carmen Mota-Trujillo M, Cobo-Huesa C, Perez-Fernandez J, Navarro Gómez F. A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes (Basel) 2022; 13:genes13050748. [PMID: 35627133 PMCID: PMC9141189 DOI: 10.3390/genes13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bud27 is a prefoldin-like, a member of the family of ATP-independent molecular chaperones that associates with RNA polymerases I, II, and III in Saccharomyces cerevisiae. Bud27 and its human ortholog URI perform several functions in the cytoplasm and the nucleus. Both proteins participate in the TOR signaling cascade by coordinating nutrient availability with gene expression, and lack of Bud27 partially mimics TOR pathway inactivation. Bud27 regulates the transcription of the three RNA polymerases to mediate the synthesis of ribosomal components for ribosome biogenesis through the TOR cascade. This work presents a high-copy suppression screening of the temperature sensitivity of the bud27Δ mutant. It shows that Bud27 influences different TOR-dependent processes. Our data also suggest that Bud27 can impact some of these TOR-dependent processes: cell wall integrity and autophagy induction.
Collapse
Affiliation(s)
- Francisco Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - María Cintas-Galán
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Manuel Martín-Expósito
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Maria del Carmen Mota-Trujillo
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Cristina Cobo-Huesa
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Jorge Perez-Fernandez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
| | - Francisco Navarro Gómez
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain; (F.G.-S.); (M.C.-G.); (M.M.-E.); (M.d.C.M.-T.); (C.C.-H.); (J.P.-F.)
- Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
- Correspondence: ; Tel.: +34-953-212771; Fax: +34-953-211875
| |
Collapse
|
14
|
An H, Gan T, Tang M, Chen H. Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms 2022; 10:microorganisms10030503. [PMID: 35336079 PMCID: PMC8954470 DOI: 10.3390/microorganisms10030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Leptographium qinlingensis is a fungal symbiont of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandii) that must overcome the terpenoid oleoresin defenses of host trees to invade and colonize. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include the decomposing and use of these compounds as a nitrogen source. Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals through integration of nutrients, energies, hormones, growth factors and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. In this study, in order to explore the relationship between TOR gene and carbon sources, nitrogen sources, host nutrients and host volatiles (monoterpenoids) in L. qinlingensis, we set up eight carbon source treatments, ten nitrogen source treatments, two host nutrients and six monoterpenoids (5%, 10% and 20%) treatments, and prepared different media conditions. By measuring the biomass and growth rate of mycelium, the results revealed that, on the whole, the response of L. qinlingensis to nitrogen sources was better than carbon sources, and the fungus grew well in maltose (carbon source), (NH4)2C2O4 (inorganic nitrogen source), asparagine (organic nitrogen source) and P. armandii (host nutrient) versus other treatments. Then, by analyzing the relationship between TOR expression and different nutrients, the data showed that: (i) TOR expression exhibited negative regulation in response to carbon sources and host nutrition. (ii) The treatments of nitrogen sources and terpenoids had positively regulatory effects on TOR gene; moreover, the fungus was most sensitive to β-pinene and 3-carene. In conclusion, our findings reveal that TOR in L. qinlingensis plays a key role in the utilization of host volatiles as nutrient intake, overcoming the physical and chemical host resistances and successful colonization.
Collapse
|
15
|
Abstract
In the present study, in vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles, including itraconazole, voriconazole, posaconazole and fluconazole, against a variety of pathogenic fungi were investigated. A total of 69 isolates were studied via broth microdilution checkerboard technique, including 23 isolates of Aspergillus spp., 20 isolates of Candida spp., 9 isolates of Cryptococcus neoformans complex, and 17 isolates of Exophiala dermatitidis. The results revealed that AZD8055 individually did not exert any significant antifungal activity. However, synergistic effects between AZD8055 and itraconazole, voriconazole or posaconazole were observed in 23 (33%), 13 (19%) and 57 (83%) isolates, respectively, including azole-resistant A. fumigatus strains and Candida spp., potentiating the efficacy of azoles. The combination effect of AZD8055 and fluconazole was investigated against non-auris Candida spp. and C. neoformans complex. Synergism between AZD8055 and fluconazole was observed in six strains (60%) of Candida spp., resulting in reversion of fluconazole resistance. Synergistic combinations resulted in 4-fold to 256-fold reduction of effective MICs of AZD8055 and azoles. No antagonism was observed. In vivo effects of AZD8055-azole combinations were evaluated by survival assay in Galleria mellonella model infected with A. fumigatus strain AF002, E. dermatitidis strain BMU00038, C. auris strain 383, C. albicans strain R15, and C. neoformans complex strain Z2. AZD8055 acted synergistically with azoles and significantly increased larvae survival (P < 0.05). In summary, the results suggested that AZD8055 combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues. IMPORTANCE Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy. The target of rapamycin (TOR), a conserved serine/threonine kinase from yeast to humans, participates in a signaling pathway that governs cell growth and proliferation in response to nutrient availability, growth factors, and environmental stimuli. AZD8055 is an orally bioavailable, potent, and selective TOR kinase inhibitor that binds to the ATP binding cleft of TOR kinase and inhibits both TORC1 and TORC2. Synergism between AZD8055 and azoles suggested that the concomitant application of AZD8055 and azoles may help to enhance azole therapeutic efficacy and impede azole resistance. TOR inhibitor with fungal specific target is promising to be served as combination regimen with azoles.
