1
|
Saunders RA, Allen WE, Pan X, Sandhu J, Lu J, Lau TK, Smolyar K, Sullivan ZA, Dulac C, Weissman JS, Zhuang X. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.624217. [PMID: 39605605 PMCID: PMC11601512 DOI: 10.1101/2024.11.18.624217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and provides crucial training data for emerging machine-learning models of cellular function.
Collapse
Affiliation(s)
- Reuben A. Saunders
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Society of Fellows, Harvard University, MA 02138, USA
- These authors contributed equally
| | - William E. Allen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; Arc Institute, Palo Alto, CA 94304
- These authors contributed equally
- Lead contact
| | - Xingjie Pan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Lead AI Scientist
| | - Jaspreet Sandhu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jiaqi Lu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K. Lau
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Karina Smolyar
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Zuri A. Sullivan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Silvano A, Sisti G, Seravalli V, Strambi N, Parenti A, Amedei A, Witkin SS, Di Tommaso M. Changes in cytokine and sequestosome-1 levels during twin pregnancy progression: Association with outcome. Cytokine 2024; 180:156668. [PMID: 38851146 DOI: 10.1016/j.cyto.2024.156668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Twin pregnancies are associated with complications and adverse outcomes. The number of twin pregnancies has increased in the last decades, due to the use of assisted reproductive techniques and delayed childbearing. Analysis of changes that occur during twin pregnancy progression and their association with outcome will lead to improved clinical interventions. OBJECTIVE We evaluated if the plasma concentration of select cytokines and the level of sequestosome-1 (p62) in peripheral blood mononuclear cells (PBMCs) during each trimester of twin gestations was predictive of pregnancy outcome. STUDY DESIGN This prospective, observational study was conducted at Careggi University Hospital, Florence, Italy. Plasma from 82 women with twin pregnancies was collected in each trimester for measurement of interleukin (IL)-1β, IL-6, IL-10, IL-12 and tumor necrosis factor (TNF)-α. The intracellular PBMC concentration of p62, a protein involved in autophagy, kinase activity and cell differentiation, was also determined. RESULTS IL-1β (p < 0.001), IL-6 (p < 0.001), TNF-α (p < 0.001) and p62 (p < 0.05) increased from the 1st to the 2nd to the 3rd trimester. The TNF-α level was correlated with the IL-1β concentration in the 1st and 3rd trimesters p < 0.01) and with the IL-6 concentration in each of the three trimesters (p < 0.01). The intracellular p62 level in PBMCs was negatively correlated with the concentration of IL-1β in the 2nd trimester (p < 0.05) and negatively correlated with the IL-6 level in the 3rd trimester (p < 0.05). The TNF-α level was significantly higher in the 2nd (p < 0.05) and 3rd (p < 0.001) trimester in women with a spontaneous preterm delivery. The TNF-α concentrations in the 2nd (p < 0.05) and 3rd (p < 0.01) trimester, respectively, and 3rd trimester IL-6 (p < 0.01), were negatively associated with gestational age at delivery. The concentration of IL-6 was highest in the 2nd (p < 0.05) and 3rd (p < 0.05) trimesters in women who utilized assisted reproductive technologies. An elevated IL-1β level in the 3rd trimester was associated with gestational diabetes mellitus (p < 0.05). CONCLUSION Variations in cytokine levels between individual women during the three trimesters of twin gestations are predictive of spontaneous preterm delivery and the onset of gestational diabetes.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Giovanni Sisti
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, USA
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Astrid Parenti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Italy
| | - Steven S Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY, USA; Department of Infectious Diseases and Parasitology, Laboratory of Virology, University of Sao Paulo Faculty of Medicine, Sao Paulo, Brazil
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy.
| |
Collapse
|
3
|
Yon DK, Kim YJ, Park DC, Jung SY, Kim SS, Yeo JH, Lee J, Lee JM, Yeo SG. Induction of Autophagy and Its Role in Peripheral Nerve Regeneration after Peripheral Nerve Injury. Int J Mol Sci 2023; 24:16219. [PMID: 38003409 PMCID: PMC10671617 DOI: 10.3390/ijms242216219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
No matter what treatment is used after nerve transection, a complete cure is impossible, so basic and clinical research is underway to find a cure. As part of this research, autophagy is being investigated for its role in nerve regeneration. Here, we review the existing literature regarding the involvement and significance of autophagy in peripheral nerve injury and regeneration. A comprehensive literature review was conducted to assess the induction and role of autophagy in peripheral nerve injury and subsequent regeneration. Studies were included if they were prospective or retrospective investigations of autophagy and facial or peripheral nerves. Articles not mentioning autophagy or the facial or peripheral nerves, review articles, off-topic articles, and those not written in English were excluded. A total of 14 peripheral nerve studies that met these criteria, including 11 involving sciatic nerves, 2 involving facial nerves, and 1 involving the inferior alveolar nerve, were included in this review. Studies conducted on rats and mice have demonstrated activation of autophagy and expression of related factors in peripheral nerves with or without stimulation of autophagy-inducing factors such as rapamycin, curcumin, three-dimensional melatonin nerve scaffolds, CXCL12, resveratrol, nerve growth factor, lentinan, adipose-derived stem cells and melatonin, basic fibroblast growth factor, and epothilone B. Among the most studied of these factors in relation to degeneration and regeneration of facial and sciatic nerves are LC3II/I, PI3K, mTOR, Beclin-1, ATG3, ATG5, ATG7, ATG9, and ATG12. This analysis indicates that autophagy is involved in the process of nerve regeneration following facial and sciatic nerve damage. Inadequate autophagy induction or failure of autophagy responses can result in regeneration issues after peripheral nerve damage. Animal studies suggest that autophagy plays an important role in peripheral nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
- Department of Pediatrics, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Su Young Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang 04763, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joon Hyung Yeo
- Public Health Center, Danyang-gun, Seoul 27010, Republic of Korea
| | - Jeongmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jae Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
4
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
5
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
6
|
The Role of Macroautophagy and Chaperone-Mediated Autophagy in the Pathogenesis and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030760. [PMID: 35159028 PMCID: PMC8833636 DOI: 10.3390/cancers14030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a major health problem with the second highest mortality among all cancers and a continuous increase worldwide. HCC is highly resistant to available chemotherapeutic agents, leaving patients with no effective therapeutic option and a poor prognosis. Although an increasing number of studies have elucidated the potential role of autophagy underlying HCC, the complete regulation is far from understood. The different forms of autophagy constitute important cell survival mechanisms that could prevent hepatocarcinogenesis by limiting hepatocyte death and the associated hepatitis and fibrosis at early stages of chronic liver diseases. On the other hand, at late stages of hepatocarcinogenesis, they could support the malignant transformation of (pre)neoplastic cells by facilitating their survival. Abstract Hepatocarcinogenesis is a long process with a complex pathophysiology. The current therapeutic options for HCC management, during the advanced stage, provide short-term survival ranging from 10–14 months. Autophagy acts as a double-edged sword during this process. Recently, two main autophagic pathways have emerged to play critical roles during hepatic oncogenesis, macroautophagy and chaperone-mediated autophagy. Mounting evidence suggests that upregulation of macroautophagy plays a crucial role during the early stages of carcinogenesis as a tumor suppressor mechanism; however, it has been also implicated in later stages promoting survival of cancer cells. Nonetheless, chaperone-mediated autophagy has been elucidated as a tumor-promoting mechanism contributing to cancer cell survival. Moreover, the autophagy pathway seems to have a complex role during the metastatic stage, while induction of autophagy has been implicated as a potential mechanism of chemoresistance of HCC cells. The present review provides an update on the role of autophagy pathways in the development of HCC and data on how the modulation of the autophagic pathway could contribute to the most effective management of HCC.
