1
|
Pathak E, Atri N, Mishra R. Single-Cell Transcriptome Analysis Reveals the Role of Pancreatic Secretome in COVID-19 Associated Multi-organ Dysfunctions. Interdiscip Sci 2022; 14:863-878. [PMID: 35394619 PMCID: PMC8990272 DOI: 10.1007/s12539-022-00513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 infection affects the lungs, heart, kidney, intestine, olfactory epithelia, liver, and pancreas and brings forward multi-organ dysfunctions (MODs). However, mechanistic details of SARS-CoV-2-induced MODs are unclear. Here, we have investigated the role of pancreatic secretory proteins to mechanistically link COVID-19 with MODs using single-cell transcriptome analysis. Secretory proteins were identified using the Human Protein Atlas. Gene ontology, pathway, and disease enrichment analyses were used to highlight the role of upregulated pancreatic secretory proteins (secretome). We show that SARS-CoV-2 infection shifts the expression profile of pancreatic endocrine cells to acinar and ductal cell-specific profiles, resulting in increased expression of acinar and ductal cell-specific genes. Among all the secretory proteins, the upregulated expression of IL1B, AGT, ALB, SPP1, CRP, SERPINA1, C3, TFRC, TNFSF10, and MIF was mainly associated with disease of diverse organs. Extensive literature and experimental evidence are used to validate the association of the upregulated pancreatic secretome with the coagulation cascade, complement activation, renin-angiotensinogen system dysregulation, endothelial cell injury and thrombosis, immune system dysregulation, and fibrosis. Our finding suggests the influence of an upregulated secretome on multi-organ systems such as nervous, cardiovascular, immune, digestive, and urogenital systems. Our study provides evidence that an upregulated pancreatic secretome is a possible cause of SARS-CoV-2-induced MODs. This finding may have a significant impact on the clinical setting regarding the prevention of SARS-CoV-2-induced MODs.
Collapse
Affiliation(s)
- Ekta Pathak
- Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Neelam Atri
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeev Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Luo D, Liu D, Rao C, Shi S, Zeng X, Liu S, Jiang H, Liu L, Zhang Z, Lu X. Raised SPINK1 levels play a role in angiogenesis and the transendothelial migration of ALL cells. Sci Rep 2022; 12:2999. [PMID: 35194087 PMCID: PMC8864021 DOI: 10.1038/s41598-022-06946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
The present study was designed to assess whether raised Serine protease inhibitor Kazal type 1 (SPINK1) expressions modulates angiogenesis. Human umbilical vein endothelial cells (HUVECs) exposed to SPINK1 were noted to exhibit raised expressions of interleukin-8 (IL-8) as well as VCAM-1 and ICAM-1 cell adhesion molecules in a dose-dependent manner. In co-culture system of HUVECs and Acute lymphoblastic leukemia (ALL) cells, SPINK1 exposure also resulted in enhanced endothelial cell motility and ALL cells trans-endothelial migration. High concentrations of SPINK1 caused in vitro cellular reorganization into tubes in Matrigel-cultured HUVECs and induced in vivo vascularization and brain infiltration of NOD/SCID ALL model mice. The further transcriptomic analysis indicated that SPINK1 treatment altered several biological processes of endothelial cells and led to activation of the MAPK pathway. This study is the first to determine the neovascularization effects of raised SPINK1.
Collapse
Affiliation(s)
- Dong Luo
- Medical Laboratory, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Dongqiang Liu
- Department of Hematology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Chunbao Rao
- Medical Laboratory, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Shanshan Shi
- Department of Neurology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiaomei Zeng
- Medical Laboratory, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Sha Liu
- Department of Hematology-Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology-Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Lishi Liu
- Department of Hematology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China
| | - Zhenhong Zhang
- Department of Hematology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China.
| | - Xiaomei Lu
- Medical Laboratory, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan City, Guangdong Province, China. .,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China.
| |
Collapse
|
3
|
Liao C, Wang Q, An J, Zhang M, Chen J, Li X, Xiao L, Wang J, Long Q, Liu J, Guan X. SPINKs in Tumors: Potential Therapeutic Targets. Front Oncol 2022; 12:833741. [PMID: 35223512 PMCID: PMC8873584 DOI: 10.3389/fonc.2022.833741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The serine protease inhibitor Kazal type (SPINK) family includes SPINK1-14 and is the largest branch in the serine protease inhibitor family. SPINKs play an important role in pancreatic physiology and disease, sperm maturation and capacitation, Nager syndrome, inflammation and the skin barrier. Evidence shows that the unregulated expression of SPINK1, 2, 4, 5, 6, 7, and 13 is closely related to human tumors. Different SPINKs exhibit various regulatory modes in different tumors and can be used as tumor prognostic markers. This article reviews the role of SPINK1, 2, 4, 5, 6, 7, and 13 in different human cancer processes and helps to identify new cancer treatment targets.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
4
|
Forman MA, Steiner JM, Armstrong PJ, Camus MS, Gaschen L, Hill SL, Mansfield CS, Steiger K. ACVIM consensus statement on pancreatitis in cats. J Vet Intern Med 2021; 35:703-723. [PMID: 33587762 PMCID: PMC7995362 DOI: 10.1111/jvim.16053] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatitis in cats, although commonly diagnosed, still presents many diagnostic and management challenges. Objective To summarize the current literature as it relates to etiology, pathogenesis, diagnosis, and management of pancreatitis in cats and to arrive at clinically relevant suggestions for veterinary clinicians that are based on evidence, and where such evidence is lacking, based on consensus of experts in the field. Animals None. Methods A panel of 8 experts in the field (5 internists, 1 radiologist, 1 clinical pathologist, and 1 anatomic pathologist), with support from a librarian, was formed to assess and summarize evidence in the peer reviewed literature and complement it with consensus clinical recommendations. Results There was little literature on the etiology and pathogenesis of spontaneous pancreatitis in cats, but there was much in the literature about the disease in humans, along with some experimental evidence in cats and nonfeline species. Most evidence was in the area of diagnosis of pancreatitis in cats, which was summarized carefully. In contrast, there was little evidence on the management of pancreatitis in cats. Conclusions and Clinical Importance Pancreatitis is amenable to antemortem diagnosis by integrating all clinical and diagnostic information available, and recognizing that acute pancreatitis is far easier to diagnose than chronic pancreatitis. Although both forms of pancreatitis can be managed successfully in many cats, management measures are far less clearly defined for chronic pancreatitis.
