1
|
Nakamoto H, Shichi S, Shirakawa C, Suzuki T, Kitamura H, Taketomi A. Diacylglycerol kinase alpha regulates post-hepatectomy liver regeneration. Sci Rep 2025; 15:555. [PMID: 39747625 PMCID: PMC11696009 DOI: 10.1038/s41598-024-84403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol to generate phosphatidic acid, which plays important roles in intracellular signal transduction. DGKα is reportedly associated with progression of tumors, including hepatocellular carcinomas, but its relationship with liver regeneration has not been examined. The purpose of this research is to elucidate the role of DGKα in liver regeneration. Here, we provide a detailed examination of C57BL/6 wild-type and DGKα knockout (KO) mice subjected to 70% partial hepatectomy (70% PH) modeling, including survival rates, hematological marker and gene expression levels, and histological analyses of factors related to liver regeneration. Following 70% PH, DGKα KO mice produce higher levels of hepatobiliary enzymes and have a higher incidence of jaundice compared with wild-type mice, with a death rate of ~ 40%. Furthermore, they exhibit impaired glycogen and lipid consumption, low liver energy charge, and hepatocyte hypertrophy disorder, accompanied by significantly reduced liver expression of proliferating cell nuclear antigen and cyclin D. We conclude that DGKα is a key molecule in the post-PH liver regeneration process and may have potential as a therapeutic target for the acceleration of liver regeneration.
Collapse
Affiliation(s)
- Hiroki Nakamoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Shunsuke Shichi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Chisato Shirakawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takuto Suzuki
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hidemitsu Kitamura
- Department of Biomedical Engineering, Faculty of Life Sciences, Toyo University, Saitama, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
2
|
Birrer DL, Kachaylo E, Breuer E, Linecker M, Kron P, Ungethüm U, Hagedorn C, Steiner R, Kälin C, Borrego LB, Dufour JF, Foti M, Hornemann T, Clavien PA, Humar B. Normalization of lipid oxidation defects arising from hypoxia early posthepatectomy prevents liver failure in mouse. Am J Transplant 2023; 23:190-201. [PMID: 36804129 DOI: 10.1016/j.ajt.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023]
Abstract
Surgical liver failure (SLF) develops when a marginal amount of hepatic mass is left after surgery, such as following excessive resection. SLF is the commonest cause of death due to liver surgery; however, its etiology remains obscure. Using mouse models of standard hepatectomy (sHx) (68%, resulting in full regeneration) or extended hepatectomy (eHx) (86%/91%, causing SLF), we explored the causes of early SLF related to portal hyperafflux. Assessing the levels of HIF2A with or without oxygenating agent inositol trispyrophosphate (ITPP) indicated hypoxia early after eHx. Subsequently, lipid oxidation (PPARA/PGC1α) was downregulated and associated with persisting steatosis. Mild oxidation with low-dose ITPP reduced the levels of HIF2A, restored downstream PPARA/PGC1α expression along with lipid oxidation activities (LOAs), and normalized steatosis and other metabolic or regenerative SLF deficiencies. Promotion of LOA with L-carnitine likewise normalized the SLF phenotype, and both ITPP and L-carnitine markedly raised survival in lethal SLF. In patients who underwent hepatectomy, pronounced increases in serum carnitine levels (reflecting LOA) were associated with better recovery. Lipid oxidation thus provides a link between the hyperafflux of O2-poor portal blood, the metabolic/regenerative deficits, and the increased mortality typifying SLF. Stimulation of lipid oxidation-the prime regenerative energy source-particularly through L-carnitine may offer a safe and feasible way to reduce SLF risks in the clinic.