Collapse
|
7
|
Alterations of the 70 kDa heat shock protein (HSP70) and sequestosome-1 (p62) in women with breast cancer. Sci Rep 2021; 11:22220. [PMID: 34782665 PMCID: PMC8593156 DOI: 10.1038/s41598-021-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) respond to altered physiological conditions to alleviate the threat. Production of the 70 kDa heat shock protein (HSP70) is up-regulated to protect proteins from degradation. Sequestosome-1 (p62) binds to altered proteins and the p62-protein complex is degraded by autophagy. P62 is also a regulator of intracellular kinase activity and cell differentiation. We hypothesized that the PBMC response to a malignant breast mass involves elevated production of HSP70 and a decrease in intracellular p62. In this study 46 women had their breast mass excised. PBMCs were isolated and intracellular levels of HSP70 and p62 were quantitated by ELISA. Differences between women with a benign or malignant breast mass were determined. A breast malignancy was diagnosed in 38 women (82.6%) while 8 had a benign lesion. Mean intracellular HSP70 levels were 79.3 ng/ml in PBMCs from women with a malignant lesion as opposed to 44.2 ng/ml in controls (p = 0.04). The mean PBMC p62 level was 2.3 ng/ml in women with a benign breast lesion as opposed to 0.6 ng/ml in those with breast cancer (p < 0.001). Mean p62 levels were lowest in women with invasive carcinoma and a positive lymph node biopsy when compared to those with in-situ carcinoma or absence of lymphadenopathy, respectively. Intracellular HSP70 and p62 levels in PBMCs differ between women with a malignant or benign breast lesion. These measurements may be of value in the preoperative triage of women with a breast mass.
Collapse
|
8
|
Frisardi V, Matrone C, Street ME. Metabolic Syndrome and Autophagy: Focus on HMGB1 Protein. Front Cell Dev Biol 2021; 9:654913. [PMID: 33912566 PMCID: PMC8072385 DOI: 10.3389/fcell.2021.654913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) affects the population worldwide and results from several factors such as genetic background, environment and lifestyle. In recent years, an interplay among autophagy, metabolism, and metabolic disorders has become apparent. Defects in the autophagy machinery are associated with the dysfunction of many tissues/organs regulating metabolism. Metabolic hormones and nutrients regulate, in turn, the autophagy mechanism. Autophagy is a housekeeping stress-induced degradation process that ensures cellular homeostasis. High mobility group box 1 (HMGB1) is a highly conserved nuclear protein with a nuclear and extracellular role that functions as an extracellular signaling molecule under specific conditions. Several studies have shown that HMGB1 is a critical regulator of autophagy. This mini-review focuses on the involvement of HMGB1 protein in the interplay between autophagy and MetS, emphasizing its potential role as a promising biomarker candidate for the early stage of MetS or disease's therapeutic target.
Collapse
Affiliation(s)
- Vincenza Frisardi
- Clinical and Nutritional Laboratory, Department of Geriatric and NeuroRehabilitation, Arcispedale Santa Maria Nuova (AUSL-IRCCS), Reggio Emilia, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Paediatrics, Department of Mother and Child, Arcispedale Santa Maria Nuova (AUSL-IRCCS), Reggio Emilia, Italy
| |
Collapse
|
9
|
Role of autophagy in atherosclerosis: foe or friend? JOURNAL OF INFLAMMATION-LONDON 2019; 16:8. [PMID: 31073280 PMCID: PMC6498679 DOI: 10.1186/s12950-019-0212-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Athrosclerosis is conceived as a chronic inflammatory status affecting cells from vascular walls. Different mechanisms and pathological features are evident at the onset of atherosclerotic changes via the engaging different cells from the vascular wall and circulatory cells. Attempts are currently focused on the detection of cell compensatory mechanisms against atherosclerotic changes to restore cell function and/or postpone severe vasculitis. Autophagy is an intracellular self-digesting process commonly protrudes exhausted organelles and injured cytoplasmic constituents via double-lipid bilayer membrane vesicles out the target cells. Recent investigations point to the critical and defensive role of autophagy in the vascular cells behavioral function such as endothelial cells and smooth muscle cells against different insults. Autophagy response and related effectors could be modulated in the favor to restore cell function and reduce pro-inflammatory status under pathological conditions. In this review, the recent findings were collected regarding the role of autophagy during atherosclerotic changes. We aimed to answer the question of how autophagy stimulation and/or inhibition could provide a promising effect on developing a sophisticated treatment for AS.