Collapse
|
16
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
17
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
18
|
Oxidative Stress Causes Vacuolar Fragmentation in the Human Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7070523. [PMID: 34210104 PMCID: PMC8305764 DOI: 10.3390/jof7070523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Vacuoles are dynamic cellular organelles, and their morphology is altered by various stimuli or stresses. Vacuoles play an important role in the physiology and virulence of many fungal pathogens. For example, a Cryptococcus neoformans mutant deficient in vacuolar functions showed significantly reduced expression of virulence factors such as capsule and melanin synthesis and was avirulent in a mouse model of cryptococcosis. In the current study, we found significantly increased vacuolar fragmentation in the C. neoformans mutants lacking SOD1 or SOD2, which respectively encode Zn, Cu-superoxide dismutase and Mn-superoxide dismutase. The sod2 mutant showed a greater level of vacuole fragmentation than the sod1 mutant. We also observed that the vacuoles were highly fragmented when wild-type cells were grown in a medium containing high concentrations of iron, copper, or zinc. Moreover, elevated temperature and treatment with the antifungal drug fluconazole caused increased vacuolar fragmentation. These conditions also commonly cause an increase in the levels of intracellular reactive oxygen species in the fungus, suggesting that vacuoles are fragmented in response to oxidative stress. Furthermore, we observed that Sod2 is not only localized in mitochondria but also in the cytoplasm within phagocytosed C. neoformans cells, possibly due to copper or iron limitation.
Collapse
|
19
|
Huang YM, Tao XH, Xu DF, Yu Y, Teng Y, Xie WQ, Fan YB. HOG1 has an essential role in the stress response, virulence and pathogenicity of Cryptococcus gattii. Exp Ther Med 2021; 21:476. [PMID: 33767771 PMCID: PMC7976431 DOI: 10.3892/etm.2021.9907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus gattii (C. gattii) is a lethal pathogen that causes the majority of cryptococcosis cases in previously healthy individuals. This pathogen poses an increasing threat to global public health, but the mechanisms underlying the pathogenesis have remained to be fully elucidated. In the present study, the role of high-osmolarity glycerol (HOG)1 in the stress reaction and virulence control of C. gattii was characterized by deleting the HOG1 gene using the clinical isolate strain CZ2012, and finally, the virulence and pathogenic traits of the deletion strain were defined. Deletion of the HOG1 gene resulted in notable growth defects under stress conditions (high salt and antifungal drugs), but different traits were observed under oxidative stress conditions (hydrogen peroxide). Similarly, the C. gattii hog1Δ strains (deletion of HOG1) also displayed decreased capsule production and melanin synthesis. Furthermore, mice infected with the hog1Δ strain had longer survival times than those infected with the wild-type strain and the reconstituted strain. The hog1Δ strain recovered from infected organs exhibited significant growth defects in terms of decreased colony count and size. The present results suggested that HOG1 has a significant role in the virulence of C. gattii and these results may help to elucidate the pathogenesis of C. gattii.
Collapse
Affiliation(s)
- You-Ming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Hua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Dan-Feng Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yan Teng
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wen-Qing Xie
- Department of Orthopedics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
20
|
Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat Rev Microbiol 2021; 19:454-466. [PMID: 33558691 PMCID: PMC7868659 DOI: 10.1038/s41579-021-00511-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Cryptococcus spp., in particular Cryptococcus neoformans and Cryptococcus gattii, have an enormous impact on human health worldwide. The global burden of cryptococcal meningitis is almost a quarter of a million cases and 181,000 deaths annually, with mortality rates of 100% if infections remain untreated. Despite these alarming statistics, treatment options for cryptococcosis remain limited, with only three major classes of drugs approved for clinical use. Exacerbating the public health burden is the fact that the only new class of antifungal drugs developed in decades, the echinocandins, displays negligible antifungal activity against Cryptococcus spp., and the efficacy of the remaining therapeutics is hampered by host toxicity and pathogen resistance. Here, we describe the current arsenal of antifungal agents and the treatment strategies employed to manage cryptococcal disease. We further elaborate on the recent advances in our understanding of the intrinsic and adaptive resistance mechanisms that are utilized by Cryptococcus spp. to evade therapeutic treatments. Finally, we review potential therapeutic strategies, including combination therapy, the targeting of virulence traits, impairing stress response pathways and modulating host immunity, to effectively treat infections caused by Cryptococcus spp. Overall, understanding of the mechanisms that regulate anti-cryptococcal drug resistance, coupled with advances in genomics technologies and high-throughput screening methodologies, will catalyse innovation and accelerate antifungal drug discovery.