Collapse
Affiliation(s)
- Dominique Lisa Birrer
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Ekaterina Kachaylo
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Eva Breuer
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Michael Linecker
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Philipp Kron
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Udo Ungethüm
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Catherine Hagedorn
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Regula Steiner
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Carola Kälin
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Lucia Bautista Borrego
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine and Hepatology, Department of BioMedical Research, University of Berne, Berne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Pierre-Alain Clavien
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Bostjan Humar
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
YAN X, Shi JH, Xue JF, Guo WZ, Li B, Zhang SJ. PD-1/PD-L1 inhibition promotes hepatic regeneration in small-for-size liver following extended hepatectomy. Cytokine 2022; 159:156017. [DOI: 10.1016/j.cyto.2022.156017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
|
4
|
Xue W, Fu Y, Zhang H, Li G, Cao P, Li Y, Peng Q, Zhong K, Feng S, Gao Y. A novel, simplified, and reproducible porcine model of acute ischemic liver failure with portal vein preservation. Exp Anim 2022; 71:60-70. [PMID: 34497163 PMCID: PMC8828402 DOI: 10.1538/expanim.21-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
The current ischemic models of liver failure are difficult and usually time-consuming to produce. The aim of this study was to develop a simplified and reproducible porcine model of acute liver failure for use in preclinical research. Eighteen Bama miniature pigs were randomly divided into Groups A, B, and C. The hepatic artery and common bile duct were ligated in all groups. While the portal vein was completely preserved in Group A, it was narrowed by 1/3 and 1/2 in Groups B and C, respectively. Results of biochemical analyses, encephalopathy scores, and survival times were compared among the groups. Results of hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, Masson staining, and Ki-67 analyses were recorded. Survival times in Groups B and C were 11.67 ± 1.86 and 2.16 ± 0.75 days, respectively, shorter than that in Group A (>15 days). Following surgery, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, alkaline phosphatase, total bilirubin, and direct bilirubin levels significantly increased relative to baseline values in all groups (P<0.05). Groups B and C exhibited a significant decrease in encephalopathy scores and a significant increase in ammonia levels, which were negatively correlated with one another. Pathological analysis revealed obvious necrosis of liver cells, which correlated closely with the degree of portal vein constriction. Our simple, highly reproducible model effectively mimics the clinical characteristics of acute liver failure in humans and provides a foundation for further research on artificial liver support system development.
Collapse
Affiliation(s)
- Weisong Xue
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Yu Fu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Haojie Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Guoping Li
- Beijing Grand Lifescience & technology, Ltd., No. 8, Shengmingyuan Road, Changping District, Beijing 100000, P.R. China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Kebo Zhong
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
| | - Shuangtang Feng
- Beijing Grand Lifescience & technology, Ltd., No. 8, Shengmingyuan Road, Changping District, Beijing 100000, P.R. China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510280, Guangdong Province, P.R. China
- State Key Laboratory of Organ Failure Research, Southern Medical University, No. 1023, Shatai Road, Baiyun District, Guangzhou 510050, Guangdong Province, P.R. China
| |
Collapse
|
5
|
Beneficial Effects of Sagacious Confucius' Pillow Elixir on Cognitive Function in Senescence-Accelerated P8 Mice (SAMP8) via the NLRP3/Caspase-1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3097923. [PMID: 31781266 PMCID: PMC6874996 DOI: 10.1155/2019/3097923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/27/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Sagacious Confucius' Pillow Elixir (SCPE) is a traditional Chinese medicine that is mainly used for cognitive impairment in aging; however, the underlying mechanisms remain unclear. Aging is one of the most important pathogenic factors leading to inflammation and pyroptosis in the hippocampus, which may be a potential mechanism in elderly patients with cognitive impairment. Here, we examined whether SCPE could improve cognitive impairment in SAMP8 mice by reducing hippocampal inflammation and pyroptosis. Seven-month-old senescence-accelerated P8 mice (SAMP8) received SCPE (2.3 g/kg/day; 4.6 g/kg/day; 9.2 g/kg/day) for 28 days. Cognitive function and morphometric examinations were performed followed by water maze testing, hematoxylin-eosin staining, Congo red staining, toluidine blue staining, and TUNEL analysis of hippocampal CA1 and CA3 regions. Escape latency increased and times across platforms decreased in SAMP8 mice; however, both of them were normalized by SCPE after 28 days. Aging caused significant pyroptosis in hippocampal CA1 and CA3 regions, as evidenced by neuronal degeneration and necrosis, amyloid deposition, and decreased Nissl body amounts after cognitive impairment, which were greatly improved by SCPE. SCPE reduced serum IL-1β, IL-6, IL-18, and TNF-α levels and reduced hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1β, IL-6, IL-18, and Aβ expression. Thus, SCPE exerts an antipyroptotic effect in aging, mainly by suppressing the NLRP3/caspase-1 signaling pathway.