Collapse
|
10
|
Casassa AF, Vanrell MC, Colombo MI, Gottlieb RA, Romano PS. Autophagy plays a protective role against Trypanosoma cruzi infection in mice. Virulence 2019; 10:151-165. [PMID: 30829115 PMCID: PMC6550547 DOI: 10.1080/21505594.2019.1584027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic pathway required for cellular and organism homeostasis. Autophagy participates in the innate and adaptive immune responses at different levels. Xenophagy is a class of selective autophagy that involves the elimination of intracellular pathogens. Trypanosoma cruzi is the causative agent of Chagas, a disease that affects 8 million individuals worldwide. Previously, our group has demonstrated that autophagy participates in the invasion of T. cruzi in non-phagocytic cells. In this work we have studied the involvement of autophagy in the development of T. cruzi infection in mice. Beclin-1 is a protein essential for autophagy, required for autophagosome biogenesis and maturation. We have performed an acute model of infection on the autophagic deficient Beclin-1 heterozygous knock-out mice (Bcln±) and compared to control Bcln+/+ animals. In addition, we have analyzed the infection process in both peritoneal cells and RAW macrophages. Our results have shown that the infection was more aggressive in the autophagy-deficient mice, which displayed higher numbers of parasitemia, heart´s parasitic nests and mortality rates. We have also found that peritoneal cells derived from Bcln± animals and RAW macrophages treated with autophagy inhibitors displayed higher levels of infection compared to controls. Interestingly, free cytosolic parasites recruited LC3 protein and other markers of xenophagy in control compared to autophagy-deficient cells. Taken together, these data suggest that autophagy plays a protective role against T. cruzi infection in mice, xenophagy being one of the processes activated as part of the repertoire of immune responses generated by the host.
Collapse
Affiliation(s)
- Ana Florencia Casassa
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina
| | - María Cristina Vanrell
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina.,b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - María Isabel Colombo
- b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina.,c Laboratorio: Mecanismos moleculares implicados en el tráfico vesicular y la vía autofágica Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina
| | - Roberta A Gottlieb
- d Smidt Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Patricia Silvia Romano
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina.,b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| |
Collapse
|
11
|
Regulation of Autophagy Affects the Prognosis of Mice with Severe Acute Pancreatitis. Dig Dis Sci 2018; 63:2639-2650. [PMID: 29629491 DOI: 10.1007/s10620-018-5053-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a common inflammatory disease that may develop to severe AP (SAP), resulting in life-threatening complications. Impaired autophagic flux is a characteristic of early AP, and its accumulation could activate oxidative stress and nuclear factor κB (NF-κB) pathways, which aggravate the disease process. AIM To explore the therapeutic effects of regulating autophagy after the onset of AP. METHODS In this study, intraperitoneal injections of 3-methyladenine (3-MA) and rapamycin (RAPA) in the L-arginine or cerulein plus lipopolysaccharide (LPS) Balb/C mouse model. At 24 h after the last injection, pulmonary, intestinal, renal and pancreatic tissues were analyzed. RESULTS We found that 3-MA ameliorated systemic organ injury in two SAP models. 3-MA treatment impaired autophagic flux and alleviated inflammatory activation by modulating the NF-κB signaling pathway and the caspase-1-IL-1β pathway, thus decreasing the injuries to the organs and the levels of inflammatory cytokines. CONCLUSION Our study found that the regulation of autophagy could alter the progression of AP induced by L-arginine or cerulein plus LPS in mice.
Collapse
|
12
|
Osman AHK, Shintani M. Autophagy in normal tissues of camel (Camelus dromedarius) with focus on immunoexpression of LC3 and LC3B. Biotech Histochem 2018; 93:557-564. [PMID: 29969923 DOI: 10.1080/10520295.2018.1470728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Autophagy is a highly regulated intracellular pathway for degradation and recycling of cytoplasmic protein aggregates and entire organelles. The autophagic pathway is stimulated by nutrient starvation, which prompted us to study the desert camel. Various organs of the camel undergo ecological and physiological stress due to food and water deprivation, dehydration and long exposure to solar radiation. We investigated the immunohistochemical expression of specific biomarkers of autophagy under normal conditions as a baseline for later work on stressed individuals. The autophagy-specific biomarkers, microtubule-associated protein1 light chain 3 (LC3), and its cleaved variant, LC3B, were strongly expressed in the cytosol of all tissues examined. The cytosolic immunoreactivity of LC3 was relatively weak, diffuse and vacuolar, while that of LC3B was stronger, punctate and at lower levels. LC3 appears to be associated with the autophagosomal membranes, either free or lysosome-bounded. LC3B is specific for the autophagosome-lysosome complexes and their degraded, granular contents. Autophagy was strongly expressed in CNS neurons and intestinal neural elements, which suggests a protective function for the nervous system. Autophagic markers also were seen in deformed immune-competent cells with fragmented nuclei in lymph nodes, spleen and gut-associated lymphoid tissue (GALT), which suggests a "suicidal" activity of eliminating unneeded cells. Autophagy, as measured by LC3 and LC3B expression, may participate in a general regulatory mechanism in tissues of the desert camel.
Collapse
Affiliation(s)
- Abdel-Hamid K Osman
- a Department of Cytology and Histology, Faculty of Veterinary Medicine , Suez Canal University , Ismailia , Egypt
| | - Michiko Shintani
- b Laboratory of Pathology, Division of Medical Biosciences , kobe University Graduate School of Health Sciences , Kobe , Japan
| |
Collapse
|
13
|
Klauss S, Schorn S, Teller S, Steenfadt H, Friess H, Ceyhan GO, Demir IE. Genetically induced vs. classical animal models of chronic pancreatitis: a critical comparison. FASEB J 2018; 32:fj201800241RR. [PMID: 29863911 DOI: 10.1096/fj.201800241rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chronic pancreatitis (CP) is an utmost complex disease that is pathogenetically linked to pancreas-intrinsic ( e.g., duct obstruction), environmental-toxic ( e.g., alcohol, smoking), and genetic factors. Studying such a complex disease naturally requires validated experimental models. In the past 2 decades, the various animal models of CP usually addressed either the pancreas-intrinsic ( e.g., the caerulein model), the environmental-toxic ( e.g., diet-induced models), or the genetic component of CP. As such, these models were far from mirroring CP in its full spectrum, and the correct choice of models was vital for valid scientific conclusions on CP. The quest for mechanistic, genetic models gave rise to models based on gene modification and transgene insertion, such as the PRSS1 and the IL-1β/IL-1β models. Recently, we witnessed the development of highly exciting models that rely on the importance of autophagy in CP, that is, the murine pancreas-specific Atg5 and LAMP2 knockout models. Today, critical comparison of these several models is more important than ever for guiding research on CP in an efficient direction. The present review outlines the characteristics of the new genetic models in comparison with the well-known classic models for CP, notes the caveats in the choice of models, and also indicates novel directions for model development.-Klauss, S., Schorn, S., Teller, S., Steenfadt, H., Friess, H., Ceyhan, G. O., Demir, I. K. Genetically induced vs. classical animal models of chronic pancreatitis: a critical comparison.
