1
|
Dewan I, Uecker H. Evolutionary rescue of bacterial populations by heterozygosity on multicopy plasmids. J Math Biol 2025; 90:26. [PMID: 39909926 PMCID: PMC11799102 DOI: 10.1007/s00285-025-02182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025]
Abstract
Bacterial plasmids and other extrachromosomal DNA elements frequently carry genes with important fitness effects for their hosts. Multicopy plasmids can additionally carry distinct alleles of host-fitness-relevant genes on different plasmid copies, allowing for heterozygosity not possible for loci on haploid chromosomes. Plasmid-mediated heterozygosity may increase the fitness of bacterial cells in circumstances where there is an advantage to having multiple distinct alleles (heterozyogote advantage); however, plasmid-mediated heterozygosity is also subject to constant loss due to random segregation of plasmid copies on cell division. We analyze a multitype branching process model to study the evolution and maintenance of plasmid-mediated heterozygosity under a heterozygote advantage. We focus on an evolutionary rescue scenario in which a novel mutant allele on a plasmid must be maintained together with the wild-type allele to allow population persistance (although our results apply more generally to the maintenance of heterozygosity due to heterozygote advantage). We determine the probability of rescue and derive an analytical expression for the threshold on the fitness of heterozygotes required to overcome segregation and make rescue possible; this threshold decreases with increasing plasmids copy number. We further show that the formation of cointegrates from the fusion of plasmid copies increases the probability of rescue. Overall, our results provide a rigorous quantitative assessment of the conditions under which bacterial populations can adapt to multiple stressors through plasmid-mediated heterozygosity. Many of the results are furthermore applicable to the related problem of the maintenance of incompatible plasmids in the same cell under selection for both.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|
2
|
Wang A, Cordova M, Navarre WW. Evolutionary and functional divergence of Sfx, a plasmid-encoded H-NS homolog, underlies the regulation of IncX plasmid conjugation. mBio 2025; 16:e0208924. [PMID: 39714162 PMCID: PMC11796372 DOI: 10.1128/mbio.02089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS). Recent bioinformatic analyses have revealed that plasmid-encoded H-NS homologs are widespread and exhibit high sequence diversity. However, the functional roles of most of these homologs and the selective forces driving their phylogenetic diversification remain unclear. In this study, we characterized the functionality and evolution of Sfx, a H-NS homolog encoded by the model IncX2 plasmid R6K. We demonstrate that Sfx, but not chromosomal H-NS, can repress R6K conjugation. Notably, we find evidence of positive selection acting on the ancestral Sfx lineage. Positively selected sites are located in the dimerization, oligomerization, and DNA-binding interfaces, many of which contribute to R6K repression activity-indicating that adaptive evolution drove the functional divergence of Sfx. We additionally show that Sfx can physically interact with various chromosomally encoded proteins, including H-NS, StpA, and Hha. Hha enhances the ability of Sfx to regulate R6K conjugation, suggesting that Sfx retained functionally important interactions with chromosomal silencing proteins. Surprisingly, the loss of Sfx does not negatively affect the stability or dissemination of R6K in laboratory conditions, reflecting the complexity of selective pressures favoring conjugation repression. Overall, our study sheds light on the functional and evolutionary divergence of a plasmid-borne H-NS-like protein, highlighting how these loosely specific DNA-binding proteins evolved to specifically regulate different plasmid functions.IMPORTANCEConjugative plasmids play a crucial role in spreading antimicrobial resistance and virulence genes. Most natural conjugative plasmids conjugate only under specific conditions. Therefore, studying the molecular mechanisms underlying conjugation regulation is essential for understanding antimicrobial resistance and pathogen evolution. In this study, we characterized the conjugation regulation of the model IncX plasmid R6K. We discovered that Sfx, a H-NS homolog carried by the plasmid, represses conjugation. Molecular evolutionary analyses combined with gain-of-function experiments indicate that positive selection underlies the conjugation repression activity of Sfx. Additionally, we demonstrate that the loss of Sfx does not adversely affect R6K maintenance under laboratory conditions, suggesting additional selective forces favoring Sfx carriage. Overall, this work underscores the impact of protein diversification on plasmid biology, enhancing our understanding of how molecular evolution affects broader plasmid ecology.