Collapse
Affiliation(s)
- Marnin A Forman
- Cornell University Veterinary Specialists, Stamford, Connecticut, USA
| | - Joerg M Steiner
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - P Jane Armstrong
- College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Melinda S Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lorrie Gaschen
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Louisiana, USA
| | - Steve L Hill
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, Arizona, USA
| | | | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Yu Y, Wang Y, Xia Z, Zhang X, Jin K, Yang J, Ren L, Zhou Z, Yu D, Qing T, Zhang C, Jin L, Zheng Y, Guo L, Shi L. PreMedKB: an integrated precision medicine knowledgebase for interpreting relationships between diseases, genes, variants and drugs. Nucleic Acids Res 2020; 47:D1090-D1101. [PMID: 30407536 PMCID: PMC6324052 DOI: 10.1093/nar/gky1042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023] Open
Abstract
One important aspect of precision medicine aims to deliver the right medicine to the right patient at the right dose at the right time based on the unique ‘omics’ features of each individual patient, thus maximizing drug efficacy and minimizing adverse drug reactions. However, fragmentation and heterogeneity of available data makes it challenging to readily obtain first-hand information regarding some particular diseases, drugs, genes and variants of interest. Therefore, we developed the Precision Medicine Knowledgebase (PreMedKB) by seamlessly integrating the four fundamental components of precision medicine: diseases, genes, variants and drugs. PreMedKB allows for search of comprehensive information within each of the four components, the relationships between any two or more components, and importantly, the interpretation of the clinical meanings of a patient's genetic variants. PreMedKB is an efficient and user-friendly tool to assist researchers, clinicians or patients in interpreting a patient's genetic profile in terms of discovering potential pathogenic variants, recommending therapeutic regimens, designing panels for genetic testing kits, and matching patients for clinical trials. PreMedKB is freely accessible and available at http://www.fudan-pgx.org/premedkb/index.html#/home.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Yunjin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Zhaojie Xia
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Zheng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Dong Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Tao Qing
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Chengdong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.,Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China.,Human Phenome Institute, Fudan University, Shanghai 201203, China.,Fudan-Gospel Joint Research Center for Precision Medicine, Fudan University, Shanghai 200438, China
| | - Li Guo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University, Shanghai 200438, China.,Human Phenome Institute, Fudan University, Shanghai 201203, China.,Fudan-Gospel Joint Research Center for Precision Medicine, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Roles of Autophagy and Pancreatic Secretory Trypsin Inhibitor in Trypsinogen Activation in Acute Pancreatitis. Pancreas 2020; 49:493-497. [PMID: 32282761 DOI: 10.1097/mpa.0000000000001519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The focus of the review is on roles of autophagy and pancreatic secretory trypsin inhibitor (PSTI), an endogenous trypsin inhibitor, in trypsinogen activation in acute pancreatitis. Acute pancreatitis is a disease in which tissues in and around the pancreas are autodigested by pancreatic digestive enzymes. This reaction is triggered by the intrapancreatic activation of trypsinogen. Autophagy causes trypsinogen and cathepsin B, a trypsinogen activator, to colocalize within the autolysosomes. Consequently, if the resultant trypsin activity exceeds the inhibitory activity of PSTI, the pancreatic digestive enzymes are activated, and they cause autodigestion of the acinar cells. Thus, autophagy and PSTI play important roles in the development and suppression of acute pancreatitis, respectively.