Collapse
Affiliation(s)
- Sarah Klauss
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrik Steenfadt
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Scanga HL, Nischal KK. Overarching Concepts and Mechanisms Affecting Phenotypes of Ocular Genetic Conditions. CURRENT GENETIC MEDICINE REPORTS 2017. [DOI: 10.1007/s40142-017-0128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
|
16
|
Why autophagy is good for retinal ganglion cells? Eye (Lond) 2016; 31:185-190. [PMID: 27983732 DOI: 10.1038/eye.2016.278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/04/2016] [Indexed: 01/20/2023] Open
Abstract
Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it has an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Autophagy occurs in all cells and tissues, and it is regulated by the Atg genes. The importance of this pathway has been recently recognized by the Nobel Prize in Physiology and Medicine award to Professor Yoshinori Ohsumi who was the discoverer of the first Atg genes in yeast in the 1990s. Research has only begun to examine the role of autophagy in the visual system. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review studies that have sought to explain autophagy's importance for retinal ganglion cells, and their implications for diseases like glaucoma and optic neuropathies.
Collapse
|
17
|
Boya P, Esteban-Martínez L, Serrano-Puebla A, Gómez-Sintes R, Villarejo-Zori B. Autophagy in the eye: Development, degeneration, and aging. Prog Retin Eye Res 2016; 55:206-245. [PMID: 27566190 DOI: 10.1016/j.preteyeres.2016.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye.
Collapse
Affiliation(s)
- Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Lorena Esteban-Martínez
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Serrano-Puebla
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
18
|
Barnard RA, Regan DP, Hansen RJ, Maycotte P, Thorburn A, Gustafson DL. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease. J Pharmacol Exp Ther 2016; 358:282-93. [PMID: 27231155 PMCID: PMC4959099 DOI: 10.1124/jpet.116.233908] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
The autophagy pathway has been recognized as a mechanism of survival and therapy resistance in cancer, yet the extent of autophagy's function in metastatic progression is still unclear. Therefore, we used murine models of metastatic cancer to investigate the effect of autophagy modulation on metastasis development. Pharmacologic and genetic autophagy inhibition were able to impede cell proliferation in culture, but did not impact the development of experimentally induced 4T1 and B16-F10 metastases. Similarly, autophagy inhibition by adjuvant chloroquine (CQ) treatment did not delay metastasis in an orthotopic 4T1, tumor-resection model. However, neoadjuvant CQ treatment or genetic autophagy inhibition resulted in delayed metastasis development, whereas stimulation of autophagy by trehalose hastened development. Cisplatin was also administered either as a single agent or in combination with CQ. The combination of cisplatin and CQ was antagonistic. The effects of autophagy modulation on metastasis did not appear to be due to alterations in the intrinsic metastatic capability of the cells, as modulating autophagy had no impact on migration, invasion, or anchorage-independent growth in vitro. To explore the possibility of autophagy's influence on the metastatic microenvironment, bone marrow-derived cells (BMDCs), which mediate the establishment of the premetastatic niche, were measured in the lung and in circulation. Trehalose-treated mice had significantly more BMDCs than either vehicle- or CQ-treated mice. Autophagy inhibition may be most useful as a treatment to impede early metastatic development. However, modulating autophagy may also alter the efficacy of platinum-based therapies, requiring caution when considering combination therapies.
Collapse
Affiliation(s)
- Rebecca A Barnard
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (R.A.B., D.P.R., R.J.H., D.L.G.); and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado (P.M., A.T.)
| | - Daniel P Regan
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (R.A.B., D.P.R., R.J.H., D.L.G.); and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado (P.M., A.T.)
| | - Ryan J Hansen
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (R.A.B., D.P.R., R.J.H., D.L.G.); and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado (P.M., A.T.)
| | - Paola Maycotte
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (R.A.B., D.P.R., R.J.H., D.L.G.); and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado (P.M., A.T.)
| | - Andrew Thorburn
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (R.A.B., D.P.R., R.J.H., D.L.G.); and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado (P.M., A.T.)
| | - Daniel L Gustafson
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (R.A.B., D.P.R., R.J.H., D.L.G.); and Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado (P.M., A.T.)
| |
Collapse
|
19
|
Hur SK, Park SH, Oh GT. The Role of Autophagy in the Pathogenesis of Atherosclerosis. J Lipid Atheroscler 2016. [DOI: 10.12997/jla.2016.5.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shin Kyoung Hur
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Seung Hee Park
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
20
|
Hiura M, Honma Y, Miyagawa K, Oe S, Shimajiri S, Mihara H, Oe M, Sato-Morita M, Katsuki Y, Harada M. Alleviation mechanisms against hepatocyte oxidative stress in patients with chronic hepatic disorders. Hepatol Res 2015; 45:1124-35. [PMID: 25581125 DOI: 10.1111/hepr.12478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
Abstract
AIM Autophagy induction and Mallory-Denk body (MDB) formation have been considered to have cytoprotective effects from cellular stress in liver diseases. We investigated the relations among oxidative stress, autophagy and MDB formation in patients with chronic hepatitis B (CHB), chronic hepatitis C (CHC) and non-alcoholic fatty liver disease (NAFLD) to clarify the alleviation mechanisms against oxidative stress of hepatocytes. METHODS First, we treated cultured cells with proteasome inhibitor (PI) or free fatty acid (FFA) and evaluated endoplasmic reticulum (ER) stress, oxidative stress, ubiquitinated proteins and p62 by western blotting. Then, we used human liver biopsy samples to evaluate oxidative stress, autophagy and MDB formation by immunohistochemical analysis. RESULTS Treatment with PI or FFA increased ER stress, oxidative stress, ubiquitinated proteins and p62 in cultured cells. Human liver biopsy samples of CHC and NAFLD showed that MDB formed in areas with strong oxidative stress and that the MDB-containing cells circumvented oxidative stress. Keratin 8 (K8) expression was strong in MDB-containing cells in CHC and NAFLD. However, in CHB samples, the expression of K8 was not increased in response to oxidative stress and MDB aggregates did not appear. Aminotransferase values were significantly lower in patients with CHC and NAFLD in whom light chain 3 antibody expression was increased in response to oxidative stress. CONCLUSION Strong expression of K8 was considered to be important for MDB formation. MDB protect liver cells from oxidative stress at a cellular level and autophagy reduced hepatic damage when it was induced in the hepatocytes exposed to strong oxidative stress.