Collapse
Affiliation(s)
- Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martha Cordova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Geoffroy F, Uecker H. Limits to evolutionary rescue by conjugative plasmids. Theor Popul Biol 2023; 154:102-117. [PMID: 37923145 DOI: 10.1016/j.tpb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Plasmids may carry genes coding for beneficial traits and thus contribute to adaptation of bacterial populations to environmental stress. Conjugative plasmids can horizontally transfer between cells, which a priori facilitates the spread of adaptive alleles. However, if the potential recipient cell is already colonized by another incompatible plasmid, successful transfer may be prevented. Competition between plasmids can thus limit horizontal transfer. Previous modeling has indeed shown that evolutionary rescue by a conjugative plasmid is hampered by incompatible resident plasmids in the population. If the rescue plasmid is a mutant variant of the resident plasmid, both plasmids transfer at the same rates. A high conjugation rate then has two, potentially opposing, effects - a direct positive effect on spread of the rescue plasmid and an increase in the fraction of resident plasmid cells. This raises the question whether a high conjugation rate always benefits evolutionary rescue. In this article, we systematically analyze three models of increasing complexity to disentangle the benefits and limits of increasing horizontal gene transfer in the presence of plasmid competition and plasmid costs. We find that the net effect can be positive or negative and that the optimal transfer rate is thus not always the highest one. These results can contribute to our understanding of the many facets of plasmid-driven adaptation and the wide range of transfer rates observed in nature.
Collapse
Affiliation(s)
- Félix Geoffroy
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Hildegard Uecker
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
4
|
Garoña A, Santer M, Hülter NF, Uecker H, Dagan T. Segregational drift hinders the evolution of antibiotic resistance on polyploid replicons. PLoS Genet 2023; 19:e1010829. [PMID: 37535631 PMCID: PMC10399855 DOI: 10.1371/journal.pgen.1010829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
The emergence of antibiotic resistance under treatment depends on the availability of resistance alleles and their establishment in the population. Novel resistance alleles are encoded either in chromosomal or extrachromosomal genetic elements; both types may be present in multiple copies within the cell. However, the effect of polyploidy on the emergence of antibiotic resistance remains understudied. Here we show that the establishment of resistance alleles in microbial populations depends on the ploidy level. Evolving bacterial populations under selection for antibiotic resistance, we demonstrate that resistance alleles in polyploid elements are lost frequently in comparison to alleles in monoploid elements due to segregational drift. Integrating the experiments with a mathematical model, we find a remarkable agreement between the theoretical and empirical results, confirming our understanding of the allele segregation process. Using the mathematical model, we further show that the effect of polyploidy on the establishment probability of beneficial alleles is strongest for low replicon copy numbers and plateaus for high replicon copy numbers. Our results suggest that the distribution of fitness effects for mutations that are eventually fixed in a population depends on the replicon ploidy level. Our study indicates that the emergence of antibiotic resistance in bacterial pathogens depends on the pathogen ploidy level.
Collapse
Affiliation(s)
- Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, Kiel University, Kiel, Germany
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Nils F. Hülter
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Hildegard Uecker
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
6
|
Hernandez‐Beltran JCR, Miró Pina V, Siri‐Jégousse A, Palau S, Peña‐Miller R, González Casanova A. Segregational instability of multicopy plasmids: A population genetics approach. Ecol Evol 2022; 12:e9469. [PMID: 36479025 PMCID: PMC9720003 DOI: 10.1002/ece3.9469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/11/2022] Open
Abstract
Plasmids are extra-chromosomal genetic elements that encode a wide variety of phenotypes and can be maintained in bacterial populations through vertical and horizontal transmission, thus increasing bacterial adaptation to hostile environmental conditions like those imposed by antimicrobial substances. To circumvent the segregational instability resulting from randomly distributing plasmids between daughter cells upon division, nontransmissible plasmids tend to be carried in multiple copies per cell, with the added benefit of exhibiting increased gene dosage and resistance levels. But carrying multiple copies also results in a high metabolic burden to the bacterial host, therefore reducing the overall fitness of the population. This trade-off poses an existential question for plasmids: What is the optimal plasmid copy number? In this manuscript, we address this question by postulating and analyzing a population genetics model to evaluate the interaction between selective pressure, the number of plasmid copies carried by each cell, and the metabolic burden associated with plasmid bearing in the absence of selection for plasmid-encoded traits. Parameter values of the model were estimated experimentally using Escherichia coli K12 carrying a multicopy plasmid encoding for a fluorescent protein and bla TEM-1, a gene conferring resistance to β-lactam antibiotics. By numerically determining the optimal plasmid copy number for constant and fluctuating selection regimes, we show that plasmid copy number is a highly optimized evolutionary trait that depends on the rate of environmental fluctuation and balances the benefit between increased stability in the absence of selection with the burden associated with carrying multiple copies of the plasmid.