Collapse
|
7
|
Chang C, Xie J, Yang Q, Yang J, Luo Y, Xi L, Guo J, Yang G, Jin W, Wang G. Serine peptidase inhibitor Kazal type III (SPINK3) promotes BRL-3A cell proliferation by targeting the PI3K-AKT signaling pathway. J Cell Physiol 2019; 235:2209-2219. [PMID: 31478211 DOI: 10.1002/jcp.29130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The serine protease inhibitor, Kazal type III (SPINK3), is a trypsin inhibitor associated with liver disease, which highly overexpresses in a variety of cancers. In one of our previous studies of our laboratory, Spink3 was observed to be significantly upregulated in rat liver regeneration (LR) via a gene expression profile. For the current study, rat hepatocyte BRL-3A cells were treated by gene addition/interference, and the addition of the exogenous rat recombinant protein SPINK3. It was revealed that both the overexpression of endogenous Spink3 and addition of exogenous rat recombinant SPINK3 (rrSPINK3) significantly promoted the cell proliferation of BRL-3A cells, whereas cell proliferation was inhibited when Spink3 was interfered. Furthermore, quantitative reverse transcription polymerase chain reaction and western blot results revealed that three signaling pathways, including extracellular-signal-regulated kinase 1/2 (ERK1/2), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), and phosphatidylinositol-3-kinase (PI3K)-protein kinase B (AKT), as well as their related genes, were altered following endogenous Spink3 addition/interference. Also, the PI3K-AKT and SRC-p38 pathways and their related genes were modified following exogenous SPINK3 treatment. Among them, the common signaling pathway was PI3K-AKT pathway. We concluded that SPINK3 could activate the PI3K-AKT pathway by enhancing the expression of AKT1 to regulate the proliferation of BRL-3A cells. This study may contribute to shedding light on the potential mechanisms of SPINK3 that regulate the proliferation of BRL-3A cells.
Collapse
Affiliation(s)
- Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Junjie Xie
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Qingdan Yang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jing Yang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yaru Luo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lingling Xi
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jianlin Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ganggang Yang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wei Jin
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Gaiping Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
8
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
9
|
Khatua B, Trivedi RN, Noel P, Patel K, Singh R, de Oliveira C, Trivedi S, Mishra V, Lowe M, Singh VP. Carboxyl Ester Lipase May Not Mediate Lipotoxic Injury during Severe Acute Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1226-1240. [PMID: 30954473 DOI: 10.1016/j.ajpath.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Acute lipolysis of visceral fat or circulating triglycerides may worsen acute pancreatitis (AP)-associated local and systemic injury. The pancreas expresses pancreatic triacylglycerol lipase (PNLIP), pancreatic lipase-related protein 2 (PNLIPRP2), and carboxyl ester lipase (CEL), which may leak into the visceral fat or systemic circulation during pancreatitis. We, thus, aimed to determine the pancreatic lipase(s) regulating lipotoxicity during AP. For this AP, associated fat necrosis was analyzed using Western blot analysis. Bile acid (using liquid chromatography-tandem mass spectrometry) and fatty acid (using gas chromatography) concentrations were measured in human fat necrosis. The fat necrosis milieu was simulated in vitro using glyceryl trilinoleate because linoleic acid is increased in fat necrosis. Bile acid requirements to effectively hydrolyze glyceryl trilinoleate were studied using exogenous or overexpressed lipases. The renal cell line (HEK 293) was used to study lipotoxic injury. Because dual pancreatic lipase knockouts are lethal, exocrine parotid acini lacking lipases were used to verify the results. PNLIP, PNLIPRP2, and CEL were increased in fat necrosis. Although PNLIP and PNLIPRP2 were equipotent in inducing lipolysis and lipotoxic injury, CEL required bile acid concentrations higher than in human fat necrosis. The high bile acid requirements for effective lipolysis make CEL an unlikely mediator of lipotoxic injury in AP. It remains to be explored whether PNLIP or PNLIPRP2 worsens AP severity in vivo.
Collapse
Affiliation(s)
| | - Ram N Trivedi
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Pawan Noel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Ravinder Singh
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Vivek Mishra
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Mark Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
10
|
|
11
|
Abstract
The proteins and pigment of the eggshell of the Siamese crocodile (Crocodylus siamensis) were analysed. For proteomic analysis, various decalcification methods were used when the two main surface layers were analyzed. These layers are important for antimicrobial defense of egg (particularly the cuticle). We found 58 proteins in both layers, of which 4 were specific for the cuticle and 26 for the palisade (honeycomb) layer. Substantial differences between proteins in the eggshell of crocodile and previously described birds' eggshells exist (both in terms of quality and quantity), however, the entire proteome of Crocodilians has not been described yet. The most abundant protein was thyroglobulin. The role of determined proteins in the eggshell of the Siamese crocodile is discussed. For the first time, the presence of porphyrin pigment is reported in a crocodilian eggshell, albeit in a small amount (about 2 to 3 orders of magnitude lower than white avian eggs).