Collapse
Affiliation(s)
- Masaaki Hiura
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, Kitakyushu, Japan
| | | | - Shinji Oe
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hitomi Mihara
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Masami Oe
- Third Department of Internal Medicine, Kitakyushu, Japan
| | | | - Yuka Katsuki
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, Kitakyushu, Japan
| |
Collapse
|
21
|
Grassi G, Di Caprio G, Santangelo L, Fimia GM, Cozzolino AM, Komatsu M, Ippolito G, Tripodi M, Alonzi T. Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death Dis 2015; 6:e1880. [PMID: 26355343 PMCID: PMC4650445 DOI: 10.1038/cddis.2015.249] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 01/16/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) and the reverse process mesenchymal-to-epithelial transition (MET) are events involved in development, wound healing and stem cell behaviour and contribute pathologically to cancer progression. The identification of the molecular mechanisms underlying these phenotypic conversions in hepatocytes are fundamental to design specific therapeutic strategies aimed at optimising liver repair. The role of autophagy in EMT/MET processes of hepatocytes was investigated in liver-specific autophagy-deficient mice (Alb-Cre;ATG7fl/fl) and using the nontumorigenic immortalised hepatocytes cell line MMH. Autophagy deficiency in vivo reduces epithelial markers' expression and increases the levels of mesenchymal markers. These alterations are associated with an increased protein level of the EMT master regulator Snail, without transcriptional induction. Interestingly, we found that autophagy degrades Snail in a p62/SQSTM1 (Sequestosome-1)-dependent manner. Moreover, accordingly to a pro-epithelial function, we observed that autophagy stimulation strongly affects EMT progression, whereas it is necessary for MET. Finally, we found that the EMT induced by TGFβ affects the autophagy flux, indicating that these processes regulate each other. Overall, we found that autophagy regulates the phenotype plasticity of hepatocytes promoting their epithelial identity through the inhibition of the mesenchymal programme.
Collapse
Affiliation(s)
- G Grassi
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - G Di Caprio
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - L Santangelo
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - A M Cozzolino
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - M Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8510, Japan
| | - G Ippolito
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - M Tripodi
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - T Alonzi
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
22
|
Abstract
There is increasing interest in the role of autophagic flux in maintaining normal vessel wall biology and a growing suspicion that autophagic dysregulation may be a common pathway through which vascular aging and associated pathologies develop. Within endothelial and smooth muscle cells, diverse but important triggers that range from oxidized lipids to β-amyloid seem to stimulate autophagosome formation potently. In addition, emerging evidence links autophagy to a wide array of vascular processes ranging from angiogenesis to calcification of the vessel wall. Alterations in autophagic flux are also increasingly being implicated in disease processes that include both atherosclerosis and pulmonary hypertension. Finally, recent insights point toward an important role of autophagy in the paracrine regulation of vasoactive substances from the endothelium. Here, we review the progress in understanding how autophagy can contribute to vascular biology and the emerging strategies to target this process for therapeutic benefit.
Collapse
Affiliation(s)
- Samuel C Nussenzweig
- From the Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.C.N, T.F.); and Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada (S.V.)
| | - Subodh Verma
- From the Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.C.N, T.F.); and Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada (S.V.)
| | - Toren Finkel
- From the Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (S.C.N, T.F.); and Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada (S.V.).
| |
Collapse
|
23
|
Gukovsky I, Gukovskaya AS. Impaired autophagy triggers chronic pancreatitis: lessons from pancreas-specific atg5 knockout mice. Gastroenterology 2015; 148:501-5. [PMID: 25613315 PMCID: PMC4443443 DOI: 10.1053/j.gastro.2015.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilya Gukovsky
- VA Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California.
| | | |
Collapse
|
24
|
Abstract
Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. Growing evidence reveals that basal autophagy is an essential in vivo process mediating proper vascular function. Moreover, autophagy is stimulated by many stress-related stimuli in the arterial wall to protect endothelial cells and smooth muscle cells against cell death and the initiation of vascular disease, in particular atherosclerosis. Basal autophagy is atheroprotective during early atherosclerosis but becomes dysfunctional in advanced atherosclerotic plaques. Little is known about autophagy in other vascular disorders, such as aneurysm formation, arterial aging, vascular stiffness, and chronic venous disease, even though autophagy is often impaired. This finding highlights the need for pharmacological interventions with compounds that stimulate the prosurvival effects of autophagy in the vasculature. A large number of animal studies and clinical trials have indicated that oral or stent-based delivery of the autophagy inducer rapamycin or derivatives thereof, collectively known as rapalogs, effectively inhibit the basic mechanisms that control growth and destabilization of atherosclerotic plaques. Other autophagy-inducing drugs, such as spermidine or add-on therapy with widely used antiatherogenic compounds, including statins and metformin, are potentially useful to prevent vascular disease with minimal adverse effects.
Collapse
Affiliation(s)
- Guido R.Y. De Meyer
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Mandy O.J. Grootaert
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Cédéric F. Michiels
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Ammar Kurdi
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Dorien M. Schrijvers
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- From the Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Kanninen TT, Sisti G, Witkin SS. Induction of the 70 kDa heat shock protein stress response inhibits autophagy: possible consequences for pregnancy outcome. J Matern Fetal Neonatal Med 2014; 29:159-62. [PMID: 25428832 DOI: 10.3109/14767058.2014.991916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM The induction of heat shock protein synthesis and activation of autophagy are intracellular processes stimulated under adverse conditions. We evaluated the relationship between intracellular concentrations of the inducible 70 kDa heat shock protein (hsp70) and autophagy induction in human peripheral blood mononuclear cells (PBMCs) following exposure to sera from pregnant and non-pregnant women. METHODS Autophagy was induced in PBMCs by incubation for 48 h with sera from 42 pregnant women at mid-gestation and 45 non-pregnant women. Intracellular concentrations of hsp70 and p62 were measured by ELISA. p62 is a cytoplasmic protein that is consumed during autophagy induction. Its concentration in the cytoplasm is inversely proportional to the extent of autophagy induction (high p62 = low autophagy). RESULTS The p62 concentration was highly correlated with the hsp70 level utilizing sera from both pregnant (Spearman r = 0.4731, p = 0.0015) and non-pregnant (Spearman r = 0.6214, p < 0.0001) women. Median p62 (7.4 ng/ml versus 2.7 ng/ml, p < 0.0001) and hsp70 (7.0 ng/ml versus 3.5 ng/ml, p = 0.0022) levels were higher when PBMCS were incubated with sera from pregnant women. CONCLUSION The extent of autophagy in PBMCs is inversely proportional to the intracellular hsp70 concentration and sera from pregnant women induces hsp70 and inhibits autophagy to a greater extent than does sera from non-pregnant women. A stress response that induces hsp70 has the potential to interfere with autophagy-related events.