Collapse
Affiliation(s)
- J. Carlos R. Hernandez‐Beltran
- Systems Biology Program, Center for Genomic SciencesUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Verónica Miró Pina
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Departamento de Probabilidad y Estadística, Instituto de Investigación en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Arno Siri‐Jégousse
- Departamento de Probabilidad y Estadística, Instituto de Investigación en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Sandra Palau
- Departamento de Probabilidad y Estadística, Instituto de Investigación en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Rafael Peña‐Miller
- Systems Biology Program, Center for Genomic SciencesUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | | |
Collapse
|
7
|
Santer M, Kupczok A, Dagan T, Uecker H. Fixation dynamics of beneficial alleles in prokaryotic polyploid chromosomes and plasmids. Genetics 2022; 222:6663764. [PMID: 35959975 PMCID: PMC9526072 DOI: 10.1093/genetics/iyac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Theoretical population genetics has been mostly developed for sexually reproducing diploid and for monoploid (haploid) organisms, focusing on eukaryotes. The evolution of bacteria and archaea is often studied by models for the allele dynamics in monoploid populations. However, many prokaryotic organisms harbor multicopy replicons—chromosomes and plasmids—and theory for the allele dynamics in populations of polyploid prokaryotes remains lacking. Here, we present a population genetics model for replicons with multiple copies in the cell. Using this model, we characterize the fixation process of a dominant beneficial mutation at 2 levels: the phenotype and the genotype. Our results show that depending on the mode of replication and segregation, the fixation of the mutant phenotype may precede genotypic fixation by many generations; we term this time interval the heterozygosity window. We furthermore derive concise analytical expressions for the occurrence and length of the heterozygosity window, showing that it emerges if the copy number is high and selection strong. Within the heterozygosity window, the population is phenotypically adapted, while both alleles persist in the population. Replicon ploidy thus allows for the maintenance of genetic variation following phenotypic adaptation and consequently for reversibility in adaptation to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mario Santer
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anne Kupczok
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany.,Bioinformatics group, Department of Plant Sciences, Wageningen University & Research, 6708PB Wageningen, Netherlands
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Hildegard Uecker
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
8
|
Chen H, Li N, Wang F, Wang L, Liang W. Carbapenem antibiotic stress increases bla KPC -2 gene relative copy number and bacterial resistance levels of Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24519. [PMID: 35718993 PMCID: PMC9280016 DOI: 10.1002/jcla.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background The clinical isolation rates of carbapenem‐resistant Klebsiella pneumoniae (CR‐KP) continue to increase. In China, clinical CR‐KP isolates are mainly attributed to the blaKPC‐2 gene carried on plasmids, and the blaKPC‐2 copy number correlates with the expression of KPC enzymes, which can cause elevated carbapenem MICs. Methods Thirty‐seven CR‐KP isolates were collected at the Second People’s Hospital of Lianyungang City between January 2020 and March 2021, with no duplicate isolates, and were screened for the blaKPC‐2 gene with PCR. Analysis of current CRKP resistance to clinically relevant antimicrobials using the bioMérieux VITEK® 2 bacterial identification card. The multilocus sequence types of the strains were confirmed with PCR and DNA sequencing. Recombinant plasmids pET20b‐blaKPC‐2 and pET20b‐CpsG were constructed, and the copy numbers of the recombinant plasmids per unit volume was calculated based on the molecular weight of the plasmids. After the genomes DNA of clinical isolates of K. pneumoniae carrying the blaKPC‐2 gene were purified, the blaKPC‐2 gene relative copy number in individual K. pneumoniae strains was indicated by the double standard curve method. Detection of MIC values changes of K. pneumoniae under imipenem selection pressure by broth microdilution method. Results Among the 37 CR‐KP strains isolated, only the blaKPC‐2 gene was detected in 30 strains, three strains were positive for the blaNDM‐1 gene, two strains carried both the blaKPC‐2 and blaNDM‐1 genes, and two strains without detectable carbapenem resistance genes. The ST11 clone was predominant among the 37 carbapenem‐resistant K. pneumoniae isolates. Drug sensitivity testing showed that except for polymyxins (100% susceptible) and tigecycline (75.7% intermediate), the 37 CR‐KP strains were resistant to almost all antimicrobial drugs. The blaKPC‐2 relative copy number in nine ST11 clinical isolates of K. pneumoniae was 7.64 ± 2.51 when grown on LB plates but 27.67 ± 13.04 when grown on LB plates containing imipenem. Among these nine isolates, five CRKP strains exhibited elevated MICs to imipenem, while the remaining four strains showed unchanged MIC values to imipenem. Conclusion Carbapenem‐resistant Klebsiella pneumoniae isolates may have multiple pathways to achieve high levels of carbapenem resistance, and moderate carbapenem pressure can increase the copy number of KPC enzyme genes in CRKP strains and enhance the degree of carbapenem resistance in the strains.