Collapse
|
12
|
Nakashima Y, Miyagi-Shiohira C, Kobayashi N, Saitoh I, Watanabe M, Noguchi H. A proteome analysis of pig pancreatic islets and exocrine tissue by liquid chromatography with tandem mass spectrometry. Islets 2017; 9:159-176. [PMID: 29099648 PMCID: PMC5710700 DOI: 10.1080/19382014.2017.1389826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is a proteome analysis method, and the shotgun analysis by LC-MS/MS comprehensively identifies proteins from tissues and cells with high resolving power. In this study, we analyzed the protein expression in pancreatic tissue by LC-MS/MS. Islets isolated from porcine pancreata (purity ≥95%) and exocrine tissue (purity ≥99%) were used in this study. LC-MS/MS showed that 13 proteins were expressed in pancreatic islets only (Group I), 43 proteins were expressed in both islets and exocrine tissue (Group I&E), and 102 proteins were expressed in exocrine tissue only (Group E). Proteins involved in islet differentiation and cell proliferation were identified in Group I (e.g. CLUS, CMGA, MIF). In addition, various functional proteins (e.g. SCG2, TBA1A) were identified in islet by using the new method of 'principal component analysis (PCA)'. However, the function of such proteins on islets remains unclear. EPCAM was identified in Group E. Group E was found to include proteins involved in clinical inflammatory diseases such as pancreatitis (e.g. CBPA1, CGL, CYTB, ISK1 and PA21B). Many of these identified proteins were reported less frequently in previous studies, and HS71B, NEC2, PRAF3 and SCG1 were newly detected in Group I while CPNS1, DPEP1, GANAB, GDIB, GGT1, HSPB1, ICTL, VILI, MUTA, NDKB, PTGR1, UCHL3, VAPB and VINC were newly detected in Group E. These results show that comprehensive expression analysis of proteins by LC-MS/MS is useful as a method to investigate new factors constructing cellular component, biological process, and molecular function.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- CONTACT Hirofumi Noguchi Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
13
|
Patel S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017; 45:579-591. [PMID: 28236540 PMCID: PMC7126602 DOI: 10.1016/j.aller.2016.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Proteolytic activity is fundamental to survival, so it is not surprising that all living organisms have proteases, especially seine protease. This enzyme in its numerous isoforms and homologues, constitutes the quintessential offence and defence factors, in the form of surface proteins, secreted molecules, gut digestive enzymes, venom in specialised glands or plant latex, among other manifestations. Occurring as trypsin, chymotrypsin, elastase, collagenase, thrombin, subtilisin etc., it mediates a diverse array of functions, including pathological roles as inflammatory, coagulatory to haemorrhagic. This review emphasizes that despite the superficial differences in mechanisms, most health issues, be they infectious, allergic, metabolic, or neural have a common conduit. This enzyme, in its various glycosylated forms leads to signal misinterpretations, wreaking havoc. However, organisms are endowed with serine protease inhibitors which might restrain this ubiquitous yet deleterious enzyme. Hence, serine proteases-driven pathogenesis and antagonising role of inhibitors is the focal point of this critical review.
Collapse
|
14
|
Di Leo M, Bianco M, Zuppardo RA, Guslandi M, Calabrese F, Mannucci A, Neri TM, Testoni PA, Leandro G, Cavestro GM. Meta-analysis of the impact of SPINK1 p.N34S gene variation in Caucasic patients with chronic pancreatitis. An update. Dig Liver Dis 2017; 49:847-853. [PMID: 28546062 DOI: 10.1016/j.dld.2017.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND SPINK1 p.N34S gene variation is one of the endogenous factors which seem to be associated with chronic pancreatitis (CP). However, in literature there is no clear agreement regarding its contribution in different ethnicity and CP etiologies. AIM To investigate the role of SPINK1 p.N34S gene variation in CP patients with European origin by means of meta-analysis. METHODS Literature search was conducted and case-control studies evaluating Caucasian population, published between May 2007 and May 2015, were included. We also included Caucasian selected studies analyzed in previous meta-analysis. We carried out meta-analysis including all selected studies. After that, we performed two additional meta-analyses considering the incidence of SPINK1 p.N34S gene variation in alcoholic or in idiopathic CP patients vs control group. RESULTS Twenty-five studies were included and the total number of subjects was 8800 (2981 cases and 5819 controls). The presence of p.N34S variation increased nine times the overall CP risk in population of European origin [OR 9.695 (CI 95% 7.931-11.851)]. Also, the contribution of SPINK1 in idiopathic pancreatitis [OR 13.640 (CI 95% 8.858-21.002)] was found to be higher than in alcoholic CP [5.283 (CI 95% 3.449-8.092)]. CONCLUSION The association between SPINK1 p.N34S gene variation and CP is confirmed. Also, we confirmed that the idiopathic etiology needs a better definition by means of genetic analysis.
Collapse
Affiliation(s)
- Milena Di Leo
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Margherita Bianco
- Gastroenterology Unit 1, Gastroenterological Hospital 'S. De Bellis' IRCCS, Castellana Grotte, BA, Italy
| | - Raffaella Alessia Zuppardo
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Guslandi
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Calabrese
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tauro Maria Neri
- Unit of Medical Genetics, Laboratory of Molecular Genetics, Diagnostic Department, University Hospital of Parma, Parma, Italy
| | - Pier Alberto Testoni
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gioacchino Leandro
- Gastroenterology Unit 1, Gastroenterological Hospital 'S. De Bellis' IRCCS, Castellana Grotte, BA, Italy; Institute for Digestive and Liver Health, University College, London, UK
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Ying HY, Gong CJ, Feng Y, Jing DD, Lu LG. Serine protease inhibitor Kazal type 1 (SPINK1) downregulates E-cadherin and induces EMT of hepatoma cells to promote hepatocellular carcinoma metastasis via the MEK/ERK signaling pathway. J Dig Dis 2017; 18:349-358. [PMID: 28544403 DOI: 10.1111/1751-2980.12486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/22/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate serine protease inhibitor Kazal type 1 (SPINK1) expression and its influence on the prognosis of human hepatocellular carcinoma (HCC) and to explore the underlying molecular mechanisms involved. METHODS Altogether 80 patients with HCC who underwent curative resection were followed up for a median of 58.6 months. SPINK1 expression was detected in the primary HCC samples by immunohistochemistry. Its role in tumor invasion and metastasis was evaluated in vitro by gene silencing using a small interfering RNA-mediated approach, recombinant SPINK1 and U0126 (an inhibitor of MEK/ERK). The proteins in the MEK/ERK signaling pathway were detected by Western blot. RESULTS Patients with high SPINK1 expression showed poor overall survival (P = 0.0001) and recurrence-free survival (P = 0.001) compared with those with low SPINK1 expression. The suppression of SPINK1 resulted in reduced cell migration and invasion. SPINK1 overexpression was significantly associated with increased cell migration and invasion in vitro. Furthermore, SPINK1 promoted cancer cells motility and epithelial-mesenchymal transition (EMT) via the mitogen-activated protein kinase kinase (MAPK) and extracellular regulated kinase (ERK) pathway, resulting in increased vimentin expression and decreased E-cadherin expression. CONCLUSION SPINK1 may be an oncogene that induces EMT via the MEK/ERK pathway and is a potential target for HCC therapy.