Collapse
Affiliation(s)
- Tomi T Kanninen
- a Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology , Weill Cornell Medical College , New York , NY , USA
| | - Giovanni Sisti
- a Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology , Weill Cornell Medical College , New York , NY , USA
| | - Steven S Witkin
- a Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
26
|
Gong JS, Kim GJ. The role of autophagy in the placenta as a regulator of cell death. Clin Exp Reprod Med 2014; 41:97-107. [PMID: 25309853 PMCID: PMC4192457 DOI: 10.5653/cerm.2014.41.3.97] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022] Open
Abstract
The placenta is a temporary fetomaternal organ capable of supporting fetal growth and development during pregnancy. In particular, abnormal development and dysfunction of the placenta due to cha nges in the proliferation, differentiation, cell death, and invasion of trophoblasts induce several gynecological diseases as well as abnormal fetal development. Autophagy is a catalytic process that maintains cellular structures by recycling building blocks derived from damaged microorganelles or proteins resulting from digestion in lysosomes. Additionally, autophagy is necessary to maintain homeostasis during cellular growth, development, and differentiation, and to protect cells from nutritional deficiencies or factors related to metabolism inhibition. Induced autophagy by various environmental factors has a dual role: it facilitates cellular survival in normal conditions, but the cascade of cellular death is accelerated by over-activated autophagy. Therefore, cellular death by autophagy has been known as programmed cell death type II. Autophagy causes or inhibits cellular death via the other mechanism, apoptosis, which is programmed cell death type I. Recently, it has been reported that autophagy increases in placenta-related obstetrical diseases such as preeclampsia and intrauterine growth retardation, although the mechanisms are still unclear. In particular, abnormal autophagic mechanisms prevent trophoblast invasion and inhibit trophoblast functions. Therefore, the objectives of this review are to examine the characteristics and functions of autophagy and to investigate the role of autophagy in the placenta and the trophoblast as a regulator of cell death.
Collapse
Affiliation(s)
- Jin-Sung Gong
- Department of Biomedical Science, CHA University, Seoul, Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seoul, Korea. ; CHA Placenta Institute, CHA University, Seoul, Korea
| |
Collapse
|
27
|
Barnard RA, Wittenburg LA, Amaravadi RK, Gustafson DL, Thorburn A, Thamm DH. Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma. Autophagy 2014; 10:1415-25. [PMID: 24991836 DOI: 10.4161/auto.29165] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a lysosomal degradation process that may act as a mechanism of survival in a variety of cancers. While pharmacologic inhibition of autophagy with hydroxychloroquine (HCQ) is currently being explored in human clinical trials, it has never been evaluated in canine cancers. Non-Hodgkin lymphoma (NHL) is one of the most prevalent tumor types in dogs and has similar pathogenesis and response to treatment as human NHL. Clinical trials in canine patients are conducted in the same way as in human patients, thus, to determine a maximum dose of HCQ that can be combined with a standard chemotherapy, a Phase I, single arm, dose escalation trial was conducted in dogs with spontaneous NHL presenting as patients to an academic, tertiary-care veterinary teaching hospital. HCQ was administered daily by mouth throughout the trial, beginning 72 h prior to doxorubicin (DOX), which was given intravenously on a 21-d cycle. Peripheral blood mononuclear cells and biopsies were collected before and 3 d after HCQ treatment and assessed for autophagy inhibition and HCQ concentration. A total of 30 patients were enrolled in the trial. HCQ alone was well tolerated with only mild lethargy and gastrointestinal-related adverse events. The overall response rate (ORR) for dogs with lymphoma was 93.3%, with median progression-free interval (PFI) of 5 mo. Pharmacokinetic analysis revealed a 100-fold increase in HCQ in tumors compared with plasma. There was a trend that supported therapy-induced increase in LC3-II (the cleaved and lipidated form of microtubule-associated protein 1 light chain 3/LC3, which serves as a maker for autophagosomes) and SQSTM1/p62 (sequestosome 1) after treatment. The superior ORR and comparable PFI to single-agent DOX provide strong support for further evaluation via randomized, placebo-controlled trials in canine and human NHL.
Collapse
Affiliation(s)
- Rebecca A Barnard
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| | - Luke A Wittenburg
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| | - Ravi K Amaravadi
- Department of Medicine Hematology Oncology Division; Pearlman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Daniel L Gustafson
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Douglas H Thamm
- Department of Clinical Sciences; Colorado State University; Fort Collins, CO USA
| |
Collapse
|
28
|
Woodworth-Hobbs ME, Hudson MB, Rahnert JA, Zheng B, Franch HA, Price SR. Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes. J Nutr Biochem 2014; 25:868-74. [PMID: 24835079 DOI: 10.1016/j.jnutbio.2014.03.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
Abstract
Saturated fatty acids like palmitate contribute to muscle atrophy in a number of conditions (e.g., type II diabetes) by altering insulin signaling. Akt is a key modulator of protein balance that inhibits the FoxO transcription factors (e.g., FoxO3) which selectively induce the expression of atrophy-inducing genes (atrogenes) in the ubiquitin-proteasome and autophagy-lysosome systems. Conversely, omega-3 polyunsaturated fatty acids have beneficial effects on insulin signaling and may preserve muscle mass. In an earlier report, the omega-3 fatty acid docosahexaenoic acid (DHA) protected myotubes from palmitate-induced atrophy; the mechanisms underlying the alterations in protein metabolism were not identified. This study investigated whether DHA prevents a palmitate-induced increase in proteolysis by restoring Akt/FoxO signaling. Palmitate increased the rate of protein degradation, while cotreatment with DHA prevented the response. Palmitate reduced the activation state of Akt and increased nuclear FoxO3 protein while decreasing its cytosolic level. Palmitate also increased the messenger RNAs (mRNAs) of two FoxO3 atrogene targets, the E3 ubiquitin ligase atrogin-1/MAFbx and the autophagy mediator Bnip3. DHA attenuated the effects of palmitate on Akt activation, FoxO3 localization and atrogene mRNAs. DHA, alone or in combination with palmitate and decreased the ratio of LC3B-II:LC3B-I protein as well as the rate of autophagosome formation, as indicated by reduced LC3B-II protein in the presence of 10 mmol/L methylamine, suggesting an independent effect of DHA on the macroautophagy pathway. These data indicate that palmitate induces myotube atrophy, at least in part, by activating multiple proteolytic systems and that DHA counters the catabolic effects of palmitate by restoring Akt/FoxO signaling.