Collapse
|
6
|
Álvarez-Mercado AI, Bujaldon E, Gracia-Sancho J, Peralta C. The Role of Adipokines in Surgical Procedures Requiring Both Liver Regeneration and Vascular Occlusion. Int J Mol Sci 2018; 19:3395. [PMID: 30380727 PMCID: PMC6274984 DOI: 10.3390/ijms19113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Liver regeneration is a perfectly calibrated mechanism crucial to increase mass recovery of small size grafts from living donor liver transplantation, as well as in other surgical procedures including hepatic resections and liver transplantation from cadaveric donors. Regeneration involves multiple events and pathways in which several adipokines contribute to their orchestration and drive hepatocytes to proliferate. In addition, ischemia-reperfusion injury is a critical factor in hepatic resection and liver transplantation associated with liver failure or graft dysfunction post-surgery. This review aims to summarize the existing knowledge in the role of adipokines in surgical procedures requiring both liver regeneration and vascular occlusion, which increases ischemia-reperfusion injury and regenerative failure. We expose and discuss results in small-for-size liver transplantation and hepatic resections from animal studies focused on the modulation of the main adipokines associated with liver diseases and/or regeneration published in the last five years and analyze future perspectives and their applicability as potential targets to decrease ischemia-reperfusion injury and improve regeneration highlighting marginal states such as steatosis. In our view, adipokines means a promising approach to translate to the bedside to improve the recovery of patients subjected to partial hepatectomy and to increase the availability of organs for transplantation.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Esther Bujaldon
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain.
| | - Carmen Peralta
- Experimental Liver Surgery and Liver Transplantation, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas (CIBEREHD), 28029 Madrid, Spain.
- Facultad de Medicina, Universidad Internacional de Cataluña, 08017 Barcelona, Spain.
| |
Collapse
|
7
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Hypoxic Signaling and Cholesterol Lipotoxicity in Fatty Liver Disease Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2548154. [PMID: 29955245 PMCID: PMC6000860 DOI: 10.1155/2018/2548154] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Cholesterol is the only lipid whose absorption in the gastrointestinal tract is limited by gate-keeping transporters and efflux mechanisms, preventing its rapid absorption and accumulation in the liver and blood vessels. In this review, I explored the current data regarding cholesterol accumulation in liver cells and key mechanisms in cholesterol-induced fatty liver disease associated with the activation of deleterious hypoxic and nitric oxide signal transduction pathways. Although nonalcoholic fatty liver disease (NAFLD) affects both obese and nonobese individuals, the mechanism of NAFLD progression in lean individuals with healthy metabolism is puzzling. Lean NAFLD individuals exhibit normal metabolic responses, implying that liver damage is not associated with impaired metabolism per se and that direct lipotoxic effects are crucial for disease progression. Several redox and oxidant signaling pathways involving cholesterol are at play in fatty liver disease development. These include impairment of the mitochondrial and lysosomal function by cholesterol loading of the inner-cell membranes; formation of cholesterol crystals and hepatocyte degradation; and crown-like structures surrounding degrading hepatocytes, activating Kupffer cells, and evoking inflammation. The current review focuses on the induction of liver inflammation, fibrosis, and steatosis by free cholesterol via the hypoxia-inducible factor 1α (HIF-1α), a main oxygen-sensing transcription factor involved in all stages of NAFLD. Cholesterol loading in hepatocytes can result in chronic HIF-1α activity because of the decreased oxygen availability and excessive production of nitric oxide and mitochondrial reactive oxygen species.
Collapse
|