Collapse
Affiliation(s)
- Hai Yan Ying
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Jie Gong
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Dao Jing
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Chronic Pancreatitis in the 21st Century - Research Challenges and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2016; 45:1365-1375. [PMID: 27748719 PMCID: PMC5117429 DOI: 10.1097/mpa.0000000000000713] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities in chronic pancreatitis (CP) and its sequelae. This conference marked the 20th year anniversary of the discovery of the cationic trypsinogen (PRSS1) gene mutation for hereditary pancreatitis. The event was held on July 27, 2016, and structured into 4 sessions: (1) pathophysiology, (2) exocrine complications, (3) endocrine complications, and (4) pain. The current state of knowledge was reviewed; many knowledge gaps and research needs were identified that require further investigation. Common themes included the need to design better tools to diagnose CP and its sequelae early and reliably, identify predisposing risk factors for disease progression, develop standardized protocols to distinguish type 3c diabetes mellitus from other types of diabetes, and design effective therapeutic strategies through novel cell culture technologies, animal models mimicking human disease, and pain management tools. Gene therapy and cystic fibrosis conductance regulator potentiators as possible treatments of CP were discussed. Importantly, the need for CP end points and intermediate targets for future drug trials was emphasized.
Collapse
|
17
|
Zheng LS, Yang JP, Cao Y, Peng LX, Sun R, Xie P, Wang MY, Meng DF, Luo DH, Zou X, Chen MY, Mai HQ, Guo L, Guo X, Shao JY, Huang BJ, Zhang W, Qian CN. SPINK6 Promotes Metastasis of Nasopharyngeal Carcinoma via Binding and Activation of Epithelial Growth Factor Receptor. Cancer Res 2016; 77:579-589. [PMID: 27671677 DOI: 10.1158/0008-5472.can-16-1281] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
Nasopharyngeal carcinoma has the highest rate of metastasis among head and neck cancers, and distant metastasis is the major reason for treatment failure. The underlying molecular mechanisms of nasopharyngeal carcinoma metastasis are not fully understood. Here, we report the identification of serine protease inhibitor Kazal-type 6 (SPINK6) as a functional regulator of nasopharyngeal carcinoma metastasis via EGFR signaling. SPINK6 mRNA was upregulated in tumor and highly metastatic nasopharyngeal carcinoma cells. Immunohistochemical staining of 534 nasopharyngeal carcinomas revealed elevated SPINK6 expression as an independent unfavorable prognostic factor for overall, disease-free, and distant metastasis-free survival. Ectopic SPINK6 expression promoted in vitro migration and invasion as well as in vivo lymph node metastasis and liver metastasis of nasopharyngeal carcinoma cells, whereas silencing SPINK6 exhibited opposing effects. SPINK6 enhanced epithelial-mesenchymal transition by activating EGFR and the downstream AKT pathway. Inhibition of EGFR with a neutralizing antibody or erlotinib reversed SPINK6-induced nasopharyngeal carcinoma cell migration and invasion. Erlotinib also inhibited SPINK6-induced metastasis in vivo Notably, SPINK6 bound to the EGFR extracellular domain independent of serine protease-inhibitory activity. Overall, our results identified a novel EGFR-activating mechanism in which SPINK6 has a critical role in promoting nasopharyngeal carcinoma metastasis, with possible implications as a prognostic indicator in nasopharyngeal carcinoma patients. Cancer Res; 77(2); 579-89. ©2016 AACR.