Collapse
|
21
|
Roth C, Murray D, Scott A, Fu C, Averette AF, Sun S, Heitman J, Magwene PM. Pleiotropy and epistasis within and between signaling pathways defines the genetic architecture of fungal virulence. PLoS Genet 2021; 17:e1009313. [PMID: 33493169 PMCID: PMC7861560 DOI: 10.1371/journal.pgen.1009313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/04/2021] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcal disease is estimated to affect nearly a quarter of a million people annually. Environmental isolates of Cryptococcus deneoformans, which make up 15 to 30% of clinical infections in temperate climates such as Europe, vary in their pathogenicity, ranging from benign to hyper-virulent. Key traits that contribute to virulence, such as the production of the pigment melanin, an extracellular polysaccharide capsule, and the ability to grow at human body temperature have been identified, yet little is known about the genetic basis of variation in such traits. Here we investigate the genetic basis of melanization, capsule size, thermal tolerance, oxidative stress resistance, and antifungal drug sensitivity using quantitative trait locus (QTL) mapping in progeny derived from a cross between two divergent C. deneoformans strains. Using a "function-valued" QTL analysis framework that exploits both time-series information and growth differences across multiple environments, we identified QTL for each of these virulence traits and drug susceptibility. For three QTL we identified the underlying genes and nucleotide differences that govern variation in virulence traits. One of these genes, RIC8, which encodes a regulator of cAMP-PKA signaling, contributes to variation in four virulence traits: melanization, capsule size, thermal tolerance, and resistance to oxidative stress. Two major effect QTL for amphotericin B resistance map to the genes SSK1 and SSK2, which encode key components of the HOG pathway, a fungal-specific signal transduction network that orchestrates cellular responses to osmotic and other stresses. We also discovered complex epistatic interactions within and between genes in the HOG and cAMP-PKA pathways that regulate antifungal drug resistance and resistance to oxidative stress. Our findings advance the understanding of virulence traits among diverse lineages of Cryptococcus, and highlight the role of genetic variation in key stress-responsive signaling pathways as a major contributor to phenotypic variation.
Collapse
Affiliation(s)
- Cullen Roth
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Debra Murray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alexandria Scott
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna F. Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Vellanki S, Garcia AE, Lee SC. Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Front Mol Biosci 2020; 7:588913. [PMID: 33195437 PMCID: PMC7596385 DOI: 10.3389/fmolb.2020.588913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alexis E Garcia
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nat Commun 2020; 11:4212. [PMID: 32839469 PMCID: PMC7445287 DOI: 10.1038/s41467-020-18028-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans. Phosphatases are key components in cellular signalling networks. Here, the authors present a systematic functional analysis of phosphatases of the fungal pathogen Cryptococcus neoformans, revealing roles in virulence, stress responses, O-mannosylation, retromer function and other processes.
Collapse
|
24
|
Li YH, Liu TB. Zinc Finger Proteins in the Human Fungal Pathogen Cryptococcus neoformans. Int J Mol Sci 2020; 21:ijms21041361. [PMID: 32085473 PMCID: PMC7072944 DOI: 10.3390/ijms21041361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc is one of the essential trace elements in eukaryotes and it is a critical structural component of a large number of proteins. Zinc finger proteins (ZNFs) are zinc-finger domain-containing proteins stabilized by bound zinc ions and they form the most abundant proteins, serving extraordinarily diverse biological functions. In recent years, many ZNFs have been identified and characterized in the human fungal pathogen Cryptococcus neoformans, a fungal pathogen causing fatal meningitis mainly in immunocompromised individuals. It has been shown that ZNFs play important roles in the morphological development, differentiation, and virulence of C. neoformans. In this review, we, first, briefly introduce the ZNFs and their classification. Then, we explain the identification and classification of the ZNFs in C. neoformans. Next, we focus on the biological role of the ZNFs functionally characterized so far in the sexual reproduction, virulence factor production, ion homeostasis, pathogenesis, and stress resistance in C. neoformans. We also discuss the perspectives on future function studies of ZNFs in C. neoformans.
Collapse
Affiliation(s)
- Yuan-Hong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1088
| |
Collapse
|