Collapse
Affiliation(s)
- Huimin Chen
- Lianyungang Second People's Hospital affiliated to Jiangsu University, Lianyungang, China
| | - Na Li
- Lianyungang Second People's Hospital Affiliated to Bengbu Medical College, Lianyungang, China
| | - Fang Wang
- Lianyungang Second People Hospital, Lianyungang, China
| | - Lei Wang
- Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wei Liang
- Lianyungang Second People's Hospital affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
9
|
Trubenová B, Roizman D, Moter A, Rolff J, Regoes RR. Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends Microbiol 2022; 30:841-852. [PMID: 35337697 DOI: 10.1016/j.tim.2022.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Biofilms are communities of bacteria forming high-density sessile colonies. Such a lifestyle comes associated with costs and benefits: while the growth rate of biofilms is often lower than that of their free-living counterparts, this cost is readily repaid once the colony is subjected to antibiotics. Biofilms can grow in antibiotic concentrations a thousand times higher than planktonic bacteria. While numerous mechanisms have been proposed to explain biofilm recalcitrance towards antibiotics, little is yet known about their effect on the evolution of resistance. We synthesize the current understanding of biofilm recalcitrance from a pharmacodynamic and a population genetics perspective. Using the pharmacodynamic framework, we discuss the effects of various mechanisms and show that biofilms can either promote or impede resistance evolution.
Collapse
Affiliation(s)
| | - Dan Roizman
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Germany
| | - Annette Moter
- Charité, Universitätsmedizin Berlin Biofilmcenter, Berlin, Germany
| | - Jens Rolff
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Germany
| | | |
Collapse
|
10
|
Ares-Arroyo M, Rocha EPC, Gonzalez-Zorn B. Evolution of ColE1-like plasmids across γ-Proteobacteria: From bacteriocin production to antimicrobial resistance. PLoS Genet 2021; 17:e1009919. [PMID: 34847155 PMCID: PMC8683028 DOI: 10.1371/journal.pgen.1009919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/17/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOBP5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements. The extraordinary adaptability of bacteria and the massive prevalence of mobile genetic elements within populations has turned antimicrobial resistance into a growing threat to Public Health. Among all the mobile genetic elements, plasmids have been the focus of attention as these extrachromosomal molecules of DNA are able to mobilize several antimicrobial resistance genes at once through conjugation. However, although small mobilizable and non-conjugative replicons have been traditionally overlooked when analyzing plasmid-mediated antimicrobial resistance, they have recently been described as important carriers of AMR genes. In this work, we have analyzed the ColE1-like plasmid family, whose study has been neglected even if they are one of the main groups of small plasmids in natural populations of Proteobacteria. We observed that these plasmids have evolved for a long time within γ-Proteobacteria acquiring different genetic features in specific hosts, being major players in the spread of antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Faculty of Veterinary Medicine and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Faculty of Veterinary Medicine and VISAVET, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
11
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
12
|
Garoña A, Hülter NF, Romero Picazo D, Dagan T. Segregational drift constrains the evolutionary rate of prokaryotic plasmids. Mol Biol Evol 2021; 38:5610-5624. [PMID: 34550379 PMCID: PMC8662611 DOI: 10.1093/molbev/msab283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plasmids are extrachromosomal genetic elements in prokaryotes that have been recognized as important drivers of microbial ecology and evolution. Plasmids are found in multiple copies inside their host cell where independent emergence of mutations may lead to intracellular genetic heterogeneity. The intracellular plasmid diversity is thus subject to changes upon cell division. However, the effect of plasmid segregation on plasmid evolution remains understudied. Here, we show that genetic drift during cell division—segregational drift—leads to the rapid extinction of novel plasmid alleles. We established a novel experimental approach to control plasmid allele frequency at the levels of a single cell and the whole population. Following the dynamics of plasmid alleles in an evolution experiment, we find that the mode of plasmid inheritance—random or clustered—is an important determinant of plasmid allele dynamics. Phylogenetic reconstruction of our model plasmid in clinical isolates furthermore reveals a slow evolutionary rate of plasmid-encoded genes in comparison to chromosomal genes. Our study provides empirical evidence that genetic drift in plasmid evolution occurs at multiple levels: the host cell and the population of hosts. Segregational drift has implications for the evolutionary rate heterogeneity of extrachromosomal genetic elements.
Collapse
Affiliation(s)
- Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| | - Nils F Hülter
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, 24118, Germany
| |
Collapse
|
13
|
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347-359. [PMID: 33469168 DOI: 10.1038/s41579-020-00497-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.
Collapse
|