Collapse
Affiliation(s)
- Li-Sheng Zheng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun-Ping Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rui Sun
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Meng-Yao Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Radiotherapy Department, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong-Fang Meng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Hua Luo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiong Zou
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ling Guo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wei Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Chang CF, Yang J, Li XF, Zhao WM, Chen SS, Wang GP, Xu CS. SPINK3: A novel growth factor that promotes rat liver regeneration. Mol Biol 2016. [DOI: 10.1134/s0026893316030055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Fernández J, Gutiérrez JM, Calvete JJ, Sanz L, Lomonte B. Characterization of a novel snake venom component: Kazal-type inhibitor-like protein from the arboreal pitviper Bothriechis schlegelii. Biochimie 2016; 125:83-90. [DOI: 10.1016/j.biochi.2016.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 01/30/2023]
|
20
|
Zhang J, Wang D, Hu N, Wang Q, Yu S, Wang J. The construction and proliferative effects of a lentiviral vector capable of stably overexpressing SPINK1 gene in human pancreatic cancer AsPC-1 cell line. Tumour Biol 2015; 37:5847-55. [PMID: 26586397 DOI: 10.1007/s13277-015-4405-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022] Open
Abstract
This study aims to design and generate recombinant lentiviral vector containing the complete coding sequence (CDS) region of human serine protease inhibitor Kazal type 1 gene (SPINK1) and establish a human pancreatic cancer cell line (AsPC-1) stably overexpressing SPINK1. Then, to assess the proliferative and oncogenic effects of upregulated SPINK1 gene on pancreatic cancer AsPC-1 cells using different methods. Initially, the target coding sequence (CDS) of SPINK1 was amplified by polymerase chain reaction (PCR) and the synthesized product was subsequently subcloned into the lentiviral vector. The construction of recombinant SPINK1 gene was verified by the restriction digestion and sequencing analysis. The lentiviral particles carrying SPINK1 gene were produced by co-transfection of the recombination lentiviral vector and the packaging mix plasmids into 293 T cells and filtered and concentrated before AsPC-1 cells were infected by the virus particles. The cells transduced were differentially selected with puromycin, and the clones that highly expressed SPINK1 were chosen by real-time PCR and confirmed by Western blot after 7 weeks. The stably transduced AsPC-1 cell line showed significantly increased metabolic and proliferative capability using CCK-8 and Trypan Blue assays (P < 0.001). Cell cycle and DNA content analysis by flow cytometry showed that upregulated SPINK1 elicited significant increase in the percentage of AsPC-1 cells in the S and G2/M phase (P < 0.001). Clone formation assay demonstrated that the number of the colonies formed in the experimental group was greater than that in the control parental cells (P < 0.001). It was concluded that a stable AsPC-1 cell line capable of overexpressing SPINK1 had been successfully created, and that the proliferative capacity of AsPC-1 pancreatic cancer cells was significantly raised by SPINK1 upregulation as well as the ability of a single AsPC-1 cell to grow into a colony.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China, 116044
| | - Dongmei Wang
- Department of Experimental Functionality, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Na Hu
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China, 116044
| | - Qian Wang
- Nanjing Applied Biological Materials Inc., Nanjing, People's Republic of China
| | - Shanice Yu
- Nanjing Applied Biological Materials Inc., Nanjing, People's Republic of China
| | - Jun Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China, 116044.
| |
Collapse
|
21
|
Derikx MHM, Geisz A, Kereszturi É, Sahin-Tóth M. Functional significance of SPINK1 promoter variants in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G779-84. [PMID: 25792561 PMCID: PMC4421017 DOI: 10.1152/ajpgi.00022.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation.
Collapse
Affiliation(s)
- Monique H. M. Derikx
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; ,2Department of Gastroenterology and Hepatology, Radboud UMC, Nijmegen, The Netherlands
| | - Andrea Geisz
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Éva Kereszturi
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
22
|
Gao Q, Liang N. Integrated traditional Chinese medicine improves acute pancreatitis via the downregulation of PRSS1 and SPINK1. Exp Ther Med 2015; 9:947-954. [PMID: 25667658 PMCID: PMC4316909 DOI: 10.3892/etm.2015.2191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022] Open
Abstract
Integrated traditional Chinese medicine (ITCM) is known to improve health in patients with acute pancreatitis (AP); however, the molecular mechanisms underlying this effect are unknown. AP is associated with the expression of PRSS1 and SPINK1. Thus, the present study aimed to investigate whether ITCM was able to ameliorate AP by regulating the expression levels of protein, serine 1 (PRSS1) and serine peptidase inhibitor, Kazal type 1 (SPINK1). A total of 100 AP patients were divided at random into two groups. The treatment group were treated externally with a herbal ITCM preparation, while the control group received a routine placebo treatment. The mRNA and protein expression levels of PRSS1 and SPINK1 were subsequently compared between the two groups. The results revealed that the health of the patients who had received ITCM improved significantly when compared with the control group patients (P<0.05). In addition, the expression levels of PRSS1 and SPINK1 were found to be lower in the treatment group when compared with the control group (P<0.05). Therefore, ITCM exhibited a significant therapeutic effect on AP and produced no side effects since the treatment was applied externally. ITCM may ameliorate AP by downregulating the expression of PRSS1 and SPINK1; thus, should be considered as a potential therapy for the development of drugs against AP.
Collapse
Affiliation(s)
- Qiang Gao
- Physician Department, Health Service Center, Nyalam, Tibet 858300, P.R. China ; Gastroenterology Department, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264002, P.R. China
| | - Nusheng Liang
- Department of Gastroenterology, First Hospital of Tianjin, Tianjin 300193, P.R. China
| |
Collapse
|
23
|
Sah RP, Garg SK, Dixit AK, Dudeja V, Dawra RK, Saluja AK. Endoplasmic reticulum stress is chronically activated in chronic pancreatitis. J Biol Chem 2014; 289:27551-61. [PMID: 25077966 DOI: 10.1074/jbc.m113.528174] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.