Collapse
Affiliation(s)
- Myra E Woodworth-Hobbs
- Nutrition and Health Sciences Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA; Department of Medicine, Renal Division, Emory University, Atlanta, GA, USA.
| | - Matthew B Hudson
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, USA
| | - Jill A Rahnert
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, USA
| | - Bin Zheng
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, USA
| | - Harold A Franch
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, USA
| | - S Russ Price
- Department of Medicine, Renal Division, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
29
|
Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:525-34. [PMID: 24525425 DOI: 10.1016/j.bbalip.2014.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
Abstract
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named "autophagy", enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.
Collapse
Affiliation(s)
| | - Iain Scott
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Javier Traba
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Kim Han
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | - Michael N Sack
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
30
|
Chen C, Deng M, Sun Q, Loughran P, Billiar TR, Scott MJ. Lipopolysaccharide stimulates p62-dependent autophagy-like aggregate clearance in hepatocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:267350. [PMID: 24683544 PMCID: PMC3934718 DOI: 10.1155/2014/267350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 11/18/2013] [Accepted: 11/26/2013] [Indexed: 01/11/2023]
Abstract
Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NF κ B transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress.
Collapse
Affiliation(s)
- Christine Chen
- Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Qian Sun
- Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
31
|
Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol 2013; 101-102:80-88. [PMID: 23969229 DOI: 10.1016/j.jri.2013.06.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/12/2023]
Abstract
Shallow trophoblast invasion and impaired vascular remodeling of spiral arteries have been recognized in early-onset preeclampsia. Placentation and vascular remodeling are multistep processes, and hypoxia, placental oxidative stress, excessive or atypical maternal immune response to trophoblasts, exaggerated inflammation, and increased production of anti-angiogenic factors such as the soluble form of the vascular endothelial growth factor (VEGF) receptor (sFlt-1) and soluble endoglin (sENG) may play a role in poor placentation in preeclampsia. Recent findings suggest that autophagy plays an important role in extravillous trophoblast (EVT) invasion and vascular remodeling under hypoxia, and sENG inhibits EVT invasion and vascular remodeling by the inhibition of autophagy under hypoxic conditions. In this review, we discuss the relationship between inadequate autophagy and poor placentation in preeclampsia.
Collapse
Affiliation(s)
- Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan.
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
32
|
Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013; 37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/21/2013] [Indexed: 11/12/2022]
Abstract
Ample adaptive and functional opportunities of a living cell are determined by the complexity of its structural organisation. However, such complexity gives rise to a problem of maintenance of the coherence of inner processes in macroscopic interims and in macroscopic volumes which is necessary to support the structural robustness of a cell. The solution to this problem lies in multidimensional control of the adaptive and functional changes of a cell as well as its self-renewing processes in the context of environmental conditions. Six mechanisms (principles) form the basis of this multidimensional control: regulatory circuits with feedback loops, redundant inner diversity within a cell, multilevel distributed network organisation of a cell, molecular selection within a cell, continuous informational flows and functioning with a reserve of power. In the review we provide detailed analysis of these mechanisms, discuss their specific functions and the role of the superposition of these mechanisms in the maintenance of cell structural robustness in a wide range of environmental conditions.
Collapse
Affiliation(s)
- Vasily V Grinev
- Biology Faculty, Department of Genetics, Belarusian State University, 220030, Minsk, Belarus.
| | | | | |
Collapse
|
33
|
Kanninen TT, de Andrade Ramos BR, Jaffe S, Bongiovanni AM, Linhares IM, Renzo GCD, Witkin SS. Inhibition of Autophagy by Sera From Pregnant Women. Reprod Sci 2013; 20:1327-31. [DOI: 10.1177/1933719113485301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tomi T. Kanninen
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
- Department of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | | | - Shirlee Jaffe
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Ann Marie Bongiovanni
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Iara Moreno Linhares
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
- Department of Gynecology and Obstetrics, University of Sao Paulo, Sao Paulo, Brazil
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | - Steven S. Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
34
|
Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 2013; 12:520-34. [PMID: 23220384 DOI: 10.1016/j.arr.2012.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023]
Abstract
Autophagy and apoptosis are crucial cellular housekeeping and tissue survival mechanisms. There is emerging evidence of important crosstalk between apoptosis and autophagy which can be linked to inflammasome activation. Beclin 1 is a platform protein which assembles an interactome consisting of diverse proteins which control the initiation of autophagocytosis and distinct phases in endocytosis. Recent studies have demonstrated that the anti-apoptotic Bcl-2 family members can interact with Beclin 1 and inhibit autophagy. Consequently, impaired autophagy can trigger inflammasome activation. Interestingly, the hallmarks of the ageing process include a decline in autophagy, increased resistance to apoptosis and a low-grade inflammatory phenotype. Age-related stresses, e.g. genotoxic, metabolic and environmental insults, enhance the expression of NF-κB-driven anti-apoptotic Bcl-2 proteins which repress the Beclin 1-dependent autophagy. Suppression of autophagocytosis provokes inflammation including NF-κB activation which further potentiates anti-apoptotic defence. In a context-dependent manner, this feedback defence mechanism can enhance the aging process or provoke tumorigenesis or cellular senescence. We will review the role of Beclin 1 interactome in the crosstalk between apoptosis, autophagy and inflammasomes emphasizing that disturbances in Beclin 1-dependent autophagy can have a crucial impact on the aging process.
Collapse
|
35
|
Abstract
Acute pancreatitis is an inflammatory disease of the exocrine pancreas that carries considerable morbidity and mortality; its pathophysiology remains poorly understood. Recent findings from experimental models and genetically altered mice summarized in this review reveal that autophagy, the principal cellular degradative pathway, is impaired in pancreatitis and that one cause of autophagy impairment is defective function of lysosomes. We propose that the lysosomal/autophagic dysfunction is a key initiating event in pancreatitis and a converging point of multiple deranged pathways. There is strong evidence supporting this hypothesis. Investigation of autophagy in pancreatitis has just started, and many questions about the "upstream" mechanisms mediating the lysosomal/autophagic dysfunction and the "downstream" links to pancreatitis pathologies need to be explored. Answers to these questions should provide insight into novel molecular targets and therapeutic strategies for treatment of pancreatitis.