Collapse
Affiliation(s)
- Raghuwansh P Sah
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Sushil K Garg
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ajay K Dixit
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Vikas Dudeja
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Rajinder K Dawra
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Ashok K Saluja
- From the Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
24
|
Tremblay K, Dubois-Bouchard C, Brisson D, Gaudet D. Association of CTRC and SPINK1 gene variants with recurrent hospitalizations for pancreatitis or acute abdominal pain in lipoprotein lipase deficiency. Front Genet 2014; 5:90. [PMID: 24795752 PMCID: PMC4000989 DOI: 10.3389/fgene.2014.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/29/2022] Open
Abstract
Background: There are important inter-individual variations in the incidence and severity of acute pancreatitis in patients with severe hypertriglyceridemia. Several genes involved in triglyceride-rich lipoprotein metabolism or serine proteases pathways are known to influence the risk of pancreatitis. Aim: To evaluate the association between genes regulating serine proteases, chymotrypsin C (CTRC) and serine peptidase inhibitor kazal type1 (SPINK1), and recurrence of hospitalizations for acute pancreatitis or severe abdominal pain in patients with Lipoprotein Lipase Deficiency (LPLD), a rare and extreme monogenic model of severe hypertriglyceridemia and pancreatitis. Method: The CTRC and SPINK1 genes promoter and coding regions sequencing has been performed in a sample of 38 LPLD adults (22 men and 16 women) and 100 controls (53 men and 47 women). Estimation of the association of CTRC and SPINK1 gene variants or combinations of variants with history of hospitalizations for pancreatitis or acute abdominal pain in LPLD was investigated using non-parametric analyses with correction for multiple testing and logistic regression models controlling for age, gender, family history, and life habits. Results: Gene sequencing followed by genotype-stratified analyses of the CTRC and SPINK1 genes in LPLD and controls revealed a positive association between recurrence of hospitalizations and the rs545634 (CTRC)—rs11319 (SPINK1) combination [OR = 41.4 (CI: 2.0–848.0); p = 0.016]. In all models, a positive family history of pancreatitis was a significant predictor of recurrent hospitalizations independently of the contribution of SPINK1 or CTRC (p < 0.001). Conclusion: These results suggest that a positive family history of pancreatitis and genetic markers in the serine protease pathways could be associated with a risk of recurrent hospitalization for acute pancreatitis in severe hypertriglyceridemia due to LPLD.
Collapse
Affiliation(s)
- Karine Tremblay
- Department of Medicine, Université de Montréal Montreal, Canada ; ECOGENE-21 Clinical Research Center Saguenay, QC, Canada
| | - Camélia Dubois-Bouchard
- Department of Medicine, Université de Montréal Montreal, Canada ; ECOGENE-21 Clinical Research Center Saguenay, QC, Canada
| | - Diane Brisson
- Department of Medicine, Université de Montréal Montreal, Canada ; ECOGENE-21 Clinical Research Center Saguenay, QC, Canada
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal Montreal, Canada ; ECOGENE-21 Clinical Research Center Saguenay, QC, Canada
| |
Collapse
|
25
|
Dietz JA, Maes ME, Huang S, Yandell BS, Schlamp CL, Montgomery AD, Allingham RR, Hauser MA, Nickells RW. Spink2 modulates apoptotic susceptibility and is a candidate gene in the Rgcs1 QTL that affects retinal ganglion cell death after optic nerve damage. PLoS One 2014; 9:e93564. [PMID: 24699552 PMCID: PMC3974755 DOI: 10.1371/journal.pone.0093564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 03/06/2014] [Indexed: 02/07/2023] Open
Abstract
The Rgcs1 quantitative trait locus, on mouse chromosome 5, influences susceptibility of retinal ganglion cells to acute damage of the optic nerve. Normally resistant mice (DBA/2J) congenic for the susceptible allele from BALB/cByJ mice exhibit susceptibility to ganglion cells, not only in acute optic nerve crush, but also to chronic inherited glaucoma that is characteristic of the DBA/2J strain as they age. SNP mapping of this QTL has narrowed the region of interest to 1 Mb. In this region, a single gene (Spink2) is the most likely candidate for this effect. Spink2 is expressed in retinal ganglion cells and is increased after optic nerve damage. This gene is also polymorphic between resistant and susceptible strains, containing a single conserved amino acid change (threonine to serine) and a 220 bp deletion in intron 1 that may quantitatively alter endogenous expression levels between strains. Overexpression of the different variants of Spink2 in D407 tissue culture cells also increases their susceptibility to the apoptosis-inducing agent staurosporine in a manner consistent with the differential susceptibility between the DBA/2J and BALB/cByJ strains.
Collapse
Affiliation(s)
- Joel A. Dietz
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Margaret E. Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shuang Huang
- Department of Biostatistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Biostatistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cassandra L. Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Angela D. Montgomery
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - R. Rand Allingham
- Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael A. Hauser
- Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
26
|
Song Y, Gong K, Yan H, Hong W, Wang L, Wu Y, Li W, Li W, Cao Z. Sj7170, a unique dual-function peptide with a specific α-chymotrypsin inhibitory activity and a potent tumor-activating effect from scorpion venom. J Biol Chem 2014; 289:11667-11680. [PMID: 24584937 DOI: 10.1074/jbc.m113.540419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A new peptide precursor, termed Sj7170, was characterized from the venomous gland cDNA library of the scorpion Scorpiops jendeki. Sj7170 was deduced to be a 62-amino acid peptide cross-linked by five disulfide bridges. The recombinant Sj7170 peptide (rSj7170) with chromatographic purity was produced by a prokaryotic expression system. Enzyme inhibition assay in vitro and in vivo showed that rSj7170 specifically inhibited the activity of α-chymotrypsin at micromole concentrations. In addition, Sj7170 not only promoted cell proliferation and colony formation by up-regulating the expression of cyclin D1 in vitro but also enhanced tumor growth in nude mice. Finally, Sj7170 accelerated cellular migration and invasion by increasing the expression of the transcription factor Snail and then inducing the epithelial-mesenchymal transition. Moreover, Sj7170 changed cell morphology and cytoskeleton of U87 cells by the GTPase pathway. Taken together, Sj7170 is a unique dual-function peptide, i.e. a specific α-chymotrypsin inhibitor and a potent tumorigenesis/metastasis activator. Our work not only opens an avenue of developing new modulators of tumorigenesis/metastasis from serine protease inhibitors but also strengthens the functional link between protease inhibitors and tumor activators.
Collapse
Affiliation(s)
- Yu Song
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ke Gong
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hong Yan
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Hong
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Le Wang
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - Zhijian Cao
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei 430072, China; College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW In this article, we review important advances in our understanding of the mechanisms of pancreatitis. RECENT FINDINGS The relative contributions of intrapancreatic trypsinogen activation and nuclear factor kappa B (NFκB) activation, the two major early independent cellular events in pancreatitis, have been investigated using novel genetic models. Trypsinogen activation has traditionally held the spotlight for many decades as the central pathogenic event of pancreatitis. However, recent experimental evidence points to the role of trypsin activation in early acinar cell damage but not in the inflammatory response of acute pancreatitis, which was shown to be induced by NFκB activation. Further, chronic pancreatitis developed independently of trypsinogen activation in the caerulein model. Sustained NFκB activation, but not persistent intra-acinar expression of active trypsin, was shown to result in chronic pancreatitis. Calcineurin-NFAT (nuclear factor of activated T-cells) signaling was shown to mediate downstream effects of pathologic rise in intracellular calcium. Interleukin-6 was identified as a key cytokine mediating pancreatitis-associated lung injury. SUMMARY Recent advances challenge the long-believed trypsin-centered understanding of pancreatitis. It is becoming increasingly clear that activation of intense inflammatory signaling mechanisms in acinar cells is crucial to the pathogenesis of pancreatitis, which may explain the strong systemic inflammatory response in pancreatitis.
Collapse
|
28
|
Sah RP, Dudeja V, Dawra RK, Saluja AK. Cerulein-induced chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice. Gastroenterology 2013; 144:1076-1085.e2. [PMID: 23354015 PMCID: PMC3928043 DOI: 10.1053/j.gastro.2013.01.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Premature activation of trypsinogen activation can cause pancreatic injury and has been associated with chronic pancreatitis (CP). Mice that lack intra-acinar activation of trypsinogen, such as trypsinogen-7-null (T(-/-)) and cathepsin B-null (CB(-/-)) mice, have been used to study trypsin-independent processes of CP development. We compared histologic features and inflammatory responses of pancreatic tissues from these mice with those from wild-type mice after the development of CP. METHODS CP was induced in wild-type, T(-/-), and CB(-/-) mice by twice-weekly induction of acute pancreatitis for 10 weeks; acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 6). Pancreatic samples were collected and evaluated by histologic and immunohistochemical analyses. Normal human pancreas samples, obtained from the islet transplant program at the University of Minnesota, were used as controls and CP samples were obtained from surgical resections. RESULTS Compared with pancreatic tissues from wild-type mice, those from T(-/-) and CB(-/-) mice had similar levels of atrophy, histomorphologic features of CP, and chronic inflammation. All samples had comparable intra-acinar activation of nuclear factor (NF)-κB, a transcription factor that regulates the inflammatory response, immediately after injection of cerulein. Pancreatic tissue samples from patients with CP had increased activation of NF-κB (based on nuclear translocation of p65 in acinar cells) compared with controls. CONCLUSIONS Induction of CP in mice by cerulein injection does not require intra-acinar activation of trypsinogen. Pancreatic acinar cells of patients with CP have increased levels of NF-κB activation compared with controls; regulation of the inflammatory response by this transcription factor might be involved in the pathogenesis of CP.
Collapse
|
29
|
Molecular dynamics simulations reveal structural instability of human trypsin inhibitor upon D50E and Y54H mutations. J Mol Model 2012; 19:521-8. [PMID: 22955423 DOI: 10.1007/s00894-012-1565-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/09/2012] [Indexed: 01/20/2023]
Abstract
Serine protease inhibitor Kazal type 1 (SPINK1) plays an important role in protecting the pancreas against premature trypsinogen activation that causes pancreatitis. Various mutations in the SPINK1 gene were shown to be associated with patients with pancreatitis. Recent transfection studies identified intracellular folding defects, probably caused by mutation induced misfolding of D50E and Y54H mutations, as a common mechanism that reduces SPINK1 secretion and as a possible novel mechanism of SPINK1 deficiency associated with chronic pancreatitis. Using molecular dynamics, we investigated the effects of D50E and Y54H mutations on SPINK1 dynamics and conformation at 300 K. We found that the structures of D50E and Y54H mutants were less stable than and were distorted from those of the wild type, as indicated by the RMSD plots, RMSF plots and DSSP series. Specifically, unwinding of the top of helices (the main secondary structures) and the distortion of the loops above the helices were observed. It may be possible that this distorted protein structure may be recognized as "non-native" by members of the chaperone family; it may be further retained and targeted for degradation, leading to SPINK1 secretion reduction and subsequently pancreatitis in patients as Király et al. (Gut 56:1433, 2007) proposed.
Collapse
|