Collapse
Affiliation(s)
- Anna S. Gukovskaya
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California
| | - Ilya Gukovsky
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
Zhao YG, Zhao H, Miao L, Wang L, Sun F, Zhang H. The p53-induced gene Ei24 is an essential component of the basal autophagy pathway. J Biol Chem 2012; 287:42053-63. [PMID: 23074225 DOI: 10.1074/jbc.m112.415968] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ei24 is a DNA damage response gene involved in growth suppression and apoptosis. The physiological function of Ei24, however, is poorly understood. Here we generated conditional knock-out mice of Ei24 and demonstrated that EI24 is an essential component of the basal autophagy pathway. Mice with neural-specific Ei24 deficiency develop age-dependent neurological abnormalities caused by massive axon degeneration and extensive neuron loss in brain and spinal cord. Notably, ablation of Ei24 leads to vacuolated oligodendroglial cells and demyelination of axons. Liver-specific depletion of Ei24 causes severe hepatomegaly with hepatocyte hypertrophy. Ei24 deficiency impairs autophagic flux, leading to accumulation of LC3, p62 aggregates, and ubiquitin-positive inclusions. Our study indicates that Ei24 is an essential autophagy gene and plays an important role in clearance of aggregate-prone proteins in neurons and hepatocytes.
Collapse
Affiliation(s)
- Yan G Zhao
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
37
|
Zhou XJ, Zhang H. Autophagy in immunity: implications in etiology of autoimmune/autoinflammatory diseases. Autophagy 2012; 8:1286-99. [PMID: 22878595 DOI: 10.4161/auto.21212] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is now emerging as a spotlight in trafficking events that activate innate and adaptive immunity. It facilitates innate pathogen detection and antigen presentation, as well as pathogen clearance and lymphocyte homeostasis. In this review, we first summarize new insights into its functions in immunity, which underlie its associations with autoimmunity. As some lines of evidence are emerging to support its role in autoimmune and autoinflammatory diseases, we further discuss whether and how it affects autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, diabetes mellitus and multiple sclerosis, as well as autoinflammatory diseases, such as Crohn disease and vitiligo.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | | |
Collapse
|
38
|
Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS One 2012; 7:e38933. [PMID: 22719991 PMCID: PMC3377705 DOI: 10.1371/journal.pone.0038933] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/14/2012] [Indexed: 01/07/2023] Open
Abstract
The thymic epithelium plays critical roles in the positive and negative selection of T cells. Recently, it was proposed that autophagy in thymic epithelial cells is essential for the induction of T cell tolerance to self antigens and thus for the prevention of autoimmune diseases. Here we have tested this hypothesis using mouse models in which autophagy was blocked specifically in epithelial cells expressing keratin 14 (K14), including the precursor of thymic epithelial cells. While the thymic epithelial cells of mice carrying the floxed Atg7 gene (ATG7 f/f) showed a high level of autophagy, as determined by LC3 Western blot analysis and fluorescence detection of the recombinant green fluorescent protein (GFP)-LC3 reporter protein on autophagosomes, autophagy in the thymic epithelium was efficiently suppressed by deletion of the Atg7 gene using the Cre-loxP system (ATG7 f/f K14-Cre). Suppression of autophagy led to the massive accumulation of p62/sequestosome 1 (SQSTM1) in thymic epithelial cells. However, the structure of the thymic epithelium as well as the organization and the size of the thymus were not altered in mutant mice. The ratio of CD4 to CD8-positive T cells, as well as the frequency of activated (CD69+) CD4 T cells in lymphoid organs, did not differ between mice with autophagy-competent and autophagy-deficient thymic epithelium. Inflammatory infiltrating cells, potentially indicative of autoimmune reactions, were present in the liver, lung, and colon of a similar fraction of ATG7 f/f and ATG7 f/f K14-Cre mice. In contrast to previously reported mice, that had received an autophagy-deficient thymus transplant, ATG7 f/f K14-Cre mice did not suffer from autoimmunity-induced weight loss. In summary, the results of this study suggest that autophagy in the thymic epithelium is dispensable for negative selection of autoreactive T cells.
Collapse
|
39
|
Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, Stemmelen C, Troxler TJ, Schmid P, Danner S, Schnell CR, Mueller M, Kinzel B, Grevot A, Bolognani F, Stirn M, Kuhn RR, Kaupmann K, van der Putten PH, Rovelli G, Shimshek DR. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 2011; 20:4209-23. [PMID: 21828077 PMCID: PMC3188995 DOI: 10.1093/hmg/ddr348] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinson's disease (PD), but the underlying pathophysiological mechanisms and the normal function of this large multidomain protein remain speculative. To address the role of this protein in vivo, we generated three different LRRK2 mutant mouse lines. Mice completely lacking the LRRK2 protein (knock-out, KO) showed an early-onset (age 6 weeks) marked increase in number and size of secondary lysosomes in kidney proximal tubule cells and lamellar bodies in lung type II cells. Mice expressing a LRRK2 kinase-dead (KD) mutant from the endogenous locus displayed similar early-onset pathophysiological changes in kidney but not lung. KD mutants had dramatically reduced full-length LRRK2 protein levels in the kidney and this genetic effect was mimicked pharmacologically in wild-type mice treated with a LRRK2-selective kinase inhibitor. Knock-in (KI) mice expressing the G2019S PD-associated mutation that increases LRRK2 kinase activity showed none of the LRRK2 protein level and histopathological changes observed in KD and KO mice. The autophagy marker LC3 remained unchanged but kidney mTOR and TCS2 protein levels decreased in KD and increased in KO and KI mice. Unexpectedly, KO and KI mice suffered from diastolic hypertension opposed to normal blood pressure in KD mice. Our findings demonstrate a role for LRRK2 in kidney and lung physiology and further show that LRRK2 kinase function affects LRRK2 protein steady-state levels thereby altering putative scaffold/GTPase activity. These novel aspects of peripheral LRRK2 biology critically impact ongoing attempts to develop LRRK2 selective kinase inhibitors as therapeutics for PD.
Collapse
Affiliation(s)
- Martin C Herzig
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|